
 

 

29th International Symposium on Space Flight Dynamics 

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany. 

Design and Optimisation of Weak Stability Boundary Transfers to Unstable Libration-Point Orbits: an 
Application to the LUMIO CubeSat 

Alessandro Martinelli(1), Carmine Buonagura(1), Carmine Giordano(1), Francesco Topputo(1) 
 

(1) Politecnico di Milano 
Milan, Italy 

Email: alessandro2.martinelli@polimi.it, carmine.buonagura@polimi.it, carmine.giordano@polimi.it, 
francesco.topputo@polimi.it 

 
 

Abstract – Due to the recently renewed interest in 
lunar exploration, two novel approaches in 
trajectory design are emerging. Firstly, Weak 
Stability Boundary (WSB) transfers are becoming a 
cost-effective alternative for lunar missions, utilizing 
the Sun's gravity to reduce propellant requirements 
despite longer times of flight. Secondly, libration-
point orbits around the Moon are being exploited to 
further minimise delta-v costs by exploiting their 
unstable dynamics. These two techniques are 
particularly advantageous for limited-capability 
spacecraft like CubeSats, exemplified by the LUnar 
Meteoroid Impacts Observer (LUMIO) mission, 
which will observe lunar meteoroid impacts from a 
quasi-halo orbit around the Earth-Moon L2 point. To 
reach its final orbit, LUMIO is expected to exploit a 
shared launch opportunity on a WSB transfer. 
The focus of this work is on designing and optimizing 
WSB transfers to LUMIO operative orbit, but 
envisioning a dedicated launch scenario. The design 
process starts from a simplified gravitational model, 
where dynamical system theory can be easily 
exploited to model the transfers. Then, transfers are 
optimised in a complete ephemerides-based model of 
the Solar System. Results show that, by exploiting a 
dedicated launch, completely ballistic trajectories 
are possible, and the transfer delta-v for the LUMIO 
mission can be lowered to less than 0.1 m/s. 
Comparisons are drawn between these results and 
those with a shared launch opportunity, highlighting 
the sensitivity of WSB transfers to launch conditions.  
 

I. INTRODUCTION 

In recent times, there has been a resurgence of interest 
in lunar exploration, as a high number of space missions 
have flown or are planned to fly to the Moon in this 
decade. Traditionally, lunar missions have always 
utilized direct, Hohmann-like transfers to reach the 
Moon [1]. However, in recent times there has been a 
paradigm shift in the way to reach the Moon: Weak 
Stability Boundary (WSB) transfers are becoming a 
valid alternative as they use less propellant with respect 
to traditional transfers [2].  
The concept of WSB was first introduced by Belbruno 
[3], as a sort of expansion of the concept of sphere of 
influence of a body. Indeed, the WSB of a central body 
is defined as the region in which stable closed motion 

breaks down, due to the balance between the 
gravitational attraction of the main body and the 
perturbations of other bodies. These regions can be 
exploited to perform an Earth–Moon WSB transfer: the 
spacecraft is sent to the Earth WSB, where solar gravity 
acts as a substitute for a manoeuvre by increasing the 
periapsis radius up to the one of the lunar orbit and by 
decreasing the characteristic energy value with respect 
to the Moon [4]. These characteristics help reducing the 
propellant required for the transfer, at the expense of 
increasing the time of flight. Two examples of recent 
missions leveraging on WSB transfers are the KPLO 
mission [5], which reached a Low Lunar Orbit in 
December 2022, and the CubeSat CAPSTONE [6], 
which reached a Near Rectilinear Halo Orbit (NRHO) 
around the Earth–Moon L2 point in November 2022. 
In addition to the use of WSB, new lunar missions also 
exploit libration-point orbits around the Moon, such as 
the one used by the CAPSTONE mission. Indeed, these 
kinds of orbits offer some advantages, such as 
continuous communications with Earth, and the 
possibility of exploiting their unstable dynamics to 
reduce the ∆𝑣 of the transfer, as a quasi-asymptotic 
approach to the target can be achieved [7]. Some 
missions flying on libration-point orbits are the 
proposed Lunar Gateway [8], which will fly on the same 
orbit as CAPSTONE, and the EQUULEUS mission [9], 
which is targeting a halo orbit around the second lunar 
Lagrange point. 
As WSB transfers and libration-point orbits offer 
numerous advantages for lunar missions, a great effort 
in research is devoted to trajectory design which 
combines these two novelties. In particular, dynamical 
system theory has been widely used to design WSB 
transfer to lunar libration-point orbits. A pioneering 
work in this field is the one of Parker [10], where the 
simplified dynamical model of the Patched Circular 
Restricted 3-Body Problem is used. Moreover, other 
works, such as [11], exploited the dynamical insights of 
the Bi-Circular Restricted 4-Body Problem to design 
WSB transfers to both libration-point and conic orbits 
around the Moon. 
Finally, the advantages of these trajectory design 
techniques become even more relevant when applied to 
limited-capability spacecraft such as CubeSats. A 
CubeSat mission capitalizing on these techniques is the 
LUnar Meteoroid Impacts Observer (LUMIO) [12]. 
This mission aims at observing and characterizing 
meteoroid impacts on the lunar far side, enhancing lunar 
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situational awareness and complementing Earth-based 
observations. To do that, LUMIO will operate on a 
quasi-halo orbit around the Earth-Moon L2 point, which 
will be reached via a WSB transfer. As it is often the 
case for CubeSats, LUMIO is expected to exploit a 
shared launch opportunity [13], meaning that it will be 
inserted in a trans lunar trajectory not optimised for its 
own target. Then, it will rely on its own propulsion to 
achieve the operational orbit. 
This work, instead, focuses on designing and optimizing 
WSB transfers for the LUMIO mission by envisioning a 
dedicated launch scenario. For this reason, new 
methodologies are required with respect to the previous 
LUMIO mission analysis [13]. These are developed in 
this work but are general, so that they can be easily 
applied to other missions, provided that an unstable 
libration-point orbit is the final target.  
The WSB design process starts from a simplified 
gravitational model, where dynamical system theory can 
be easily exploited to model the trajectory. Then, 
transfers are optimized in a comprehensive 
ephemerides-based model, accounting for all major 
bodies in the Solar System and including the effects of 
the solar radiation pressure. 
Regarding the organization of the paper, first the utilized 
dynamical models are introduced. Then, the 
methodologies regarding the WSB design and 
optimization are explained, Next, results of their 
application to the LUMIO mission are discussed. 
Finally, these results are compared to the ones of the 
LUMIO mission analysis, particularly highlighting the 
differences between the dedicated and shared launch 
scenarios. 
 

II. DYNAMICAL MODELS 

In this section, the dynamical models used in this work 
will be introduced. 
 
A. Patched Circular Restricted Three-Body Problem 
The minimum set of gravitational bodies that must be 
considered to compute a lunar WSB transfer is 
composed by the Earth, the Moon, and the Sun. The 
simplest dynamical model which includes these bodies 
is the Patched Circular Restricted 3-Body Problem. In 
this model, the gravitational attractions of the Sun and 
the Moon are switched on and off depending on the 
spacecraft distance to the Moon. Indeed, if the spacecraft 
is inside the Moon 3-Body Sphere of Influence (3BSOI), 
the Earth-Moon CR3BP is considered, otherwise the 
Sun-Earth CR3BP is employed. The radius of the Moon 
3-Body SOI is defined as [10]: 

𝑟ଷ஻ௌைூ   =  𝑎 ൬
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where 𝑎 is the distance between the Moon and the Sun, 
which is approximated with the Astronomical Unit and 
𝑚ெ and 𝑚ௌ are the mass of the Moon and the Sun. 

Being this model a simple patching of two CR3BPs, no 
modifications in the usual equations of the CR3BP are 
needed. Assuming a reference frame centred on the 
primaries barycentre and rotating with them, a 
normalization of the units such that the distance between 
the primaries, their angular speed and sum of their 
masses are all equal to 1, the equations of motion of the 
CR3BP read [14]: 
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where 𝑟ଵ and 𝑟ଶ are the distances between the spacecraft 
and the primary bodies and 𝜇 = 𝑚ଵ/(𝑚ଵ + 𝑚ଶ), 𝑚ଵ 
and 𝑚ଶ being the masses of the primaries. 
 
B. Roto-Pulsating Restricted n-Body Problem 
The other dynamical model used in this work is the 
Roto-Pulsating Restricted n-Body Problem (RPRnBP). 
This is a complete ephemerides-based gravitational 
model of the Solar System, where the attractions of all 
the major bodies are included, together with the 
perturbation of the solar radiation pressure. Following 
the derivation in [15], the equations of motion are 
written as a perturbation of the CR3BP. The reference 
frame is centred on the primaries barycentre: as the 
primaries follow the motion dictated by the 
ephemerides, the frame rotates and pulsates with them. 
Units are normalized in an analogous way to the CR3BP, 
so that the equations of motion are [16]: 
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(5) 
where:  

 the symbols ′ and ˙ are used for a derivative with 
respect to the non-dimensional and dimensional 
time, respectively;  

 𝒓, 𝒓ଵ, 𝒓ଶ, and 𝒓௜ are the position vectors of the 
spacecraft, the primaries, and the remaining i-th 
body, in the roto-pulsating frame; 

 𝑛 is the mean motion of the primaries;  
 𝑘 is the distance between the primaries;  
 𝐶 is the rotation matrix between the inertial frame 

centred on the Solar System barycentre and the 
roto-pulsating frame;  

 𝐼 is the identity matrix; 
 𝒃 is the position vector of the primaries 
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barycentre in the inertial frame;  
 𝐺 is the gravitational constant;  
 𝑚ଵ and 𝑚ଶ are the masses of the primaries; 
 𝜇 = 𝑚ଶ/(𝑚ଵ + 𝑚ଶ);  
 𝜇̂௜ = 𝑚௜/(𝑚ଵ + 𝑚ଶ);  
 𝒂ௌோ௉ is the normalized acceleration due to Solar 

Radiation Pressure (SRP). 
The SRP acceleration is modelled by considering the 
spacecraft as a point mass. Thus: 
 

𝒂ௌோ௉ =
1
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where 1/(𝑘𝑛ଶ) is the normalization coefficient, 𝑐௥ is the 
coefficient of reflectivity of the spacecraft, 𝐴 is the 
illuminated area of the spacecraft, 𝑚 is its mass, 𝑃଴ is 
the SRP at a distance 𝑑଴ of 1 AU, 𝑑 is the current 
distance between the spacecraft and the Sun and 𝒓ௌ is 
the position of Sun in the roto-pulsating frame. 
 

III. METHODOLOGY 

In this section, the methodology to design, refine, and 
optimise WSB transfers to unstable libration-point 
orbits is explained.  
 
A. WSB Design  
The design strategy presented here is similar to the one 
developed in [10]. The fundamental idea behind the 
design of this type of transfers is to exploit the unstable 
dynamics of the target libration-point orbit. This allows 
to obtain a quasi-asymptotic approach to the orbit, 
without the need of a relevant orbit insertion manoeuvre. 
To do that, the simplified dynamical model of the 
Patched CR3BP is exploited. In this way, the target orbit 
is computed in the Earth-Moon CR3BP, where its stable 
invariant manifold can be computed. To do that, stable 
eigenvectors are evaluated for each point on the orbit. 
These points are individuated by the parameter τ, which 
is measured as a fraction of the orbital period. Each state 
on the orbit is perturbed in the direction of its stable 
eigenvector, thus giving the final conditions for the 
transfer. These are propagated backwards through the 
dynamics of the Patched CR3BP for a fixed interval of 
time. Since this dynamical model is not autonomous, the 
backpropagation depends on the starting time of the 
integration, 𝑡௙, which will be the final time of the 
transfer. This is measured as the number of days after 
the full Moon condition: in this way 𝑡௙ measures the 
advancement of the synodic month, and, therefore, is 
indicative of the relative configuration between the 
Earth, the Moon, and the Sun at the arrival on the orbit. 
Given a certain orbit, a fixed interval of propagation and 
a certain perturbation size, the complete integrated 
trajectory is determined only by 𝜏 and 𝑡௙, which 
represent the degrees of freedom of the design problem. 
Therefore, by varying independently these parameters, a 

2-dimensional grid can be constructed with the aim of 
finding integrated trajectories that come close to the 
Earth. In this way, given a certain perigee radius 
threshold, WSB transfers from the Earth to the target 
orbit can be obtained.  
A schematic representation of the adopted design 
strategy is shown in Fig. 1. 
 

 
Fig. 1. WSB design strategy. 

B. WSB Refinement and Optimisation  
The main objective of the refinement step is to transition 
the trajectories from the simplified dynamical model to 
the full ephemerides one, while at the same time 
maintaining as much as possible the ballistic nature of 
the transfer. This is achieved by simultaneously 
optimising the sum of the ∆𝑣 of any possible 
intermediate manoeuvre, which will be called Deep 
Space Manoeuvres (DSM), and the final Orbital 
Insertion Manoeuvre (OIM).  
As a first point, it is important to note that this 
refinement can be achieved only if the relative geometry 
between the Earth, the Sun, and the Moon is preserved 
from the simplified to the complete gravitational model. 
This is guaranteed by selecting the right ephemerides 
time for the transfer, by considering that 𝑡௙ measures the 
number of days after a full Moon configuration. 
Secondly, to achieve a realistic trajectory, also the target 
orbit should be refined in the complete model.  Given 
the complex nature of these interlinked problems, a step-
by-step procedure is adopted: 

 Problem 1: The transfer is refined in the RPRnBP 
and the ∆𝑣 is optimised, but the target is still the 
CR3BP orbit. 

 Problem 2: The target orbit is refined in the 
RPRnBP. 

 Problem 3: Using the solutions of Problem 1 and 
2, the transfer is optimised with the final 
RPRnBP orbit as the target. 

A schematic representation of the adopted strategy is 
shown in Fig. 2. 

 
Fig. 2. Refinement and optimisation strategy. 

The formulation of the first problem is the following: 
Problem 1: Find the initial state of the spacecraft, 𝒙ଵ =
[𝒓ଵ, 𝒗ଵ]், the manoeuvres magnitude, direction, and 
epoch such that 
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is minimised, while abiding to the constraints: 
 

‖𝒓ଵ‖ = 𝑟௖ (8) 
𝒓ଵ ∙ 𝒗ଵ = 0 (9) 

𝒓௙ = 𝒓்ை൫𝑡௙൯ (10) 
 
where 𝒓ଵ and 𝒓௙ are the initial and final position of the 
spacecraft, 𝒗ଵ is the initial velocity, 𝑟௖  is the given radius 
of a circular parking orbit and 𝒓்ை is the final position 
on the target orbit. 
It is important to note that the cost of the Trans–Lunar 
Injection (TLI) manoeuvre is not accounted for in the 
objective function 𝐽, as this manoeuvre is usually given 
by the launcher and not the spacecraft itself. Moreover, 
in this formulation only the initial altitude of the TLI is 
constrained, so that the optimiser can choose the best 
launch conditions for the WSB transfer (in terms of 
magnitude, direction, and epoch of the manoeuvre). 
Finally, also the final time can be varied during the 
optimisation, so that the best OIM can be achieved. 
Problem 1 is transcribed into a nonlinear programming 
problem (NLP) and solved with a multiple-burn 
multiple-shooting technique, following the 
methodology explained in [17]. This means that the 
trajectory is discretised in ballistic arcs which are 
separated by consecutive manoeuvres, while inside each 
arc a number of multiple-shooting segments is defined. 
During the optimisation, the continuity of the trajectory 
must be imposed in position and velocity between each 
segment, and only in position between arcs.  
Regarding the second problem, its formulation can be 
stated as follows: 
Problem 2: Find the best possible dynamical substitute 
of a 3-body libration-point orbit in a n-body 
gravitational model. 
This problem is solved with the methodology developed 
in [18]: a multiple shooting algorithm is used to impose 
the continuity of the whole trajectory, while minimising 
a scalar function that depends only on the continuity 
constraints. In addition, the following constraints on the 
difference between the insertion point of the 3-body and 
n-body orbits are imposed: 
 

ฮ𝒓ଷ஻൫𝑡௙൯ − 𝒓ே஻൫𝑡௙൯ฮ ≤ 𝜀௥ (11) 
ฮ𝒗ଷ஻൫𝑡௙൯ − 𝒗ே஻൫𝑡௙൯ฮ ≤ 𝜀௩ (12) 

 
where 𝜀௥ and 𝜀௩ represent a certain tolerance on the 
position and velocity difference. 
Finally, Problem 3, is stated and solved exactly as 
Problem 1, with the difference of the refined target orbit. 
The solver adopted for all 3 of these optimisation 
problems is MATLAB fmincon, using a combination of 
the interior-point [19] and the active-set algorithms, the 

latter one being a type of Sequential Quadratic 
Programming algorithm [20]. It is heuristically found 
that Problem 1 converges more easily to the solution 
with interior-point, while Problem 2 and 3 prefer the 
active-set algorithm.  
 

IV. RESULTS 

As explained in the introduction, the WSB design and 
optimisation presented in this work is applied to the 
LUMIO mission. Hence, the selected target orbit is a 
southern halo around the Earth-Moon L2 point, with a 
Jacobi Constant of 3.09, which is shown in Fig. 3. 
 

 
Fig. 3. Ideal halo and quasi-halo for the LUMIO 

mission. 

The results of the WSB design for this orbit are 
condensed in Fig. 4, where the results of a 200x200 grid 
search over the variables 𝜏 and 𝑡௙ are shown. Each point 
of the graph represents an integrated trajectory, and the 
colour indicates the minimum perigee radius achieved 
by each trajectory. As it was expected, the majority of 
the trajectories are not feasible WSB transfers, as their 
perigee radii are not in the vicinity of the Earth. 
However, dark blue regions indicate areas where WSB 
transfers are possible. These areas contain, for example, 
59 transfers with a perigee radius between 6000 and 
7000 km. Their trajectories are shown in Fig. 5. The 
shape of the transfers in the Sun–Earth Synodic frame 
confirms that the trajectories are indeed WSB transfers. 
In particular, it can be seen that the apogees are placed 
in the 2nd and 4th quadrant of the frame, which is in 
accordance with the theoretical findings on this type of 
transfers [21][21]. 
Regarding the refinement and optimisation problems, 
these are solved by starting from selected trajectories on 
the set that is shown in Fig. 5. In particular, the 
trajectories are chosen so that a solution is obtained for 
each week of the 2027, which is the currently selected 
year of the launch of LUMIO, for a total of 52 computed 
transfers. A perigee altitude of 200 km is enforced, while 
the maximum number of DSM is limited to 8. 
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Fig. 4. WSB Design Results. 

 
Fig. 5. WSB Transfers in the Sun-Earth Synodic Frame. 

The major finding is that the adopted procedure is able 
to preserve the ballistic nature of the trajectories of the 
simplified gravitational model also in the complete one. 
Indeed, every intermediate DSM is set to zero, and the 
final Halo Insertion Manoeuvre (HIM) is always less 
than 0.1 m/s. This means that a realistic transfer 
trajectory from the Earth to LUMIO quasi-halo would 
not need any deterministic manoeuvre, as the transfer 
would follow the natural dynamics and mimic the stable 
manifold of the target libration-point orbit. Indeed, the 
little cost of the HIM, comparable to a station-keeping 
manoeuvre cost, is indicative of the quasi-asymptotic 
approach of the transfer to the orbit. The total ∆𝑣 cost 
for all the optimised transfers is shown in Fig. 6. 
Finally, an example of a WSB trajectory in the Earth-
Centred Inertial (ECI) frame is shown in Fig. 7. From 
this figure both the typical “bielliptic” shape of the WSB 
transfer, and the final quasi-asymptotic approach to the 
target orbit can be appreciated. 

 
Fig. 6. ∆𝑣 cost with respect to departure epoch. 

 
Fig. 7. Example of a WSB transfer to LUMIO orbit. 

V. COMPARISON WITH LUMIO MISSION ANALYSIS 

In this section, the results obtained in this work will be 
compared to the results of the LUMIO Phase B Mission 
Analysis (MA) [13]. Both works consider a WSB 
transfer from the Earth to the same quasi-halo 
operational orbit. However, for the LUMIO MA, a 
shared launch opportunity was considered. In particular, 
it was foreseen a launch for a main spacecraft that flies 
on a WSB transfer trajectory towards a Low Lunar 
Orbit; from this trajectory LUMIO needs to deviate to 
reach its operational orbit. This means that the launch 
conditions are not perfectly optimised for LUMIO’s 
target, which is instead the case for the trajectories 
computed with the methodology presented in this work, 
where a dedicated launch is considered. The trajectory 
characteristics shared by these two different approaches 
are reported in Table 1. 
 

Table 1. Similarities between shared and dedicated 
launch trajectories 

Type of Transfer WSB 

Perigee Altitude 200 km 

Departure Epochs Once per week in 2027 

Target LUMIO’s quasi-halo 
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The relevant differences are, instead, reported in Table 
2, where average properties of the transfers along the 
year 2027 are shown.  
 

Table 2. Average properties of dedicated and shared 
launch trajectories over the year 2027. 

 
Shared 
Launch 

Dedicated 
Launch 

∆𝑣 [m/s] 38.56 0.02 

n° DSM [-] 2 0 

∆𝑣்௅ூ [km/s] 3.196  3.201 

ToF [days] 117.71 121.84 

Apogee [km] 1.527 ∙ 106 1.593 ∙ 106 

 
The major difference is in the ∆𝑣 cost of the two types 
of transfers: shared launch trajectories have a mean ∆𝑣 
of 38.56 m/s, which is given, on average, with two Deep 
Space Manoeuvres; on the other hand, trajectories with 
a dedicated launch are completely ballistic, as no 
intermediate manoeuvre is required. From a mission 
analysis point of view, it seems that a dedicated launch 
would be the obvious best choice for LUMIO, as it 
greatly reduces the ∆𝑣 budget. This, however, comes at 
the expense of higher launch costs, as the launch need to 
be reserved entirely for LUMIO. In addition, the 
availability of small launchers capable of performing a 
TLI manoeuvre is low, whereas rideshare opportunities 
are more frequent. Therefore, the choice between 
reserving or sharing a launch should be made at mission 
management level. 
Nonetheless, understanding the causes behind the 
significant difference between dedicated and shared 
launch trajectories could greatly help in reducing the ∆𝑣 
budget for LUMIO and similar missions. Therefore, an 
analysis on the characteristic of the TLI conditions is 
performed for both classes of launches. As it is shown in 
Table 2, the average magnitude of the manoeuvre is 
similar, as both launches insert the spacecraft in a WSB 
transfer towards the lunar region. The marginally higher 
average TLI manoeuvre for dedicated launches could be 
explained considering that LUMIO has on operational 
orbit which is slightly beyond the Moon orbit (which is 
the target of the shared launch). As a consequence, also 
the average apogee radius and Time of Flight (ToF) are 
slightly higher. However, these small differences do not 
justify the vast change in the ∆𝑣 of the transfer. Instead, 
looking at the angular Keplerian parameters of the TLI 
state of dedicated launches reveals some peculiarities. In 
Fig. 8, the Right Ascension of the Ascending Node 
(RAAN) of the TLI state is shown together with the 
inclination, with respect to the ECI J2000 frame, and for 
all computed transfers, which are indicated with dots. It 
is clear that the disposition of the TLI angular states is 
not random, as dots are concentrated in a semi-elliptic 
shaped region. Moreover, the majority of the transfers, 

32 out of 52, have an inclination higher than 90 degrees, 
which means that these trajectories start as retrograde 
orbit. These peculiarities do not appear in the analogue 
graph made for shared launch trajectories, which is 
shown in Fig. 9. In this figure, a colour map based on 
the transfer ∆𝑣 is applied. Here, the semi-elliptic shape 
disappears and the majority of the transfers, 39 out of 
52, have an inclination lower than 90 degrees. In 
particular, there seems to be a higher occurrence for TLI 
states with low inclination and RAAN close to 0 degrees 
(or equivalently 360 degrees). This is something that is 
not found in the dedicated launch case. Therefore, from 
the comparison of these two figures, it seems that the 
shared launch conditions do not respect some sort of 
undefined dynamical constraint that influences the 
dedicated launches and makes them more optimal for 
the ∆𝑣 budget of the mission. 

 
Fig. 8. Dedicated launch trajectories: TLI conditions. 

 
Fig. 9. Shared launch trajectories: TLI conditions.  

This consideration is also remarked by the comparison 
between the final HIM conditions between dedicated 
and shared launch trajectories, which can be seen in Fig. 
10 and Fig. 11. Here, the position of the insertion point 
along the quasi-halo orbit is measured in terms of the 
parameters 𝜏 and 𝑡௙, which come from the design of the 
WSB transfer. The parameter 𝜏 is measured as the 
number of days after the initial point of the halo orbit, 
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which coincides with the upper y-z plane crossing;  𝑡௙ is, 
instead, the number of days after the full Moon 
configuration. It is important to note that these 
parameters used to be independent when designing the 
transfer, as the Halo orbit was computed in the CR3BP, 
so the position on the orbit, function of 𝜏, was 
independent from the epoch, which is a function of 𝑡௙. 
Now, instead, in the RPRnBP the position on the orbit 
depends on the epoch, so 𝜏 and 𝑡௙ are dependent 
variables. This dependency is clearly visible in the 
dedicated launch trajectories graph, in Fig. 10, where the 
polynomial fit reveals a sinusoidal relation. Moreover, 
the period of this sinusoidal function matches the 14 
days period of the quasi-halo orbit, suggesting that the 
best insertion point moves periodically along the orbit as 
the synodic month advances, which is measured by 𝑡௙. 
It is important to stress that, in this case, the HIM 
conditions are a function of the flow of the TLI initial 
conditions, since the dedicated launch transfers are 
ballistic trajectories. 
On the other hand, considering Fig. 11, no clear 
dynamical relation is evident between τ and 𝑡௙, as the 
disposition of the dots seems to be random. This, again, 
is interpreted as the inability of shared launch transfers 
to follow the best dynamical evolution of the trajectory 
which is, instead, achieved with dedicated launches, 
where the TLI manoeuvre states can be chosen freely 
and optimised for. 
These considerations highlight the sensitivity of this 
kind of WSB transfers on the launch conditions, which 
should be optimised to obtain the minimum ∆𝑣 cost for 
the transfer. 

 

Fig. 10. Dedicated launch trajectories: HIM 
conditions. 

 
Fig. 11. Shared launch trajectories: HIM conditions. 

VI. CONCLUSIONS 

The work presented in this paper is focused on designing 
and optimising Weak Stability Boundary transfers to 
unstable libration-point orbits in the Earth–Moon 
system. A design methodology able to exploit the 
dynamical theory around 3-body orbits is employed. In 
particular, the backpropagation of the stable invariant 
manifold through the Patched Circular Restricted 3-
Body Problem is the fundamental design technique used 
to obtain WSB transfers. The refinement and 
optimisation of the transfers in the Roto-Pulsating 
Restricted n-Body Problem is performed with a step-by-
step procedure, where both the transfers and the target 
orbits are refined under the complete ephemerides 
model of the Solar System. 
These methodologies are applied to the LUMIO 
mission, where a WSB transfer to an Earth-Moon quasi-
halo orbit around the L2 point is needed. In particular, 52 
transfers are computed with a weekly frequency along 
the year 2027. In contrast with previous results for the 
LUMIO mission analysis, where a shared launch 
opportunity was envisioned, in this work a dedicated 
launch scenario is considered. By doing so, the launch 
conditions can be optimised for the trajectory of LUMIO 
and its final target.  
The results show that the adopted procedure is able to 
obtain ballistic transfers, where no intermediate 
manoeuvres are needed. Moreover, the halo insertion 
manoeuvre is minimised to less than 0.1 m/s for each 
transfer. This represents a great improvement for 
LUMIO transfer ∆𝑣 budget, as shared launch transfer 
trajectories cost on average 38.56 m/s and need on 
average 2 Deep Space Manoeuvrers (DSM).  
An analysis is performed to understand the dynamical 
reasons behind this relevant difference. It is found that, 
although the Trans Lunar Injection (TLI) manoeuvre 
magnitude is similar between the two approaches, the 
angular states differ considerably. Consequently, also 
the final conditions on the halo insertion point are quite 
different, with the ones of the dedicated launch 
trajectories showing a clear dynamical relation between 
the position of the insertion point and the epoch of the 
insertion, with respect to the Earth–Moon–Sun 
configuration. This is, instead, not found for the shared 
launch trajectories. Therefore, this proves that with a 
dedicated launch scenario, the best possible evolution of 
the trajectory is achieved up to the final libration point 
target, which, instead, is something not possible with a 
shared-launch opportunity, where costly DSMs need to 
be performed to reach the target. 
In conclusion, this study reveals that an optimisation of 
the launch conditions is of great advantage for WSB 
missions towards libration point orbits, highlighting the 
sensitivity of this kind of transfers to initial conditions. 
These results may be used by mission designers to 
justify the need of a more expensive dedicated launch 
for CubeSats flying on WSB transfers, as the propellant 
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savings may be relevant. Moreover, even if a shared 
launch opportunity is to be used, future studies may 
build upon the analysis performed in this work to 
understand which are the TLI states that produce a low 
∆𝑣 cost for the transfer. Thus, the possibility of 
predicting the ∆𝑣 of a WSB transfer, in function of the 
TLI states and final target, may be an interesting and 
relevant research topic for future works. 
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