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Abstract
A solution technique is proposed for flows in porousmedia that guarantees local conservation
of mass. We first compute a flux field to balance the mass source and then exploit exact co-
chain complexes to generate a solenoidal correction. A reduced basis method based on proper
orthogonal decomposition is employed to construct the correction and we show that mass
balance is ensured regardless of the quality of the reduced basis approximation. The method
is directly applicable to mixed finite and virtual element methods, among other structure-
preserving discretization techniques, and we present the extension to Darcy flow in fractured
porous media.

Keywords Reduced basis method · Exact discrete complex · Mixed finite element method ·
Virtual element method · Fractured porous media

Mathematics Subject Classification 65N22 · 76M10 · 55U15 · 65N30

1 Introduction

The construction of inexact solution schemes involves deciding which errors are acceptable
and which approximations can be made for the sake of computational efficiency. Herein,
we consider the mixed formulation of Darcy flow systems and take the perspective that
the physical law of mass conservation is significantly more important than the constitutive
relationship known as Darcy’s law. In line with this perspective, our goal is to formulate an
efficient solution technique that guarantees local mass conservation.

Efficient solvers are of paramount importance in applications where multiple model real-
izations are necessary. In the context of uncertainty quantification, inverse modeling, or
system optimization, for example, it is vital to understand the dependency of the solution
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on model parameters. However, obtaining this relationship typically requires solving a high-
fidelity model multiple times, which can be computationally expensive, if not prohibitive.
This cost can be relieved by using Reduced Order Modeling (ROM) techniques in which the
original problem is replaced by a model of lower numerical complexity.

The literature on ROM is vast and we refer the interested reader to [16, 25, 26] and
references therein. In this work, we focus on the Reduced Basis Methods (RBM) constructed
using Proper Orthogonal Decomposition (POD) [25, Sec. 6.3]. In particular, we use the
well-established snapshot method, which originated from turbulent flow models [29].

A direct application of RBM to the mixed formulation of Darcy flow would introduce an
error in both the mass balance and constitutive equations. Hence, mass conservation cannot
be guaranteed by the reduced basis solution. An alternative approach is to construct separate
reduced bases for the flux and pressure variables. However, special considerations are then
necessary to ensure inf-sup stability, e.g. by enriching the flux space as in [28], unless reduced
operators are properly precomputed. Finally, if we were to correct an RBM solution through
the use of a projection, then the projection operator can be as computationally expensive as
the original problem, e.g. by enriching the flux space as in [28], unless reduced operators are
properly precomputed.

In thiswork,we propose a three-step solution procedure. In the first step, an initial fluxfield
is obtained by using a locally conservative method, such as the Finite Volume Method with
a Two-Point Flux Approximation (TPFA). Although the TPFA scheme is computationally
efficient, it generally lacks consistency and therefore requires a suitable correction, which is
constructed in the second step. Since the mass balance is already satisfied at this stage, the
correction needs to be divergence-free. The Helmholtz decomposition then ensures us that
this correction can be described as the curl of a potential field r . The second step therefore
employs an H(∇×)-conforming discretization to compute the potential and then updates the
flux field with ∇ × r . Finally, the pressure field is constructed in the third step.

We restrict ourselves to discretization methods capable of conserving mass locally by
which we mean that: (1) the mass is balanced in each element and (2) the normal flux is
uniquely defined on each face of the mesh. Second, since our approach relies on fundamental
properties such as the Helmholtz decomposition, we focus on structure-preserving methods,
i.e. methods based on discrete spaces that form an exact discrete co-chain complex. Two
discretization methods with these properties are used as leading examples, namely mixed
finite element methods [1, 2] and mixed virtual element methods [12].

We then introduce the Reduced Basis Method in the second step to rapidly produce the
potential field r for a given conductivity distribution. We do not apply a reduction to the other
steps because first, these steps can generally be performed efficiently, and second, we rely
on the local mass conservation of the flux field from the first step, which may be affected
by order reduction techniques. On the other hand, the correction ∇ × r is guaranteed to be
solenoidal, so we ensure that it does not impact the mass conservation equation afterward.

The procedure is presented in the general context of exact complexes. This allows us to
directly extend the method to similar systems of equations, including Darcy flow systems
in fractured porous media. By rewriting the equations in terms of the mixed-dimensional
divergence, the problem can be identified as a mixed-dimensional Darcy flow system [10]. In
turn, the solution procedure directly applies. In this case, we employ the mixed-dimensional
curl to ensure that the correction step does not impact the mass conservation equation in
the bulk, fractures, and fracture intersections. The mixed-dimensional curl, defined in [9],
has been used before in the analysis of mixed finite elements for elasticity [8] and in the
construction of auxiliary space preconditioners [11].
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There are several similarities with the framework of auxiliary space preconditioning [17].
In particular, we use an exact complex to decompose the solution into an irrotational and a
solenoidal part. However, we do not form a decomposition of higher regularity than H(∇×)

and thus directly work with edge-based instead of nodal elements. Moreover, our focus is on
ROM rather than preconditioning.

We note that it is common to use the curl for generating solenoidal fields in the construction
of stable finite element pairs for Stokes flow [13, 23]. An important difference with our work
is that we completely transfer the problem to the Sobolev space H(∇×) and we do not enrich
the finite element space nor the reduced basis space, as in e.g. [28], with additional basis
functions.

In short, the main contributions of this work are:

– A novel procedure is proposed that solves the mixed formulation of Darcy flow systems
in three steps. In our example case of lowest-order, this procedure combines the efficiency
of TPFA with the consistency of mixed finite element methods.

– We augment the procedure to obtain a Reduced Basis Method. The quality of the reduced
order approximation does not affect the local conservation of mass.

– By presenting the method in an abstract setting, the extension to Darcy flow in fractured
porous media follows immediately.

– The validity of the approach is confirmed by numerical experiments for cases in two and
three dimensions, with immersed fracture networks.

The article is organized as follows. First, the model problem and our notation conventions
are introduced in Sects. 1.1 and 1.2, respectively. Afterward, Sect. 2 presents the three-step
procedure as it applies to Darcy flow in 3D and its generalization to the abstract setting of
exact complexes. This section moreover shows the applicability to structure-preserving dis-
cretizationmethods andDarcy flow in fractured porousmedia. Section3 concerns the reduced
basis method and its construction by proper orthogonal decomposition. The numerical imple-
mentation is discussed in Sect. 4 and we present experiments showing the performance of
the method. Finally, Sect. 5 contains the concluding remarks.

1.1 TheModel Problem

Let Ω ⊂ R
n with n ∈ {2, 3} be a contractible, bounded Lipschitz domain. Let the hydraulic

conductivity K be a symmetric, positive definite tensor field on Ω and let f be the mass
source. We then consider the Darcy flow problem: find the pair (q, p) such that

q + K∇ p = 0, in Ω, (1.1a)

∇ · q = f , in Ω, (1.1b)

subject to the boundary conditions

ν · q = 0, on ∂qΩ, (1.1c)

p = g, on ∂pΩ, (1.1d)

with ∂Ω = ∂qΩ ∪ ∂pΩ disjointly and ν the outward oriented, unit vector that is normal to
∂Ω . We refer to problem (1.1) as theNeumann problem if ∂Ω = ∂qΩ , theDirichlet problem
if ∂Ω = ∂pΩ , and mixed otherwise.
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1.2 Preliminaries and Notation

The following notation is used throughout this work. First, let L2 be the space of square
integrable functions on Ω and let 〈·, ·〉 denote the corresponding inner product. We reuse
this notation for the inner product between vector-valued, square integrable functions. On
the other hand, the notation with round brackets (·, ·) is reserved for tuples.

Let (∇), (∇×), and (∇·) denote the gradient, curl, and divergence operators, respectively.
These differential operators induce the following Sobolev spaces:

H(∇·) := {q ∈ (L2)n : ∇ · q ∈ L2}, n ∈ {2, 3},
H(∇×) := {r ∈ (L2)n : ∇ × r ∈ (L2)n}, n = 3,

H(∇) := {s ∈ L2 : ∇s ∈ (L2)n}, n ∈ {2, 3}.
We remark that H(∇) is typically denoted by H1(Ω) but we retain this notation for con-
sistency. Additionally, for n = 2, we define the rotated gradient ∇⊥ := [−∂y, ∂x ]T and
H(∇⊥) := H(∇).

Let the subspaces containing homogeneous boundary conditions on ∂qΩ be denoted by

H∂qΩ(∇·) := {q ∈ H(∇·) : ν · q|∂qΩ = 0},
H∂qΩ(∇×) := {r ∈ H(∇×) : ν × r |∂qΩ = 0},
H∂qΩ(∇) := {s ∈ H(∇) : s|∂qΩ = 0}.

Weuse the short-hand notation H0(·) for H∂Ω(·). For an operator d, we let Ran(d) andKer(d)
denote its range and kernel, respectively.

Finally, we use theGothic font to denotemixed-dimensional entities, e.g. (q, p) introduced
in Sect. 2.4. The Sans Serif font is used to denote matrices and vectors, i.e. Ax = b.

2 A Solution Technique Based on Exact Complexes

We present a solution technique in which we first solve the mass balance equation (1.1b). We
then exploit the exact de Rham complex to construct a solenoidal correction such that (1.1a)
is satisfied as well. For ease of exposition, we first consider the three-dimensional Neumann
problem in Sect. 2.1 and present the general setting in Sect. 2.2. The discrete case is discussed
in Sect. 2.3 and we show that the procedure can be applied to flows in fractured porous media
in Sect. 2.4.

2.1 The Neumann Problem in 3D

We start by considering the Neumann problem, characterized by Problem (1.1) with n = 3
and ∂qΩ = ∂Ω . In this case, the co-chain complex of interest is known as the de Rham
complex with boundary conditions, given by

H0(∇) H0(∇×) H0(∇·) L2/R,
∇ ∇× ∇· (2.1)

with L2/R the subspace of L2 composed of functions with zero mean.
We note two important properties of this complex. First, we have the elementary identities

(∇) ◦ (∇×) = 0 and (∇×) ◦ (∇·) = 0. Second, the Helmholtz decomposition ensures that
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if q ∈ H0(∇·) with ∇ · q = 0, then a r ∈ H0(∇×) exists such that q = ∇ × r . Moreover, if
r ∈ H0(∇×) and ∇ × r = 0, then r = ∇s for some s ∈ H0(∇).

Our solution technique exploits these properties of the complex. Let us proceed according
to the following three steps.

1. Given f ∈ L2/R, let q f ∈ H0(∇·) be any function that satisfies

∇ · q f = f . (2.2)

2. Let q0 := q − q f . Since ∇ · q0 = 0, the Helmholtz decomposition ensures that a
r ∈ H0(∇×) exists such that ∇ × r = q0. This variable r then has the property

K−1∇ × r = K−1(q − q f ) = −∇ p − K−1q f .

Note that r cannot be found directly in this way since the equation is posed in H0(∇·)
for an unknown in H0(∇×). With the aim of obtaining a well-posed problem, we test
this equation with functions ∇ × r̃ ∈ H0(∇·). We derive:

〈K−1∇ × r ,∇ × r̃〉 = −〈∇ p,∇ × r̃〉 − 〈K−1q f ,∇ × r̃〉
= −〈p,∇ · ∇ × r̃〉 − 〈K−1q f ,∇ × r̃〉
= −〈K−1q f ,∇ × r̃〉.

Here, the second equality is due to integration by parts and the third follows from
∇ · ∇ × r̃ = 0.
However, this equation still does not guarantee a unique solution r because the curl
operator has a non-zero kernel, which is given by the range of the gradient. We ensure
orthogonality to this kernel by imposing 0 = 〈r ,∇s〉 = −〈∇ · r , s〉 for all s ∈ H(∇).
Thus, we introduce a term that penalizes∇·r , giving us the problem: Find r ∈ H0(∇×)∩
H(∇·) such that

〈K−1∇ × r ,∇ × r̃〉 + 〈∇ · r ,∇ · r̃〉 = −〈K−1q f ,∇ × r̃〉, (2.3)

for all r̃ ∈ H0(∇×) ∩ H(∇·).
3. We set q := q f +∇ × r and it remains to compute the pressure variable: find p ∈ L2/R

such that

〈p,∇ · q̃〉 = 〈K−1q, q̃〉, ∀q̃ ∈ H0(∇·). (2.4)

The solvability of the systems (2.2)–(2.4) is discussed in the more general setting of the
next subsection.

Remark 2.1 Inhomogeneous boundary conditions can readily be incorporated in this proce-
dure. In particular, the natural boundary condition p = gp on ∂pΩ amounts to subtracting
the term 〈gp, ν · (∇ × r̃)〉∂pΩ from the right-hand side of (2.3) and adding 〈gp, ν · q̃〉∂pΩ to
the right-hand side of (2.4).

On the other hand, the essential boundary condition ν · q = gq on ∂qΩ requires first
choosing a function qg ∈ H(∇·) with ν · qg = gq . Then, we subtract ∇ · qg from the right-
hand side of (2.2), subtract 〈K−1qg,∇ × r̃〉 from (2.3), and change the computation in Step
3 to q := q f + ∇ × r + qg . To avoid unnecessary distraction, we limit our exposition herein
to the case of homogeneous boundary conditions.
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2.2 The General Case

In order to generalize the three-step procedure,we borrownotation from the setting of exterior
calculus. In particular, each function space used in the previous section can be represented
by HΛk ⊂ L2Λk with k ∈ [n − 3, n] and connected by differentials dk : HΛk → HΛk+1.
We omit the subscript on d when no ambiguity arises and consider the co-chain complex
(HΛ•, d), given by

HΛn−3 HΛn−2 HΛn−1 HΛn .
d d d (2.5)

Let us recall the defining property of an exact complex, namely that

Ker(dk) = Ran(dk−1). (2.6)

This has two important implications. First, Ker(dk) ⊇ Ran(dk−1) means that dkdk−1 = 0.
On the other hand, Ker(dk) ⊆ Ran(dk−1) implies that if p ∈ HΛk satisfies dp = 0, then a
q ∈ HΛk−1 exists with dk−1q = p and q ⊥ Ker(dk−1). Moreover, we define both dn−4 and
dn to be zero. In turn, we have HΛn−3 ⊥ Ker(d) and HΛn = Ran(d).

Let d∗ be the adjoint of d, i.e. 〈d∗ p, q〉 := 〈p, dq〉 for all q ∈ HΛk−1 and sufficiently
regular p ∈ L2Λk . To make precise the required regularity, we define the Sobolev spaces

HΛk := {p ∈ L2Λk : dp ∈ L2Λk+1},
H∗Λk := {p ∈ L2Λk : d∗ p ∈ L2Λk−1}.

Remark 2.2 Formally, the Sobolev space HΛk defined here is a representation of the vector
space containing alternating, multi-linear k-forms on Ω and d is a representation of the
exterior derivative. Here, we do not make this distinction and will work directly with the
canonical representations of both the forms and the differentials. We refer the interested
reader to [1, 30].

The Darcy flow system (1.1) can now be identified as a problem of the form: find (q, p) ∈
HΛn−1 × H∗Λn that satisfies

K−1q − d∗ p = 0, (2.7a)

dq = f . (2.7b)

This formulation covers the three types of boundary conditions in 2D and 3D presented in
Sect. 1.1. The corresponding spaces are presented in Table 1 and their precise definitions can
be found in Sect. 1.2.

The three steps of the solution procedure from Sect. 2.1 can now be recast in terms of the
spaces HΛk and their associated differentials d. For each step, we briefly show the solvability
of the involved problem using standard arguments.

1. Find q f ∈ HΛn−1 that satisfies

dq f = f . (2.8)

Lemma 2.1 Problem (2.8) admits a solution.

Proof Existence is guaranteed by the fact that f ∈ HΛn = Ran(d). We emphasize that q f

is generally not unique. ��
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Table 1 Explicit definitions of the spaces HΛk for the different boundary conditions

HΛn−3 HΛn−2 HΛn−1 HΛn

n = 3 d ∇ ∇× ∇·
Dirichlet H(∇)/R H(∇×) H(∇·) L2

Mixed H∂qΩ(∇) H∂qΩ(∇×) H∂qΩ(∇·) L2

Neumann H0(∇) H0(∇×) H0(∇·) L2/R

n = 2 d ⊂ ∇⊥ ∇·
Dirichlet 0 H(∇⊥)/R H(∇·) L2

Mixed 0 H∂qΩ(∇⊥) H∂qΩ(∇·) L2

Neumann 0 H0(∇⊥) H0(∇·) L2/R

2. Solve for r ∈ HΛn−2 ∩ H∗Λn−2:

(d∗K−1d + dd∗)r = −d∗K−1q f . (2.9)

Lemma 2.2 Problem (2.9) admits a unique solution

Proof Let q0 := q − q f , for which we have dq0 = 0. The exactness of the complex ensures
that a r ∈ HΛn−2 exists with dr = q0 and r ⊥ Ker(d). This implies that d∗r = 0 and so
r ∈ H∗Λn−2. Inserting r in (2.9), we see that

(d∗K−1d + dd∗)r = d∗K−1dr = d∗K−1(q − q f )

= d∗d∗ p − d∗K−1q f = −d∗K−1q f .

In turn, existence is verified and it remains to show uniqueness. Considering a zero right-hand
side, we test the equation with r ∈ HΛn−2 ∩ H∗Λn−2 and derive

〈K−1dr , dr〉 + 〈d∗r , d∗r〉 = 0.

Since K−1 is positive definite, it follows that r ∈ Ker(dn−2) ∩ Ker(d∗
n−3). Now, since

Ker(d∗
n−3) = Ran(dn−3)

⊥ = Ker(dn−2)
⊥,

we have r = 0 and uniqueness is shown. ��
3. Construct q := q f + dr . Solve for p ∈ H∗Λn :

d∗ p = K−1q. (2.10)

Lemma 2.3 Problem (2.10) admits a unique solution.

Proof In this case, existence is verified by the true solution p to the original problem (2.7).
For uniqueness, we note that a zero right-hand side is equivalent to stating that p ⊥ Ran(d).
However, since HΛn = Ran(d), we conclude that p = 0. ��

To conclude this section, we briefly show that our three-step procedure constructs the
unique solution to the original problem.

Lemma 2.4 The pair (q, p) obtained from the three-step procedure solves (2.7).

Proof First, (2.7a) is satisfied due to (2.10). Second, (2.7b) is fulfilled by the calculation
dq = d(q f + dr) = dq f = f . ��

123



64 Page 8 of 21 Journal of Scientific Computing (2023) 94 :64

2.3 Discretization of Darcy Flow Using Structure-PreservingMethods

We continue with the discrete setting in which we let PΛk ⊂ HΛk be a finite-dimensional
subspace for each k. The differential dh,k : PΛk → PΛk+1 is defined as the restriction of
dk to PΛk . We often omit the subscript k on the differential and we assume that (PΛ•, dh)
forms an exact complex. Such exact discrete complexes form an active area of research, see
e.g. [1, 2, 18].

As our main example, we focus on the family of trimmed elements of polynomial order
r , i.e. PΛk := P−

r Λk in the notation of Finite Element Exterior Calculus [2]. This family
consists of the Lagrange elements Lr , the Nédélec [22] element of the first kind Nr−1, the
Raviart-Thomas [27] element RTr−1, and the discontinuous, piecewise polynomials Pr−1.
The elements of lowest order, with r = 1, are referred to as the Whitney forms, and form the
exact complex (PΛ•, dh):

L1 N0 RT0 P0.
∇ ∇× ∇· (2.11)

In the case of homogeneous boundary conditions on the variable q ∈ PΛn−1, i.e. ∂qΩ �=
∅, we consider the subspaces P∂qΩΛk in which the degrees of freedom on ∂qΩ are set to
zero.

The discrete complex (PΛ•, dh) is exact (see e.g. [2]) and therefore the three-step tech-
nique proposed in Sect. 2.2 is directly applicable.

The first step (2.8) can be solved using any locally conservative scheme, e.g. with a finite
volume method with a two-point flux approximation (TPFA). This leads to a small system
consisting only of cell-center pressure unknowns and is therefore relatively inexpensive to
compute. Since the TPFA method is not consistent in general, the remaining two steps can
be seen as corrections.

The second step requires the operators d∗
hdh and dhd

∗
h . The former can directly be imple-

mented as 〈dhr , dhr̃〉 = 〈dr , dr̃〉 since PΛk ⊂ HΛk . For the latter operator dhd∗
h , we first

solve for d∗
hr ∈ PΛk−1:

〈d∗
hr , s̃〉 = 〈r , dh s̃〉, ∀s̃ ∈ PΛk−1, (2.12)

and then compute 〈d∗
hr , d

∗
hr̃〉. This is computationally costly, so we propose a mass lumping

technique on the mass matrix of PΛk−1 in Sect. 4.1. This modification does not change the
differential of the solution, i.e. dhr is unaffected since the penalty term dhd∗

h only controls
the part of r that is in the kernel of dh .

Remark 2.3 We emphasize that (2.12) is solvable for all r ∈ PΛk and so d∗
h : PΛk →

PΛk−1 is a well-defined operator. However, we generally have PΛk
� H∗Λk , so d∗

h is not
a restriction of d∗. For example, the piecewise constants P0 = PΛn ⊂ HΛn = L2 are not
contained in H∗Λn = H(∇) but (2.12) nevertheless defines d∗

h,n−1 as a discrete gradient
on this space. Analogously, the d∗

h,k operators correspond to a discrete curl on RTr and a
discrete divergence on Nr .

Remark 2.4 The term 〈d∗
h r , d

∗
h r̃〉 can be scaled by any positive parameter without affecting

dhr . Hence, it may be beneficial in practice to introduce a scaling by K−1 in order to balance
the terms in (2.9).A scalingwith themesh size is not necessary since 〈d∗

h r , d
∗
h r̃〉 and 〈dhr , dhr̃〉

scale similarly with h.

The solutions to systems (2.10) and (2.8) can be obtained by solving an elliptic prob-
lem posed on PΛn and thus, in the lowest order case, concerns only cell-center variables.
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Fig. 1 Example of a fracture network in which Ω1 and Ω2 form the two-dimensional bulk, Ω3, Ω4, and Ω5
the one-dimensional fractures, and Ω6 the intersection point. Interfaces between subdomains of codimension
one are denoted by ∂iΩ j and the fracture tip is denoted by ∂0Ω3

Similarly, the problem in step 2.2 concerns degrees of freedom on the mesh edges in 3D
and nodes in 2D. We have thus partitioned the original saddle point formulation into three
smaller, elliptic problems posed on either the nodes, edges, or cells of the mesh.

Finally, we note that the discretization can be generalized to polyhedral meshes using the
virtual element method [12]. In the lowest order case, this amounts to defining a degree of
freedom of PΛk on each k-dimensional mesh entity, i.e. on the nodes, edges, faces, or cells.

2.4 Flow in Fractured Porous Media

Next, we consider a model of flow in fractured porous media in which the fractures are
represented by lower-dimensional manifolds. We start by presenting the subdivision of the
domain into subdomains of different dimensions, then define the finite element spaces and
governing equations, and finally introduce the relevant exact discrete complex. Thus, we limit
ourselves to the discrete setting and refer the interested reader to [9, 10] for the continuous
case.

The first step is to partition the domain of computation into the n-dimensional bulk matrix,
the (n − 1)-dimensional fractures and the lower-dimensional intersection lines and points.
Specifically, let Ω be partitioned into open subdomains Ωi with i ∈ I the index and di its
dimensionality. We assume that each Ωi with di < n has at least one neighbor Ω j such that
d j = di + 1 and Ωi coincides with a part of ∂Ω j , denoted by ∂iΩ j . A precise definition of
allowable geometries is given in [9] and Fig. 1 illustrates a two-dimensional example.

On each subdomain Ωi , we introduce a shape-regular, simplicial mesh Ωh,i . We impose
that the meshes are matching in the sense that each di -dimensional cell of Ωh,i coincides
with a face on ∂iΩh, j for all its neighbors with d j = di + 1. Since we only consider the
discrete case in this work, we abuse notation and omit the subscript h on Ωh,i .

We group the finite element spaces from Sect. 2.3 as in [24] to define the mixed-
dimensional spaces:

PLk :=
∏

i∈I
di≥n−k

PΛdi−(n−k)(Ωi ) (2.13)
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Table 2 A mixed-dimensional
family of finite elements of
lowest order that form an exact
discrete complex for n = 3

di PL0 PL1 PL2 PL3

3 L1 N0 RT0 P0

2 L1 RT0 P0

1 L1 P0

0 P0

For ease of reference, Table 2 presents the local finite element spaces depending on the
dimensionality di of the subdomain.

We are interested in a mixed formulation and therefore introduce the flux q ∈ PLn−1

and pressure p ∈ PLn . Since these are variables defined on subdomains of different dimen-
sionalities, we refer to them as mixed-dimensional and denote them using a Gothic font. We
revert to standard font to indicate a restriction to a subdomain, i.e. pi := p|Ωi .

With the function spaces defined, we continue with the governing equations of mixed-
dimensional Darcy flow [5], which are a generalization of [21]. First, we assume Darcy’s law
tangential to each Ωi and normal to each ∂iΩ j , with conductivities Ki and Ki j , respectively.
Second, the mass balance equation relates the tangential flux to the contribution from higher-
dimensional neighboring subdomains. This leads us to the following equations:

qi + Ki∇i pi = 0 in Ωi , 1 ≤ di ≤ n, (2.14a)

ν j · q j + Ki j (pi − p j ) = 0 on ∂iΩ j , 0 ≤ di ≤ n − 1, (2.14b)

∇i · qi +
∑

j∈I
d j=di+1

(−ν j · q j )|∂iΩ j = fi in Ωi , 0 ≤ di ≤ n. (2.14c)

Here, ∇i is the del-operator on Ωi and ν j is the outward oriented, unit normal vector to ∂Ω j .
In (2.14c), we assume that the first term is zero for di = 0 and the second term is zero for
di = n.

The following boundary conditions are imposed:

pi = 0 on ∂Ωi ∩ ∂Ω, νi · qi = 0 on ∂0Ωi . (2.14d)

with ∂0Ωi ⊆ ∂Ωi the fracture tips, i.e. portion of the boundary of Ωi that does not border a
lower-dimensional subdomain.

In order to show that (2.14) has the structure (2.7), we first introduce the following inner
products:

〈p, p̃〉L2Ln :=
∑

i∈I
〈pi , p̃i 〉Ωi ,

〈q, q̃〉L2Ln−1 :=
∑

i∈I
di≥1

(
〈qi , q̃i 〉Ωi +

∑

j∈I
d j=di−1

〈νi · qi , νi · q̃i 〉∂ jΩi

)
.

Second, we define mixed-dimensional divergence (D·) : PLn−1 → PLn as

(D · q)|Ωi := ∇i · qi +
∑

j∈I
d j=di+1

(−ν j · q j )|∂iΩ j ∀i ∈ I .
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Finally, we collect the source terms to create f ∈ PLn such that f|Ωi = fi and similarly, we
define K such that it equals Ki on Ωi and Ki j on ∂iΩ j . The weak formulation of the fracture
flow problem (2.14) then becomes (cf. [10] for the derivation): find (q, p) ∈ PLn−1 × PLn

such that

〈K−1q, q̃〉L2Ln−1 − 〈p,D · q̃〉L2Ln = 0, ∀q̃ ∈ PLn−1, (2.15a)

〈D · q, p̃〉L2Ln = 〈f, p̃〉L2Ln , ∀p̃ ∈ PLn . (2.15b)

We observe that (2.15) has the structure (2.7). Hence, we next require amixed-dimensional
curl operator (D×) in order to generate a solenoidal field. It is important to note that here,
solenoidal means thatD·q = 0 and this is not the same as imposing∇i ·qi = 0 on all i ∈ I . In
order to apply our proposed solution technique, we therefore require the mixed-dimensional
analogues of the curl and gradient. These differential operators were introduced in [9] and
form the following co-chain complex:

PL0 PL1 PL2 PL3.
D D× D· (2.16)

We recall that the spaces PLk are given by the columns of Table 2. Moreover, the mixed-
dimensional gradient (D) and curl (D×) are defined as follows:

(Ds)|Ωi :=
⎧
⎨

⎩
∇i si , di = 3,
∑

j∈I
d j=3

(−(νi · ν j )s j )|∂iΩ j , di = 2. (2.17a)

(D × r)|Ωi :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇i × ri , di = 3,

∇⊥
i ri + ∑

j∈I
d j=3

(ν j × r j )|∂iΩ j , di = 2,

∑
j∈I
d j=2

((ν⊥
j · τi )r j )|∂iΩ j , di = 1.

(2.17b)

Here, νi |∂iΩ j for di = 2 is the unit vector normal to Ωi that forms a positive orientation with
the tangent bundle of Ωi , according to the right-hand rule. Moreover, τi for di = 1 is the unit
vector tangent to Ωi .

The fact that (2.16) is exact was shown in [9, 20] and, in turn, the solution technique of
Sect. 2.2 is directly applicable.

3 A Reduced Basis Method Ensuring Local Mass Conservation

The aim of this section is to augment the solution technique proposed in Sect. 2 by replacing
step 2.2 with a reduced basis method. Themapping that we aim to approximate is (K , q f ) →
r . We utilize a splitting into a computationally costly off-line stage and an efficient on-line
stage. In the off-line stage, we first compute the mapping f → q f given by (2.8), e.g.
by saving an LU -decomposition. Then, we construct a reduced basis approximation to the
mapping (K , q f ) → r given by system (2.9). The details of this construction are given in
Sect. 3.1.

The on-line stage then amounts to the following steps:

1. Given f , construct q f by solving (2.8).
2. Given K and q f , compute r using the reduced basis.
3. Compute q := q f + dr and construct p by solving (2.10).
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We emphasize that the solution obtained from this method is guaranteed to conserve mass
locally, hence achieving our main goal. In fact, the error arising from the reduced basis
approximation is contained in the contribution dr , which is divergence-free by construction.

3.1 Construction of the Reduced Basis by Proper Orthogonal Decomposition

Let us focus on the second step in this algorithm in the discrete setting. Then Problem (2.9)
is of the form:

AKr = bf (3.1)

In which the matrix AK ∈ R
nr×nr depends on the material parameter K and the vector

bf ∈ R
nr on the right-hand side is determined by the source term f . In the “offline” stage of

the method, we now construct a reduced basis that captures the influence of these parameters
on the solution. We use the conventional Proper Orthogonal Decomposition approach to
achieve this.

In particular, we first choose nS values for the parameter pair (K , f ) and solve (3.1) for
each value pair. Such a sampling is possible in our cases of interest, cf. Section4, where both
K and f are defined as constants on subdomains of Ω . In the more general case of spatially
varying parameters, the construction of a representative sample is significantlymore involved.
For 1 ≤ i ≤ nS , the solution vectors ri ∈ R

nr are known as snapshots, and we collect these
to form the columns of the matrix S ∈ R

nr×nS .
Next, we compute the singular value decomposition of S such that

S = UΣVT (3.2)

In which U ∈ R
nr×nr and V ∈ R

nS×nS are orthogonal matrices and Σ is a diagonal matrix
containing the singular values σi , in decreasing order. For given threshold value ε, we select
nm as the largest index that satisfies

σnm ≥ ε (3.3)

We then extract the nm most important modes by restricting U to its first nm columns,
creating Um ∈ R

nr×nm . The reduced problem now becomes:

(UT
mA

KUm)rm = UT
mbf.

Note that this is a system with nm unknowns and since we typically have nm � nr , it is
significantly less expensive to solve than the original system (3.1). Finally, we have r = Umrm
as the reduced basis approximation to the full order system.

4 Numerical Results

This section concerns the implementation, set-up, and results of the numerical experiments.
Section4.1 provides guidance into the numerical implementation of the proposed procedure
and Sect. 4.2 presents the results.

4.1 Implementation

Since the spaces are finite dimensional, we can represent each variable p ∈ PΛk as a vector
p ∈ PΛk := R

nk containing the values of its nk degrees of freedom. Moreover, the linear
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operators can be represented by matrices, e.g. the mass matrix Mk is given by:

p̃TMkp = 〈p, p̃〉.
Similarly, let Bk be the matrix representation of the differential dh,k :

pTB̂kq := 〈dh,kq, p〉, Bk := M−1
k+1B̂k.

Remark 4.1 Depending on the implementation, it may be easier to compute Bk directly and
set B̂k = Mk+1Bk. In fact, the degrees of freedom in PΛk and PΛk+1 can be chosen such
that all non-zero entries of Bk are ±1.

These matrices allow us to compute the operator d∗
h,kdh,k as

〈dh,kq, dh,k q̃〉 = q̃T(B̂
T
kM

−1
k+1B̂k)q = q̃T(BTkMk+1Bk)q. (4.1)

On the other hand, the penalization term dh,kd∗
h,k requires the more involved computation

〈d∗
h,kq, d∗

h,kq〉 = q̃T(B̂kM
−1
k B̂

T
k)q. (4.2)

The inversion of themassmatrixMk is typically not feasible and, in our case, not necessary.
We proceed by letting Lk be an easily invertible matrix obtained after mass lumping of Mk.
This leads us to the following approximation:

〈d∗
h,kq, d∗

h,kq〉 ≈ q̃T(B̂kL
−1
k B̂

T
k)q. (4.3)

For k = n, we note that dh,kd∗
h,k corresponds to a discrete Laplace operator and we can

choose Ln−1 such that the resulting scheme is a TPFA finite volume method [4, 6] for the
Laplace equation. This is also possible in the mixed-dimensional case [7].

Finally, the conductivity induces a scaled inner product and we denote the corresponding
matrix by MK

n−1, i.e.

q̃TMK
n−1q = 〈K−1q, q̃〉.

With these matrices and vectors defined, we now repeat the three-step procedure to guide
implementation:

1. Solve the following system for pf ∈ PΛn :

(B̂n−1L
−1
n−1B̂

T
n−1)pf = f, (4.4)

and set qf = L−1
n−1B̂

T
n−1pf.

2. Use the reduced basis method to approximate r ∈ PΛn−2 that satisfies

(BTn−2M
K
n−1Bn−2 + B̂n−3L

−1
n−3B̂

T
n−3)r = (−BTn−2M

K
n−1)qf. (4.5)

3. Set q = qf + Bn−2r. Solve the following system for p ∈ PΛn :

(B̂n−1L
−1
n−1B̂

T
n−1)p = (B̂n−1L

−1
n−1M

K
n−1)q. (4.6)

It is important to note that the first and third step amount to solving the same system. Thus,
for computational efficiency, we save the LU -decomposition of this matrix in the off-line
stage.

Moreover, the replacement ofM−1
n−3 by L

−1
n−3 in the second step changes the solution r but

not Bn−2r. Formally, the mass-lumping changes the orthogonality condition with respect to
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Table 3 The solution procedure solves three smaller, symmetric positive definite systems instead of the full-
order model (FOM), which has a saddle-point structure. By approximating the second step with a reduced
basis method (RBM) using a threshold value of ε = 10−7, a small error is introduced but the local mass
balance is preserved

Number of degrees of freedom Relative error due to RBM
Case FOM Steps 1,3 Step 2 (RBM) Pressure Flux Mass

1 75,264 24,576 31,024 (19) 1.59e−07 1.91e−07 3.94e−16

2 50,698 18,913 12,855 (25) 1.50e−07 4.97e−09 3.88e−16

3 123,583 39,699 53,007 (27) 5.59e−10 3.41e−08 5.07e−16

Ker(Bn−2) by employing a different inner product. However, the augmentation lies in the
kernel of the curl operator and therefore does not affect the final solution q.

Remark 4.2 For simplicity of implementation, we may set Lk = I and substitute Bn−3 for
B̂n−3 in the second step. This lets the first and third step become purely geometrical in the
sense that the matrices only depend on the connectivity of the mesh entities. We note that this
simplification will not affect the solvability of the systems, or the final solution, but requires
proper scaling with the mesh size h.

Remark 4.3 If we set Ln−1 = MK
n−1, then the first step amounts to solving the Schur comple-

ment system and the true solution would be obtained directly. From an algebraic perspective,
the proposed technique therefore corresponds to an approximation of the Schur complement
system with suitable corrections.

Remark 4.4 If the parameters f and K are given by constants on subdomains of Ω , then we
can exploit the affine dependencies to pre-assemble the matrix MK

n−1 and the vector qf.

Finally, we emphasize that this implementation is valid for both the mixed finite element
method and the virtual element method [12]. The difference lies in the computation of the
mass matrices.

For this work, the numerical experiments were implemented using PyGeoN [3], an open-
source Python package. The mixed-dimensional structure was used from PorePy [19], with
the grids created using the meshing software GMSH [15]. Finally, the mixed-dimensional
curl operator was adapted from [11].

4.2 Numerical Experiments

We investigate the performance of our proposed technique using three test cases, of varying
complexity. In order to exhibit the wide applicability, the first case simulates a three-
dimensional layered porous medium problem for a wide range of permeabilities, the second
concerns a two-dimensional problem with fractures on a polygonal mesh, and the third con-
sists of a three-dimensional fractured porous medium problem. In each case, we vary the
model parameters and follow Sect. 3.1 to generate a reduced basis. The resulting method is
compared to a reference solution, obtained by solving the original, full-order model for a
representative choice of parameters.

We summarize the main observations next, based on the results presented in Table 3. First,
we note that the number of degrees of freedom is reduced by a factor three, approximately,
when comparing the full-order model to the systems in the first and third step. Recall that
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these are cell-centered, symmetric positive definite problems and are therefore amenable to
a range of efficient solvers.

Second, we observe in all cases that the solution to the original problem is recovered if the
system (2.9) in the second step is solved exactly. This verifies the exactness of the discrete
complexes.

Third, our procedure provides a solid basis for the use of inexact solvers, as we explore
here with RBM, because the introduced error can be contained to the constitutive law. This
is reflected in the final three columns of Table 3, which shows that the mass balance equation
is satisfied up to machine precision. The reported values concerning the pressure and flux
are relative errors with respect to the L2-norm. For the flux, this is equivalent to the relative
error in the H(∇·) norm, due to the local mass conservation.

Fourth, the choice of a threshold value on the singular values is directly reflected in
the accuracy of the solution. By lowering this threshold, more modes are used and a better
approximation of the solution is obtained. This trade-off between accuracy and computational
cost can be adjusted according to the problem at hand.

Fifth, we observe numerically that the number of significant modes does not dependent
strongly on the mesh size. This can be explained by the fact that the response of the solution
to the model parameter is the same on different meshes. In turn, a reduced basis formed on
a coarse mesh can provide valuable insight for finer meshes, allowing for an efficient choice
on the number of necessary snapshots.

We continue this section with separate descriptions of the three numerical test cases and
present the corresponding, case-specific observations. In each case, we set the following,
parametrized boundary condition:

p(x)|x∈∂Ω = ᾱ · x, ᾱ ∈ [0, 1]n, (4.7)

with n the dimension of Ω .

4.2.1 A Three-Dimensional, Layered Porous Medium

As a first test case, we consider a set-up that emulates a layered porous medium. Let the
domainΩ be the unit cube, subdivided into four equal, horizontal slabs. The bottom and third
layer form the subdomain Ω0 whereas the remaining two layers form Ω1. We parametrize
the conductivity, source term, and boundary conditions as follows:

K (x) =
{
1, x ∈ Ω0,

K̄ , x ∈ Ω1, K̄ ∈
[
10−5, 105

]
,

f (x) = f̄ , f̄ ∈ [−1, 1].
The problem is discretized using the Raviart-Thomas pair of lowest order (RT0, P0)

on a regular, tetrahedral grid with typical mesh size h := 2−3. The parameter values for
the snapshots are generated using a Latin hypercube sampling in which f̄ and ᾱ are equi-
distributed and K̄ is distributed log-uniformly. We generate 44 snapshots and compute the
singular value decomposition (3.2). The singular values σi are illustrated in Fig. 2(left).

The threshold value is set to ε = 10−7 and we consider the parameter set (K̄ , f̄ , ᾱ) :=
(103, 1, 0). The solution obtained from the three-step procedure with RBM is compared to
the solution of the full-ordermodel, illustrated in Fig. 2(right). As shown in Table 3, we obtain
a relative error on the order of 10−7 for both pressure and flux. Thus, the second step can be
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Fig. 2 (left) The singular values decay rapidly so that only the first 19 singular values are larger than the
threshold value ε. The corresponding modes form the reduced basis. (right) The reference solution of the flux
superimposed on the layered conductivity field, with approximately half of the domain shown for the sake of
visibility. The yellow subdomain is more permeable in this reference case (Color figure online)

Fig. 3 Box-plot of the relative errors, for the flux q and pressure p, between the numerical solutions obtained
with the three step procedure against the full order model solution for 400 different values of the parameters

reduced to a system of merely 19 degrees of freedom and yield an accurate approximation
of the solution.

We report in Fig. 3 the relative errors of the numerical solutions of the three step procedure
against the full order model. We have considered 400 simulations generated using a Latin
hypercube sampling inwhich f̄ and ᾱ are equi-distributed and K̄ is distributed log-uniformly.
We see that the vast majority of obtained, relative errors are below 10−6, confirming for this
problem the effectiveness of the proposed approach.

Finally, the average solving time, for our implementation, of the full order model is 50 s
compared to 0.15 s of the solving phase of the three step procedure, with an average speed-up
of more than 330.

4.2.2 A Two-Dimensional Fracture Flow Problem on a Polygonal Mesh

Our second test case introduces two complexities, namely the incorporation of a fracture
network and the use of a polygonal mesh, cf. Figure4. The former is taken care of using the
mixed-dimensional differential operators from Sect. 2.4. The latter is handled by discretizing
with the mixed virtual element method of lowest order.

The geometry and material parameters are based on [14, Case 3]. A heterogeneity is
introduced by letting two fractures, denoted Ω−

f , be blocking and letting the remaining eight

fractures, Ω+
f , be conductive. The fracture network is illustrated in Fig. 4(left). We denote
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Fig. 4 (left) The fracture network in the second test casewith the conductive and blocking fractures highlighted
in red and green, respectively. (right) A depiction of the top left of the domain showing the conforming,
polygonal mesh on which the mixed virtual element spaces are defined (Color figure online)

the surrounding bulk matrix by Ωm and set the following conductivities:

K (x) =

⎧
⎪⎨

⎪⎩

1, x ∈ Ωm,

K−, x ∈ Ω−
f ,

K+, x ∈ Ω+
f ,

K− ∈
[
10−5, 10−3

]
,

K+ ∈
[
103, 105

]
.

The source term f is set to zero. Let the aperture of each fracture be ε = 10−4. The
effective conductivities, i.e. Ki and Ki j in (2.14), are set as follows. For each fracture, we
set Ki := εK internally and Ki j := 2

ε
K on the interface with the bulk matrix, with K the

fracture conductivity. Finally, at each intersection point, we set the conductivity Ki j := 2
ε
K±

with K± the harmonic average of the conductivities of the adjacent fractures.
We emphasize that there is a no-flux condition at the fracture tips, cf. (2.14d). These are

essential boundary conditions in themixed formulation and, in turn, we discretize the fracture
flux variable on the subspace of functions that have zero normal trace at tips.

We compute 120 snapshots according to a Latin hypercube sampling of the parameters in
which the conductivities are again log-uniformly distributed. The resulting singular values
are presented in Fig. 5(left) and it requires 25modes to reach the threshold value of ε = 10−7.

The parameters for the reference solution are (K−, K+) = (10−4, 104) as in [14] and we
set the boundary conditions with ᾱ = (0, 1) to induce a downward flow.

We remark on the number of degrees of freedom in the second step. The space on which
the curl acts, HΛn−2, is defined on the nodes of the two-dimensional mesh. This means that
the solenoidal correction (D × r) is completely dictated by degrees of freedom in the bulk,
not the fractures or their intersections. Similarly, in 3D the space is PL1 is only defined on
manifolds of dimensions two and three, as is the case in the next numerical experiment.

Finally, the average solving time, for our implementation, of the full order model is 0.9 s
compared to 0.08 s of the solving phase of the three step procedure, with an average speed-up
of approximately 11. The smaller speed-up factor is likely due to the fact that the problem is
two-dimensional.
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Fig. 5 (left) The added complexity caused by the fracture network leads to a higher number of modes in the
reduced basis. (right) The reference solution with the flux field superimposed on the pressure distribution. Note
that the flow aligns itself tangentially with the blocking features and normally with the conductive fractures,
as expected

4.2.3 A Three-Dimensional Fractured Porous Medium

Our final test case is based on the regular fracture network of [5, Case 4]. In order to incor-
porate fracture tips, we enlarge the domain from the unit cube to [−0.1, 1.1]3. The network
Ω f is thereby fully immersed in the computational domain and we refer to the surrounding
bulk as Ωm . Let us set the following parameters:

K (x) =
{
1, x ∈ Ωm,

K̄ , x ∈ Ω f , K̄ ∈
[
103, 105

]
,

f (x) =
{
0, x ∈ Ωm,

f̄ , x ∈ Ω f , f̄ ∈ [−1, 1] .

Thus, we consider a permeable fracture network on which we introduce a mass source.
Again, the effect conductivities are obtained by scaling with the aperture ε = 10−4. In
particular, we define Ki := εn−di K̄ on each lower-dimensional manifold Ωi of dimension
di and Ki j := 2

ε
K̄ on each interface Γi j . As a result of integration in the normal directions,

the effective source term becomes fi := εn−di f̄ on each Ωi with di < n.
The reference solution for this case corresponds to the parameters (K̄ , f̄ ) = (104, 1) and

ᾱ = (1, 0, 0). As shown in Fig. 6(left), the reduced basis consists of 27 modes, with which
we obtain an accurate description of the reference solution. More precisely Table 3 shows
the accuracy to be on the order of 10−8 and 10−10 for the flux and pressure, respectively.

This test case is the most computationally demanding of the three, with over 120k degrees
of freedom in the original formulation. Following Sect. 4.1, the LU -decomposition of the
cell-centered TPFA problem is saved in the off-line stage and we emphasize that the RBM
reduces the second step from 53,007 to 27 degrees of freedom. In this way, the computational
cost for solving the reference problem decreases from approximately 6.6min using a direct
solver to 0.5 s in our implementation (speed-up factor ≈ 800).
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Fig. 6 (left) The behavior of the solution to the four parameters of the third test case can be captured using 27
reduced basis functions. (right) The geometry consists of an immersed, regular fracture network in 3D. In the
reference case, the flow is induced by a linear distribution on the boundaries and a source term in the network

5 Concluding Remarks

We have proposed a three-step solution procedure for Darcy flow systems based on the exact
deRhamcomplex. Themass conservation equation is first solved andwe subsequently correct
the flux field by adding a solenoidal vector field. We have shown how reduced basis methods
can be used to relieve the computational cost in constructing the correction. Furthermore, the
procedure was extended to the setting of Darcy flow in fractured porous media by employing
mixed-dimensional differential operators.

The proposed procedure can be viewed from three perspectives. First, in the abstract
setting (Sect. 2.2), it constructs the solution to the mixed formulation of a Laplace problem
by solving three, related Hodge Laplace problems in primal form. Second, in the context
of discretization methods (Sect. 2.3), the procedure utilizes the efficiency of the TPFA finite
volumemethod and applies a suitable correction to obtain themixed finite (or virtual) element
solution to the original problem. Third, from the algebraic perspective (Sect. 4.1), we can view
the proposed procedure as approximating the Schur-complement of the original problem and
applying a suitable correction.

Topics for future research will further explore different ways to relieve the computational
effort in the second step, exploiting the fact that this does not influence the mass balance.
Thus, the performance of approximate solvers such as Krylov subspace methods, multi-grid
solvers or techniques based on deep learning will be investigated to approximate the vector
potential.
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