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Purpose: Low-dose CT screening allows early lung cancer detection, but is affected by frequent false
positive results, inter/intra observer variation and uncertain diagnoses of lung nodules. Radiomics-
based models have recently been introduced to overcome these issues, but limitations in demonstrat-
ing their generalizability on independent datasets are slowing their introduction to clinic. The aim of
this study is to evaluate two radiomics-based models to classify malignant pulmonary nodules in
low-dose CT screening, and to externally validate them on an independent cohort. The effect of a
radiomics features harmonization technique is also investigated to evaluate its impact on the classifi-
cation of lung nodules from a multicenter data.
Methods: Pulmonary nodules from two independent cohorts were considered in this study; the first
cohort (110 subjects, 113 nodules) was used to train prediction models, and the second cohort (72
nodules) to externally validate them. Literature-based radiomics features were extracted and, after
feature selection, used as predictive variables in models for malignancy identification. An in-house
prediction model based on artificial neural network (ANN) was implemented and evaluated, along
with an alternative model from the literature, based on a support vector machine (SVM) classifier
coupled with a least absolute shrinkage and selection operator (LASSO). External validation was per-
formed on the second cohort to evaluate models’ generalization ability. Additionally, the impact of
the Combat harmonization method was investigated to compensate for multicenter datasets variabili-
ties. A new training of the models based on harmonized features was performed on the first cohort,
then tested separately on the harmonized and non-harmonized features of the second cohort.
Results: Preliminary results showed a good accuracy of the investigated models in distinguishing
benign from malignant pulmonary nodules with both sets of radiomics features (i.e., non-harmonized
and harmonized). The performance of the models, quantified in terms of Area Under the Curve
(AUC), was > 0.89 in the training set and > 0.82 in the external validation set for all the investigated
scenarios, outperforming the clinical standard (AUC of 0.76). Slightly higher performance was
observed for the SVM-LASSO model than the ANN in the external dataset, although they did not
result significantly different. For both harmonized and non-harmonized features, no statistical
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difference was found between Receiver operating characteristic (ROC) curves related to training and
test set for both models.
Conclusions: Although no significant improvements were observed when applying the Combat har-
monization method, both in-house and literature-based models were able to classify lung nodules
with good generalization to an independent dataset, thus showing their potential as tools for clinical
decision-making in lung cancer screening. © 2020 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.14308]
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1. INTRODUCTION

In the past decade, several clinical trials have demonstrated
the benefits of low dose CT (LDCT) screening for early
detection of lung cancer, with the National Lung Screening
Trial (NLST)1 and the Dutch-Belgian Randomized Lung
Cancer Screening Trial (NELSON) studies2 demonstrating
mortality reductions of 20% and 26%, respectively. These
outcomes have prompted a number of medical societies to
recommend LDCT screening for heavy smokers over 55 yr
old.3–6 Nonetheless, questions remain about the costs of
large-scale screening, the large number of images the radiolo-
gists have to deal with, and the potential over-diagnosis asso-
ciated with false positive findings. Computer-aided decision
support tools have been touted as a means to reduce the radi-
ologist work-load, reduce inter-observer variation7 and
improve the ability of radiologists to detect pulmonary nod-
ules.8

In this context, the radiomics concept of extracting fea-
tures describing tumor characteristics such as intensity,
shape, and heterogeneity from medical imaging data to iden-
tify those that correlate with clinically useful outcomes, has
gained prominence.9,10 In the domain of lung cancer, radio-
mics-based models have been demonstrated to predict overall
survival,11 response to therapy,12–15 tumor characterization16

and malignancy identification.17–21 Of the radiomics-based
applications proposed in the literature to classify benign from
malignant lesions in lung cancer17–21 however, few have been
externally validated to evaluate their generalizability to data-
sets independent from the ones used for training.22 External
validation is important in demonstrating the feature robust-
ness23 and predictive performance of the model on indepen-
dent datasets,24,25 as these are critical determinants to clinical
adoption.

The multiple sources of variability in LDCT, including
differences in acquisition and reconstruction parameters as
well as the scanner detectors, can indeed affect model perfor-
mance and robustness,26 and consequently the ability of pre-
diction models to reach the same performance on different
populations. This variability could be limited, in part, by
imposing homogeneous acquisition and reconstruction proto-
cols, but this requires extensive consensus on the best prac-
tice and is challenging to apply across different patients and
scanner hardware. In consequence, post-reconstruction har-
monization techniques have been proposed. The most widely
used harmonization techniques involve image resampling,27

however methods that act directly on features have been
recently introduced. Among these is the Combat model,28

which was previously exploited in the field of genomics for
batch effect reduction.

The aim of this work is to evaluate prediction models
based on radiomics features for early identification of pul-
monary nodule malignancy. Specifically, an in-house predic-
tion model based on artificial neural network (ANN) was
implemented along with an alternative model from the litera-
ture based on a support vector machine (SVM) classifier cou-
pled with a least absolute shrinkage and selection operator
(LASSO).19 Both models were validated externally on an
independent dataset and compared with the clinical standard
defined on the American College of Radiology (ACR) Lung
CT Screening Reporting and Data System (Lung-RADS).29

We further examine the effectiveness of the Combat model,28

a state-of-the-art harmonization method, in limiting the
impact of inter-scanner and acquisition setting variability.

2. MATERIALS AND METHODS

2.A. Datasets

In this study, we use two independent patient cohorts.
The first cohort (Cohort-1), used as the training set, con-

sisted of scans from a 110-patient subset of the COSMOS
study dataset30,31 of the Istituto Europeo di Oncologia (IEO,
Milano, Italy). This study was approved by the local ethical
committee who waived the requirement for additional patient
consent for re-analysis of this data.

The second cohort (Cohort-2), used as a testing set for
external validation, was the subset of 72 cases from the pub-
licly available LIDC dataset,32 previously reported in the
work by Choi et al.19

In each CT scan, at least one pulmonary nodule was iden-
tified, and a binary tumor mask defined. Binary masks for
Cohort-1 patients were manually contoured by a single radi-
ologist. For Cohort-2, at least one annotation performed by
an expert radiologist was available; when more than one con-
tour per lesion was present, a consensus contour was defined
by using simultaneous truth and performance level estima-
tion.19,33

Images had an in-plane dimension of 512 9 512 voxels
for both cohorts, and while CT acquisition and reconstruction
settings were different between the cohorts, similar inconsis-
tencies were also present within each cohort. CT scans of
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Cohort-1 were acquired using a tube peak potential equal to
100 kV, 120 kV or 140 kV for 2, 49, and 59 subjects, respec-
tively, whereas the tube current was fixed at 30 mA. In this
cohort, all CT scans were reconstructed with a standard con-
volution kernel and a fixed slice thickness of 2.5 mm, while
in-plane resolution ranged between 0.57 and 0.87 mm. For
Cohort-2, tube current ranged between 80 and 570 mAwhile
the tube peak potential was fixed at 120 kV, except one case
that was 140 Kv.19 The CT scans were reconstructed with
“standard/non-enhancing” (43 subjects), “slightly enhancing”
(17 subjects), or “over enhancing” (12 subjects) convolution
kernels. Slice thickness ranged from 1.0 mm to 2.5 mm
while in-plane pixel size ranged from 0.54 to 0.89 mm.

Distinctions between the two cohorts were also found in
lesion size (maximum diameters) and attenuation characteris-
tics (solid, part-solid, and non-solid). Table I summarizes the
clinical and imaging properties of pulmonary nodules in each
cohort. A total of 113 lesions (58 malignant and 55 benign)
were present in Cohort1 and 72 (41 malignant and 31 benign)
in Cohort-2. Figure 1 shows an example of lung nodules
from Cohort-1.

As performed in Choi et al.19 for Cohort-2, a Lung-RADS
categorization was also performed for Cohort-1 relying on an
expert radiologist’s annotation of lesion size, nodule type,
presence/absence of calcification, internal tissue type, and
other imaging findings (contours irregularity).

2.B. Feature extraction

Before feature extraction, images and correspondent bin-
ary tumor masks were resampled to an isotropic voxel dimen-
sion of 1 9 1 9 1 mm.

Feature extraction was performed with a publicly available
tool (https://github.com/taznux/radiomics-tools) for Cohort-1
and Cohort-2 considering the same set of 129 features used
in Choi et al.19 These features consisted of: 35 (3D) and 18
(2D) shape features, 14 (3D) and 8 (2D) shape intensity fea-
tures, 9 (3D) and 9 (2D) first order histogram features, and

35 texture features. (Refer to Section 2.5 for details on feature
harmonization).

For each feature, statistical power in distinguishing benign
from malignant nodules was evaluated using the Wilcoxon
rank sum test (alpha = 5%).

2.C. ANN model definition and training

For the in-house ANN model, implemented in Matlab �
(version 2018a), we first performed feature selection and
hyperparameter tuning through a 10-fold cross-validation
(10-fold CV). After this, the most stable features and best
hyperparameters were chosen to train the final model. An
explanation of the methodology employed during 10-fold CV
to train the model on Cohort-1 is given below and outlined in
Fig. 2. Additional details are reported in Supplementary
Material A.

The proposed feature selection approach entailed the com-
bination of an unsupervised and a subsequent supervised fea-
ture selection technique. Correlation-based hierarchical
clustering was first applied to the input set of 129 features,
with a threshold at 0.85.19 Then, the ReliefF supervised rank-
ing algorithm was employed to filter correlated features
inside each cluster, then the highest-ranking feature was
selected. The ReliefF algorithm was chosen for its ability to
distinguish features that are predictive while simultaneously
take into account inter-dependency among attributes.34

The three best-performing features in the training set were
then used as input for tuning the hyperparameters of a shal-
low neural network whose architecture was established a-pri-
ori. The feed-forward ANN35 was defined with a single
hidden layer where the two inner neurons and the single out-
put neuron were represented by a ReLU (Rectified Linear
Unit) and a sigmoidal activation function, respectively. This
architecture was defined experimentally by evaluating differ-
ent combinations of input and hidden neurons for an ANN
with a single and two hidden layers. As no relevant improve-
ments were found increasing the net complexity with an addi-
tional hidden layer (see Supplementary Material B) the single
hidden layer ANN was adopted.

To avoid overfitting of the network, large weights were
penalized through L2 regularization. The regularization param-
eter lambda was therefore the only hyperparameter to be
defined. For this purpose, a two-step grid search approach was
adopted (see Supplementary Material A), consisting of a 5-fold
CV repeated twice. The first fivefold CV provided a temporary
regularization lambda chosen as the value from a logarithmic
scale corresponding to the best performance in terms of area
under the curve (AUC) of the receiver-operator-curve (ROC).
The definitive lambda value of the i-th 10-fold CV loop was
established with the same metric after the second fivefold CV,
repeated for each possible lambda values chosen on a linear
scale around the temporary regularization lambda.

After feature selection and hyperparameter definition, the
ANN model was trained on the current set of training sam-
ples and then applied to the validation samples within the i-th
10-fold CV.

TABLE I. Clinical and imaging characteristics of pulmonary nodules in the
training (Cohort-1) and testing (Cohort-2) cohorts, subdivided by size and
type.

Cohort-1
Training set

Cohort-2
External

validation set

Benign Malignant Benign Malignant

Nodule size <= 6 [mm] 9 0 8 4

>6 to <=8 [mm] 5 9 10 4

>8 to <=15 [mm] 34 31 8 7

>15 [mm] 7 18 5 26

Nodule type non-solid 1 6 0 0

part-solid 6 11 4 11

solid 48 41 27 30
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The above pipeline was performed for each loop of the 10-
fold CV, after which the definitive feature set and hyperparam-
eters were established. Definitive features corresponded to
those most frequently selected among the 10-fold CV loops,
while, as the overall definitive lambda value, we selected the
regularization parameter that resulted in the best performance
in the 10-fold CV validation sets. With the definitive features
and hyperparameters, a repeated 10910-fold CV was per-
formed to evaluate the model in Cohort-1. The final model
was finally trained on the complete set of samples involved in
the 10-fold CVand then externally validated on Cohort-2.

2.D. SVM-LASSO literature model

A literature-based model was also evaluated. Specifically,
the SVM-LASSO workflow proposed by Choi et al.19 was
adopted, as it makes use of the same set of radiomic features
as for training the ANN model. The SVM-LASSO model
consists in the following steps: after a preliminary feature
selection with hierarchical clustering, the best feature set was
established applying a repeated 10-fold CV where, inside

each loop, a LASSO selector refined the search of best fea-
tures, followed by the support vector machine training. The
features more frequently selected in the 10-fold CV were then
used to train the final model on the entire training set sam-
ples. For more details on the SVM-LASSO model, readers
are referred to Choi et al.19

2.E. Experiments

2.E.1. Feature harmonization

For harmonization between the training and external valida-
tion sets, assuming the absence of inhomogeneities between
samples of the same cohort, the Combat method was applied
to the features, thus producing a second set of features for each
cohort28 (Fig. 3, orange box). The entire procedure of feature
selection, hyperparameter definition, and final model training
was repeated on the harmonized features of Cohort-1 for both
the ANN and SVM-LASSO model (Fig. 3, yellow box).

According to the Combat method, each feature y measured in
a ROI j, and related to a scanner i, can be described as follows:

(a) (b) (c) (d) (e) (f)

FIG. 1. Representative pulmonary nodules considered from Cohort-1 illustrating the cases of solid nodules on figures a), b) and c), while examples of non-solid
nodules can be observed in figures d)-e) and f). The maximum diameter of the six cases were equal to 12 mm, 9 mm, 12 mm, 9 mm, 19 mm, and 18 mm,
respectively.

FIG. 2. ANN model training. Schematic representation of the methodology adopted in the 10-fold CV to determine the most stable features and the best hyperpa-
rameters used to train the final ANN on the complete set of Cohort-1 samples. [Color figure can be viewed at wileyonlinelibrary.com]
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yij ¼ aþ Xijbþ ci þ dieij

where a is the mean value of feature y, Xij the design matrix
of the covariates of interest, b the regression coefficients
associated to each covariate, ci the additive effect of scanner i
on features, di the multiplicative scanner effect and eij the
error term.

The harmonization process consists in estimating, using
empiric Bayes estimates, the parameters c�i and d�i and apply-
ing the following transformation, based on the batch effect
observed for feature y:

yCombatij ¼ yij � â� Xijb̂� c�i
d�i

þ âþ Xijb̂

where â and b̂ are estimates of parameters a and b. In our
case, the only batch effect considered was the difference in
cohort and the term Xijb was neglected, leaving out any
covariate (e.g., malignancy).

To apply the Combat harmonization, we adopted the pub-
lic available Matlab implementation (https://github.com/Jfort
in1/ComBatHarmonization/) proposed by Fortin et al.36

To statistically evaluate the effect of feature harmonization
on models’ predictive power, Wilcoxon rank sum test (al-
pha = 5%) was used (Section 2.2). Additionally, for features
involved in final model training, Wilcoxon was applied also
to compare distributions of the whole set of harmonized fea-
tures with non-harmonized ones.

2.E.2. External validation

External validation of the models was performed consider-
ing the same subset of 72 nodules from the LIDC dataset32

used in Choi et al.19 For this purpose, each model was applied
considering the subset of the non-harmonized selected fea-
tures, along with the harmonized features derived by the
Combat feature harmonization technique,28 to evaluate if an
improvement in model generalizability can be appreciated
using harmonized features.

Three external validation scenarios were therefore consid-
ered (Fig. 3) for both ANN and SVM-LASSO models. In the
first case, the model trained on non-harmonized features of
Cohort-1 was applied to the non-harmonized features of
Cohort-2 (Scenario A). In the second scenario, the same
model was applied to the harmonized-features of Cohort-2
(Scenario B). In the third, the model based on harmonized
features for Cohort-1 was applied to the harmonized features
of Cohort-2 (Scenario C).

For each validation, we evaluated AUC (95% confidence
intervals, CI), accuracy (Acc), false positive rate (FPR) and
true positive rate (TPR). Additionally, the difference between
cross-validation and external validation was evaluated
through DeLong test37 (alpha = 5%) and McNemar38 test
(alpha = 5%) for ROC curves (AUC) and frequencies com-
parison, respectively. The same test analyses were also used
to compare the performance of the ANN model vs the SVM-
LASSO model. Comparison with a clinical model.

The two radiomics-based models were finally compared to
a clinical model, to demonstrate the higher predictive power
of radiomics features in malignancy identification with
respect to the actual clinical standard. A logistic regression
was applied adopting as predictors Lung-RADS categoriza-
tions. Performance was evaluated in terms of AUC, Acc,
FPR, and TPR. Additionally, ROC curves were statistically
compared with that found for ANN and SVM-LASSO rely-
ing on De Long37 test (alpha = 5%), while frequencies rely-
ing on Mc Nemar38 test (alpha = 5%).

3. RESULTS

3.A. ANN model performance

In the case of the ANN workflow, the features selected by
the feature selection process were the same for training on
both the non-harmonized and harmonized features. The three
best-performing features (i.e., those with the highest

FIG. 3. Workflow for external validation. Features extracted from the
Cohort-2 are used to externally validate the model trained with non-harmo-
nized features of Cohort-1 (Scenario A). External validation harmonized fea-
tures, obtained after Combat application, are used to both models: scenario B
refers to the external validation performed with the model trained with non-
harmonized features, whereas scenario C represents the external validation of
the model trained with harmonized features coming from Cohort-1. Feature
extraction (blue box) made use of publicly available tools and was common
to both training and external validation data across cohorts. Model definition
and training (yellow box) are described in Fig. 2. The green boxes represent
the external validation with the three different scenarios. The solid lines fol-
low the training set path, while dashed lines track the external validation pro-
cess. [Color figure can be viewed at wileyonlinelibrary.com]
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predictive power in the feature selection phase) were statisti-
cally different for both training and external-validation
cohorts when comparing their distributions without or with
feature harmonization (Wilcoxon rank sum test, P < 0.05).
Specifically, during the 10-fold CV, “BoundingBoxSize3”
(bounding box size in anterior/posterior direction),
“MeanOfClusterShade” and “WeightedPrincipalAxes4” were
the best-performing features and they were selected 10/10, 6/
7 and 5/5 times in training without/with harmonization,
respectively (Fig. 4).

As reported in the boxplots of Fig. 5, distributions of the
three non-harmonized features used to derive the final model
were compared for malignant and benign nodules in both
cohorts of patients. For the cross-validation set (Fig. 5, top pan-
els), a statistical differencewas found between benign andmalig-
nant nodule distributions for each of the three radiomic features.
According to the Wilcoxon rank sum test (alpha = 5%), P-val-
ues were < 0.05 for “BoundingBoxSize3”, “MeanOfClus-
terShade” and “WeightedPrincipalAxes4”. However, in the
external validation set, only BoundingBoxSize3 showed a statis-
tically significant difference (P = 3.4 9 10�06) between benign
vs malignant lesions. The same statistical test (Wilcoxon rank
sum test, alpha = 5%) was applied to all the 129 radiomics fea-
tures considered (SupplementaryMaterials C).

The ANN architecture with three input neurons and a sin-
gle two neurons hidden layer provided the best performance
in malignancy identification (AUC equal to 0.89, Supplemen-
tary Materials B). The final values of regularization lambda
were 0.031 (mean � STD: 0.038 � 0.01) and 0.018
(mean � std: 0.03 � 0.01) corresponding to the highest
AUC among 10-fold CV iterations for model trained on non-
harmonized and harmonized features, respectively.

Table II reports model performance on the training and
external validation dataset in distinguishing malignant from
benign nodules. ANN model performance was summarized
by ROC curves for the cross-validation set [Fig. 6(a)], via
repeated 10x10 folds CV, and for external validation set
[Fig. 6(b)] where features and regularization lambda previ-
ously established in the 10-fold CV were kept fixed. The

AUC values in 10 9 10 folds CV were found equal to 0.89
(CI: 0.83–0.95) with non-harmonized features, and 0.90 (CI:
0.84–0.96) with harmonized features and no significant dif-
ference was found between the two conditions.37,38

The ROC curves were also not significantly different in
the three external validation scenarios considered. Specifi-
cally, for Scenario A (training and testing on non-harmonized
features) an AUC of 0.82 (CI: 0.73–0.92) was obtained in the
external dataset. Similar results were found for Scenario B
(training with non-harmonized features and testing on harmo-
nized features) and Scenario C (training and testing on har-
monized features), where AUC resulted equal to 0.82 (CI:
0.73–0.92) and 0.83 (CI: 0.74–0.92), respectively. Differ-
ences in frequencies (McNemar test) were found in the exter-
nal validation between Scenario A vs Scenario B and C, as
the TPR was lower (<80%) when harmonization was applied.
Differences between the training set and the external valida-
tion set for Scenario A were not significant, confirming the
generalizability of the ANN model.

Compared with the Lung-RADS clinical model (Supple-
mentary material D, Table S2), the performance of the ANN
model was significantly different in cross-validation, with
higher AUC and Acc (0.89 and 83.2% vs 0.76 and 71.4%). In
the external validation set, no significant difference was
found between Lung-RADS and ANN with the De Long test,
although AUC improved of 8% (Acc of 14%) in the ANN
model. Nevertheless, significant difference was found in
terms of frequencies (McNemar test), with Lung-RADS pre-
senting random performance for TPR (51.2% vs 80.5% for
Lung-RADS and ANN, respectively). Additional details are
reported in supplementary materials D.

3.B. SVM-LASSO model performance

As regards the SVM-LASSO model, five features were
selected when no feature harmonization was applied and
four features in the case of harmonization, for the 10-folds
CV. The 5 non-harmonized features selected in Scenario
A were: “MeanOfClusterShade”, “WeightedPrincipalAxes4”,

FIG. 4. Selection counts of features that were selected in at least one 10-fold CV-loop for ANN model. The red box indicates the three features found to be most
stable for the non-harmonized features [Fig. 4(a)] and harmonized features [Fig. 4(b)]. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 47 (9), September 2020

4130 Garau et al.: External validation of radiomic models 4130

www.wileyonlinelibrary.com


“StandardDeviationOfInertia”, “StandardDeviationOfShort
RunEmphasis” and “StandardDeviationOfEnergy”. “Mean
OfClusterShade” and “WeightedPrincipalAxes4” were the most
frequently selected features both with and without harmonization,
in a fashion similar to ANN model. Excluding “StandardDevia-
tionOfEnergy”, the same harmonized features were selected for
Scenario C.

With respect to the ANN model, three additional features
were found to have predictive power (Fig. 7). Specifically,
“StandardDeviationOfInertia” and “StandardDeviationOf
ShortRunEmphasis” were statistically different for benign
and malignant nodules on both Cohort-1 and Cohort-2
(Wilcoxon rank sum test, alpha = 5%). “StandardDeviation
OfEnergy” was instead found significantly discriminative for

FIG. 5. Comparison of malignant nodules and benign nodules distributions for the three selected features for ANN model: BoundingBoxSize3 (left panels),
MeanOfclusterShade (central panels) and WeightedPrincipalComponent (right panels). Panels on the top are related to the cross-validation set while panels on
the bottom represent distributions of external validation set features. For each pair of distributions p-values resulted from the Wilcoxon rank sum test are reported
(alpha = 5%). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. ANN Model prediction results in training cross-validation and the three external validation scenarios (A, B and C) in terms of area under the curve
(AUC), accuracy (Acc), true and false positive rate (TPR and FPR).

Cross-validation External validation

no-harmonized
features harmonized features scenario A scenario B scenario C

AUC
(95% CI)

0.89
(0.83–0.95)

0.90
(0.84–0.96)

0.82
(0.73–0.92)

0.82
(0.73–0.92)

0.83
(0.74–0.92)

Acc [%] 83.2 83.4 76.4 72.2 76.4

FPR [%] 14.9 15.8 29.0 22.6 22.6

TPR [%] 81.4 82.8 80.5 68.3 75.6

Performance on the training set summarizes predictions of the 10910-fold CV loops for the model based on no-harmonized features and the one based on harmonized fea-
tures.
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the two groups of nodules only for Cohort-1, and it was
selected for the final model training only among non-harmo-
nized features.

SVM-LASSO model performance in terms of AUC, accu-
racy, FPR and TPR (Table III) was comparable with that of
the proposed ANN model in the cross-validation dataset:
without harmonization, AUCs were 0.90 (0.85–0.96) vs 0.89
(0.83–0.95), whereas, with harmonized features, an AUC of

0.89 (0.84–0.95) resulted for the literature model vs 0.90
(0.84–0.96) of the ANN.

In the external validation, performance of the literature
model (Table II) was slightly higher than that of the proposed
ANN (Table III); both having AUCs above 0.8 and demon-
strating their good generalizability. Specifically, for scenarios
A, B, and C, AUCs for the SVM-LASSO model improved of
about 5% with respect to the ANN model. Nevertheless, for

FIG. 6. ANN Model performance. ROC for training set (Cohort-1) on the left (a) and for external validation set (Cohort-2) on the right (b). [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 7. Comparison of malignant nodules and benign nodules distributions for the three additional features selected in the SVM-LASSO model with respect to
the ANN model: StandardDeviationOfInertia (left panels), StandardDeviationOfShortRunEmphasis (central panels) and StandardDeviationOfEnergy (right pan-
els). Panels on the top are related to the cross-validation set while panels on the bottom represent distributions of external validation set features. For each pair of
distributions p-values resulted from the Wilcoxon rank sum test are reported (alpha = 5%). [Color figure can be viewed at wileyonlinelibrary.com]
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Scenario A, no significant differences (De Long and McNe-
mar tests) were found between the two compared models
(SVM-LASSO vs ANN) in cross-validation and in external
validation (Fig. 8).

In comparison with the Lung-RADS clinical model (Sup-
plementary material D), AUC was higher for SVM-LASSO
by 18% and 13% in cross-validation and external validation,
respectively. In the external validation, no significant differ-
ence was observed with the De Long test between SVM-
LASSO and Lung-RADS, whereas a significant difference
was found in terms of frequency (McNemar test).

4. DISCUSSION

Differences in CT acquisition and reconstruction proto-
cols, as well as some technical aspects that differ
between scanners, can cause difficulties for the general-
ization of radiomics-based prediction models and their
subsequent introduction in the clinical practice. This has
led to increasing recognition of the importance of exter-
nal validation of radiomics-based models,24 and measures
to transform, normalize, and harmonize independent data-
sets, have been proposed to limit biases between scans
and scanners.28

In light of these considerations, we evaluated the perfor-
mance of a prediction model based on ANN, which was
implemented in-house, and that of an alternative model from
the literature based on a SVM-LASSO approach.19 Both
models were evaluated without and with harmonization with
the Combat technique of the features across the COSMOS
dataset used for training the models and the LIDC dataset for
their external validation. We further compared the radiomics-
based ANN and SVM-LASSO models to a logistic regression
based on clinical parameters using the Lung-RADS catego-
rization criteria.29

According to the frequency with which each radiomics
feature was selected, “BoundingBoxSize3”, that is, the pul-
monary nodule size in anterior-posterior direction,
“MeanOfClusterShade” and “WeightedPrincipalAxes4” were
chosen as features to train the ANN model. Similarly, when
training the SVM-LASSO model,19 “MeanOfClusterShade”
and “WeightedPrincipalAxes4” were the features selected
with the highest frequency during cross-validation, along
with three additional features. Two features were therefore
common to the ANN and SVM-LASSO models when trained
on the same dataset. Notably, none of the features selected
based on the COSMOS training data were amongst those
found by Choi and colleagues,19 where the SVM-LASSO

TABLE III. LASSO-SVM model prediction results in terms of area under the curve (AUC), accuracy (Acc), false positive rate (FPR), and true positive rate
(TPR).

Cross-validation External validation

no-harmonized features harmonized features scenario A scenario B scenario C

AUC
(95% CI)

0.90
(0.85–0.96)

0.89
(0.84–0.95)

0.86
(0.78–0.95)

0.86
(0.77–0.95)

0.86
(0.77–0.95)

Acc [%] 78.7 80.5 79.1 81.9 79.1

FPR [%] 21.9 20.0 35.5 25.9 32.3

TPR [%] 79.3 81.0 90.0 87.8 87.8

Performance on the training set summarizes predictions of the 10910-fold CV loops for the model based on no-harmonized features (“without harmonization”) and the one
based on harmonized features (“with harmonization”). External validation results are instead subdivided according to the three scenarios performed (A, B, and C).

FIG. 8. SVM-LASSO model performance. Comparison of ROCs with and without the use of feature harmonization for a) the training set (Cohort-1) and b) exter-
nal validation set (Cohort-2). The same ROC analysis applied to the ANN model, yielded no significant difference in ROC curves when considering harmonized
features with respect to non-harmonized ones also for the SVM-LASSO model. Furthermore, no difference was found between training set ROC curves and those
related to external validation set. [Color figure can be viewed at wileyonlinelibrary.com]
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model was trained on LIDC dataset. Nevertheless, high
correlation is expected between features of same type found
predictive in the literature work and in the presented study
(i.e., “BoundingBoxSize2” with “BoundingBoxSize3”,
“StardardDeviationOfInverceDifferenceMoment” with “Mean-
OfClusterShade” and “WeightedPrincipalAxes4”).

When analyzing the significance of the selected features
in terms of malignant vs benign discrimination, all the fea-
tures selected in both ANN and SVM-LASSO models were
able to discriminate for malignancy in the cross-validation
set. However, the two most commonly selected features (i.e.,
“MeanOfClusterShade” and “WeightedPrincipalAxes4”)
were not significant in predicting malignancy on Cohort-2,
thus resulting in (i) “BoundingBoxSize3” for ANN model
and (ii) two out of five features (i.e., “StandardDevia-
tionOfInertia” and “StandardDeviationOfShortRunEmpha-
sis”) for SVM-LASSO, being the most predictive features in
both cohorts. This confirms the results on models” perfor-
mance, where a slightly better AUC in cross-validation was
observed than in external validation, and may suggests that
SVM-LASSO model can provide a more flexible feature
selection than ANN model, where just one feature resulted
significant in the external dataset.

Both the ANN and the SVM-LASSO model demonstrated
good accuracy in predicting lung nodules malignancy for both
the non-harmonized and harmonized features, achieving AUCs
>0.89 (accuracy >83% in case of non-harmonization, and
>78% in case of harmonization) in the training cohort. We also
examined the performance of the models on the external vali-
dation cohort, where performance was slightly reduced than
the cross-validation set, with AUCs in the range of 0.82–0.86
(accuracy of 72–81%). The SVM-LASSO model presented
slightly higher generalization ability than the ANN model,
although no statistical difference was observed comparing the
two models in terms of ROC curves and frequencies.

In general, this level of performance is comparable to works
present in literature. Liu et al. (2017)22 is one of the few works
where validation was done considering a cohort coming from
a different center; an AUC of 0.80 (accuracy = 74%) was
obtained in the external validation of a model consisting of
four features identified through a logistic regression model. In
the NLST dataset,39 divided in two cohorts for validation, dif-
ferent radiomics-based machine learning algorithms were
compared and an AUC of 0.83 was reached combining 23 fea-
tures through a Random forest model. Tu and colleagues
(2018)20 achieved an AUC of 0.80 but they did not perform an
external validation. In the study by Choi et al.19 in which the
SVM-LASSO model was trained on the LIDC dataset reported
an AUC of 0.89, which was matched in our study when the
model was trained on the COSMOS dataset.

Data harmonization did not yield significant improve-
ments in the models’ performance during training, even
though harmonized features were statistically different from
the non-harmonized ones (Wilcoxon test, alpha = 5%). Simi-
larly resulted in the external validation set, where no
increased performance was observed in terms of AUC, Acc
and TPR when harmonization was applied (Scenario A vs

Scenarios B and C). Independently from harmonization,
cross-validation and external validation (Scenario A) weren’t
statistically different, attesting the models’ capability to pre-
dict lesion malignancy on both the COSMOS dataset and the
independent LIDC dataset.

The comparison with the clinical model demonstrated the
higher predictive power of radiomics features with respect to
clinical ones. In the cross validation set, ANN and SVM-
LASSO resulted significantly different from Lung-RADS,
with improved AUC/Acc with respect to 0.76/71.4% for the
clinical model. In the external validation, no statistical differ-
ence was found between the clinical model ROC curve and
those of the three scenarios considered for both radiomics-
based models (De Long test), although an improvement in
AUC of 7% and 13% was quantified for ANN and SVM-
LASSO. The significant difference between the radiomic-
based models and the clinical one in the external validation
was instead confirmed in terms of frequencies (Mc Nemar
test), with the clinical model presenting a random perfor-
mance in malignancies identification (TPR of 51.2% vs>
80% for ANN and SVM-LASSO).

There are some limitations to the present work that need
to be taken into consideration. The feature selection strategy
of the ANN was less effective in generalizing to new data
than the SVM-LASSO, suggesting that further improvements
of the model are thus needed. About the number of samples
considered in this work, with just 110 cases in the training
set, there is scope for training the model on a greater number
of cases. Nonetheless, the present training set is comparable
or larger in size with respect to many in the literature for
radiomics-based lung cancer prediction.19,20,22 The use of
additional external validation datasets to provide a more
robust validation of the implemented models is also desir-
able. Further examination is also needed of the ability of the
Combat and other approaches mitigating the effects of inter-
scan and inter-scanner variability to increase generalizability
of predictive model accuracy for multicentric studies. We fur-
ther note that the compliance with emerging standards for
feature definition of the publicly available tool we used for
feature extraction is not certified,40 we plan therefore to per-
form the analysis with a feature extraction tool that adheres to
standardized feature definitions.

5. CONCLUSIONS

Two radiomics-based models were evaluated for lung can-
cer malignancy prediction in low-dose CT screening. An in-
house ANN model was considered along with a literature
model based on SVM-LASSO. The models were trained on a
first cohort of patients and then successfully validated on an
independent external dataset, achieving AUCs of >0.89/0.89
and >0.82/0.86 for ANN/SVM-LASSO models in training
and external validation set, respectively. No improvements
were observed when applying the Combat method to harmo-
nize features coming from the two different datasets of
patients, suggesting models’ robustness on data from differ-
ent centers.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Figure S1. Schematic representation of the 10-fold CV
pipeline used for ANN model. Inside the grey box, the 10-
fold CV main steps can be found, while on the green, orange
and yellow boxes, a more detailed description is given for
feature standardization, feature selection and
hyperparameters search, respectively.
Figure S2. In the construction of the single-layer ANN, the
number (1–20, vertical axis) of hidden neurons and number
(1–20, horizontal axis) of selected features was decided on
the basis of providing the best AUC (highlighted in red) in
the training set.

Figure S3. Different number of neurons and input features
were tested also for an ANN with two hidden layers.
Highlighted with a red circle, the best AUC which is
comparable with the single-hidden layer ANN also in terms
of number of neurons and number of input features.
Figure S4. Confusion matrices that summarize the
misclassification rate for ANN, SVM-LASSO and clinical
model. Matrices on the top are related to the cross-validation,
therefore show performance on Cohort-1. On the bottom,
matrices are instead related to the external validation
(Cohort-2). In the cross-validation section, matrices of ANN
and SVM-LASSO were obtained considering the models
when no-harmonization was applied. Accordingly, in the
external validation section, predictions related to Scenario A
were considered.
Table S1. List of features which resulted significant with the
correspondent P-values.
Table S2. Clinical model prediction results in terms of area
under the curve (AUC), accuracy (Acc), false positive rate
(FPR) and true positive rate (TPR). Performance on the
training set summarizes predictions of the 10x10-fold CV
loops. External validation results were instead obtained
applying on Cohort-2 the final model trained on Cohort-1.
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