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A B S T R A C T

Hyperspectral imaging (HSI) is gaining increasing relevance in medicine, with an innovative application being
the intraoperative assessment of the outcome of laser ablation treatment used for minimally invasive tumor
removal. However, the high dimensionality and complexity of HSI data create a need for end-to-end image
processing workflows specifically tailored to handle these data. This study addresses this challenge by proposing
a multi-stage workflow for the analysis of hyperspectral data and allows investigating the performance of
different components and modalities for ablation detection and segmentation. To address dimensionality
reduction, we integrated principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-
SNE) to capture dominant variations and reveal intricate structures, respectively. Additionally, we employed the
Faster Region-based Convolutional Neural Network (Faster R–CNN) to accurately localize ablation areas. The
two-stage detection process of Faster R–CNN, along with the choice of dimensionality reduction technique and
data modality, significantly influenced the performance in detecting ablation areas. The evaluation of the
ablation detection on an independent test set demonstrated a mean average precision of approximately 0.74,
which validates the generalization ability of the models. In the segmentation component, the Mean Shift algo-
rithm showed high quality segmentation without manual cluster definition. Our results prove that the integration
of PCA, t-SNE, and Faster R–CNN enables improved interpretation of hyperspectral data, leading to the devel-
opment of reliable ablation detection and segmentation systems.

1. Introduction

Hyperspectral imaging (HSI), a rapidly advancing technique for
collecting and processing spectral data from objects or scenes, has
become a crucial tool in diverse applications such as remote sensing,
agriculture, food industry, mineral exploration, and biomedicine. In the
biomedical context, HSI holds great promise for applications such as
detecting and identifying diseased tissue, monitoring disease progres-
sion, and assessing treatment effectiveness. Unlike traditional optical
imaging, HSI is unique in its ability to capture rich spectral information,
enabling material identification, classification, and quantification.

Recently, HSI has been innovatively applied to assess thermal dam-
age induced by laser-mediated thermal treatment, showing promising

results. In this minimally invasive therapy, laser light is delivered
through a fiber optic to induce local necrosis in malignant cells. The goal
of laser ablation treatment is the absence of pathologic residual tissue,
which also depends on accurate control of the ablative margin around
the tumor perimeter [1]. To this end, having a reliable approach for
assessing the thermal effect induced in the organ under treatment is
crucial. Current solutions involve image and sensor-based temperature
measurements [2–4] and the estimation of tissue thermal damage using
simplified models that rely on temperature and treatment time. Limi-
tations of both the thermal damage model and thermometry techniques,
such as simplifying model assumptions and potential temperature
measurement errors in the specific context, can introduce a degree of
uncertainty into the ablated margins and, consequently, the
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determination of the treatment effect.
Thus, several groups have recently started investigating the use of

alternative approaches for the direct estimation of thermal effects, in-
dependent of the prior measurement of the tissue temperature evolving
during thermal ablation [5,6]. In particular, optical techniques can
effectively discriminate between normal and thermally damaged tissue,
as tissue chromophores undergo changes based on the thermal state of
the tissue [7,8]. Among the optical approaches, HSI has proven to be a
valid solution for assessing the thermal state of tissue in the ablative
therapy field [6,9,10]. Indeed, HSI can detect the spectral variation of
relevant temperature-dependent tissue chromophores, such as deoxy-
hemoglobin, methemoglobin, lipids, and water. Extraction of valuable
information from HSI data and image segmentation are two mandatory
steps to use HSI technology for the mentioned purpose.

In this study, we propose a workflow for processing and analyzing
hyperspectral images obtained during laser-mediated thermal treatment
of living tissue, specifically targeting organs such as the liver, pancreas,
and stomach. The goal is to evaluate various algorithms and processing
modalities for thermal ablation detection and segmentation, utilizing
the spectral features provided by HSI [10]. Indeed, several challenges
hinder the widespread adoption of HSI for this purpose and for
biomedical imaging in general. These include the need for standardi-
zation of data acquisition and processing methods to ensure reproduc-
ibility and comparability of results across studies [11]. In addition, the
high volume of data generated, coupled with the complexity of HSI
systems, presents barriers to the rapid adoption of this technology in
clinical settings [12,13]. The primary challenges are related to the high
dimensionality and complexity of the HSI data, which require efficient
and robust methods for processing, analysis, visualization, and inter-
pretation. In addition, HSI faces technical limitations such as low spatial
resolution, long acquisition time, high cost, and limited availability of
suitable light sources and detectors [14]. As a result, the current
research landscape in medical HSI focuses on the application of
dimensionality reduction, detection, and clustering techniques. Some of
the latest advancements include the development of novel dimension-
ality reduction algorithms, such as nonlinear diffusion and tensor-based
analysis, which are used to simplify the dimension of hyperspectral data
while maintaining data information [15,16]. These techniques help
reduce redundant spectral information in hyperspectral images,
enabling more efficient analysis and interpretation of the data. Detection
involves identifying specific features or patterns in hyperspectral data,
which is useful for various medical applications such as disease diag-
nosis and classification [17]. Clustering, as an unsupervised machine
learning technique, is used to group similar data points together, helping
to discover patterns and relationships in the data [18,19]. Furthermore,
to enhance the accuracy and efficiency of HSI analysis, the development
of more advanced machine learning techniques, such as deep learning
algorithms, is crucial for feature extraction and classification [13,17,
20].

In our work, we focus on overcoming these challenges and advancing
the application of dimensionality reduction, detection, and clustering in
HSI, specifically in the context of tissue ablation assessment. Our study
evaluates the performance of different modalities for ablation detection
and segmentation in hyperspectral images, focusing on the evaluation of
thermal effects induced by laser ablation treatment in an in vivo animal
model. Our study evaluates the performance of different modalities for
ablation detection and segmentation in hyperspectral images, focusing
on the evaluation of thermal effects induced by laser ablation treatment
in an in vivo animal model. Additionally, the Faster Region-based Con-
volutional Neural Network (Faster R–CNN) was used to identify ablated
regions. The results of our study are expected to contribute to the inte-
gration of HSI technology into clinical practice, ultimately benefiting
various medical applications.

2. Materials and methods

2.1. Experimental strategy

The experimental study was conducted during laser ablation pro-
cedures on live pigs. The objective of the research was to utilize HSI to
detect thermal damage induced in vital organs such as the liver,
pancreas, and stomach during the treatment. The selection of the animal
model was motivated by the necessity of reproducing a preclinical sce-
nario as closely as possible to a potential application in clinical settings,
thus presenting similar technical challenges.

The experiments were performed at the Institute for Image Guided
Surgery in Strasbourg, France. This experimental study was approved by
the local Ethical Committee on Animal Experimentation (ICOMETH No.
38.2015.01.069) and by the French Ministry of Higher Education and
Research (protocol N◦APAFiS-19543-2019030112087889, approved on
March 14, 2019). All animals were treated in accordance with the
ARRIVE guidelines, the French legislation on the use and care of ani-
mals, and the guidelines of the Council of the European Union (2010/
63/EU).

Each animal underwent treatment in the three organs: liver,
pancreas, or stomach. A total of 3 adult Sus scrofa domesticus with a
mean weight of 33.5 ± 4.9 kg were housed in an enriched environment
with constant humidity and temperature for 48 h. A circadian light-dark
cycle was maintained throughout the study. Prior to surgery, all animals
were fasted for 24 h with ad libitum access to water. Thirty minutes
before surgery, they were sedated with zolazepam and tiletamine at a
dose of 10 mg/kg. Anesthesia was induced with propofol administered
via an 18-gauge intravenous catheter in the ear vein, with a dosage of 3
mg/kg. Anesthesia was maintained with rocuronium (0.8 mg/kg) and
isoflurane (2%). Vital signs were monitored using a standard respiratory
machine, Primus (Dräger, Lübeck, Germany). At the end of the pro-
cedure, animals were euthanized with a lethal dose of pentobarbital (40
mg/kg) under 5 % isoflurane anesthesia.

Contactless laser ablation was performed in a laparotomy configu-
ration on several defined areas of the liver, pancreas, and stomach
surfaces using a LuOcean Mini 4 diode laser (Lumics, Berlin, Germany)
that delivered radiation to a 400-μm fiber applicator. A collimator was
placed at the tip of the applicator to direct an 808-nm laser beam onto
the tissue surface. The collimated beam was approximately 1.5 cm in
diameter. The laser current was typically set between 3000 and 3500
mA, corresponding to a laser power range of approximately 3–6 W. The
tissue was irradiated until specific temperature thresholds were reached
(i.e., 60, 70, 80, 90, 100 and 110 ◦C), as shown in Fig. 1. Temperature
monitoring was performed using a FLIR T540 thermal camera (Teledyne
FLIR, Wilsonville, USA). These temperature thresholds were used as

Fig. 1. Temperature profile during laser ablation experiments on porcine or-
gans, showcasing the dynamic temperature changes over time. Each time step
corresponds to a different data acquisition, with temperature thresholds serving
as indicators of the thermal effects produced.
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indicators of the thermal effect produced. Once the set temperature
threshold was reached, the laser system was turned off and a TIVITA
hyperspectral camera (Diaspective Vision GmbH, Am Salzhaff, Germany)
acquired the data. Hypercubes of 100 wavelength bands each were
collected by the hyperspectral camera for each acquisition step.

2.2. Hyperspectral data acquisition

During our experimental study, we used a commercial TIVITA
hyperspectral camera to acquire hypercubes of size 640 × 480 × 100
voxels, indicating 640 × 480 pixels for 100 bands, and regular RGB
images at each acquisition step. These bands were acquired directly
from the hyperspectral camera without additional pre-processing. The
hypercube was acquired in approximately 6 s and synchronized with the
absence of breathing motion using a protocol implemented for animal
anesthesia. Polyurethane markers were placed around the target area to
serve as references for superimposing the hyperspectral images, which
were acquired using target areas selected according to the hyperspectral
camera manufacturer’s guidelines.

The hyperspectral camera was positioned vertically at a distance of
40 cm from the surgical field [21] to minimize extraneous light on the
measurement area. In addition, all light sources in the operating room
were turned off during HSI acquisition, except for the camera lights. The
acquisition of a single hypercube is performed using a camera-specific
module of the Perception Studio software (Perception Park GmbH,
Graz, Austria). The spectral range of the camera is 500–995 nm. To
ensure intense, broadband, temperature-stable, homogeneous, and fast
pulse radiation, we used a 20 W Halogen lamp (Osram Halospot 70) as
the light source. The calibration of the wavelength is performed during
camera production. Furthermore, dark current effects are corrected by
the developed software component after the hypercube acquisition.

The camera collects and processes information from the electro-
magnetic spectrum to measure the reflectance spectra produced by the
target. To convert image data from radiance to relative reflectance, we
used a white reference object characterized by high diffuse reflectance
to create a reference hypercube before starting the measurements.

We employed two different imaging modes to capture hyperspectral
information, where these modes constitute the data modalities. Specif-
ically, the hyperspectral data used in this study were collected using a
reflectance-based (Ref) HSI technique, which measures the amount of
light reflected by the sample at different wavelengths, thus providing
information about the surface properties and morphology of the sample.
From reflectance-based HSI, it is also possible to obtain absorbance-
based (Abs) images [22]. Absorbance-based HSI measures the absorp-
tion of light by the sample at different wavelengths, providing infor-
mation about the chemical composition and concentration of the
sample. The combination of these two HSI modes provides a more
comprehensive understanding of the sample properties and facilitates
accurate and informative analysis. Both absorbance and reflectance data
modalities were considered in the analysis.

As part of our investigation, we included hyperspectral cubes from
20 experiments conducted under identical conditions in our study. The
hyperspectral cubes were collected in three distinct stages. In the first
stage, the cubes were collected prior to laparotomy at the basal body
temperature of 37 ◦C. In the second stage, we obtained the cubes as the
temperature gradually increased from 60 ◦C to 110 ◦C at 10 ◦C intervals.
Finally, in the last stage, the cubes were collected after turning off the
laser during the post-ablation phase. Thus, we obtained a total of 233
hyperspectral cubes, each consisting of 100 wavelengths, resulting in a
dataset of 23,300 two-dimensional images. The temperature changes
were recorded, and Fig. 1 illustrates the corresponding profile, high-
lighting the specific time intervals during which the hyperspectral
camera and laser were activated and deactivated. Following laparotomy
(the leftmost green dot in Fig. 1), the tissue underwent laser irradiation
until specific temperature thresholds were reached. Throughout this
process, the temperature was continuously monitored using a FLIR T540

thermal camera. Subsequently, the laser system was turned off, and the
TIVITA hyperspectral camera acquired hyperspectral data. The graph
shows the temperature change over time, with each time step repre-
senting a different data acquisition. These temperature thresholds serve
as indicators of the thermal effect produced. For a visual representation
of the collected data, several examples of images taken from different
organs are included in Fig. 2.

2.3. Hyperspectral image analysis workflow

The workflow proposed in this study, presented in Fig. 3, consists of
several key steps to extract valuable information from hyperspectral
data in the laser ablation scenario. First, dimensionality reduction
(detailed in Step I: Dimensionality reduction) is applied to reduce the high-
dimensional data to a manageable size. Next, a supervised learning
technique (detailed in Step II: Detection of the ablation area) based on
neural networks is used to detect the ablation area, i.e., the region of the
image where tissue has been treated by laser irradiation. Finally, an
unsupervised learning technique (detailed in Step III: Segmentation of the
ablation area) based on clustering is used to segment the spectral
signature of the ablation area, allowing the identification of specific
tissue types or classes of thermal damage. The proposed workflow pro-
vides a comprehensive approach to the analysis of hyperspectral data
and has the potential to improve the accuracy and efficiency of diseased
tissue analysis in the thermal treatment scenario.

2.3.1. Step I: dimensionality reduction
HSI captures the reflectance spectra of a scene across hundreds of

narrow spectral bands, resulting in a three-dimensional data cube with
two spatial dimensions and one spectral dimension. This leads to chal-
lenges such as high data volume, redundancy, noise, and complexity. To
address these challenges, we employ dimensionality reduction, which
aims to reduce the number of variables in the dataset (in our case, the
wavelength dimension) while preserving the most relevant information.
Typically, PCA and t-SNE are two different approaches used for
dimensionality reduction.

PCA is a linear dimensionality reduction technique that aims to
capture the global patterns and relationships in the data. It achieves this
by identifying the directions (principal components) along which the
data varies the most. These components are ordered so that the first few
retain most of the variability present in the original data. In the context
of HSI, PCA can be used for a variety of purposes, including feature
extraction, data visualization, and noise reduction. It is particularly
useful for identifying the main sources of variation and providing a
global view of the data in a lower dimensional space. The main advan-
tages of PCA are: (a) simplicity and ease of implementation, (b) ability to
handle large datasets, and (c) preservation of the main trends and pat-
terns in the data [23].

t-SNE is a nonlinear dimensionality reduction technique that focuses
on preserving the local relationships and clusters within the data. It
accomplishes this by mapping the high-dimensional data to a lower-
dimensional space in a way that preserves the similarities between
data points. In the context of HSI, t-SNE is particularly effective at
visualizing complex patterns, clusters, and local relationships, making it
a valuable tool for exploratory data analysis and pattern recognition.
The key advantages of t-SNE are: (a) better visualization and clustering
of data, (b) preservation of nonlinear relationships and local structures,
and (c) ability to handle high-dimensional data [24].

While PCA is suitable for capturing global patterns and providing a
broad overview of the data, t-SNE excels at revealing local structures and
intricate relationships within the data. Both techniques have their own
set of advantages and have been applied in various scenarios, including
ink analysis [25,26], conservation science [27], and crop variety iden-
tification [28,29]. However, both methods have some limitations and
challenges in processing HSI data. For example, PCA may not be able to
capture the spectral variability and heterogeneity of HSI data, while
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Fig. 2. Examples of ablation areas before and after laser treatment in porcine liver, pancreas and stomach. The top row represents the source RGB images, while the
bottom row (grayscale images) represents reflectance images of a hyperspectral cube taken at a wavelength of 750 nm.

Fig. 3. Proposed workflow for hyperspectral image processing and analysis. The workflow consists of three main components: dimensionality reduction, ablation
area detection using supervised learning, and spectral signature segmentation based on unsupervised learning.

V.V. Danilov et al.
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t-SNE may be sensitive to the choice of parameters and initial condi-
tions. In addition, both methods may lose some information during the
dimensionality reduction process, which may affect subsequent analysis
or classification tasks.

Most surfaces exhibit smooth, wavelength-dependent reflectance
properties. In our dataset, we measured 100 spectral bands packed
within the visible and near-infrared ranges. As a result of the data
acquisition, we expect strong correlations between bands that are close
in wavelength. To verify this, we analyzed the redundancy in the data
using PCA decomposition, as shown in Fig. 4.

Nearly all the variance in the collected dataset is explained by the
first three principal components, and altering the organs does not
significantly impact the variance distribution. On average, these com-
ponents explain 98.3 % of the data, with the first component explaining
84.3 %, the second explaining 10.5 %, and the third explaining 3.5 %.
The remaining 7 components (from 4th to 10th) explain a total of 1 % of
the data variance. As expected, components accounting for lower vari-
ance values are increasingly noisy and are likely to contain mostly noise.
To address this, we use dimensionality reduction to reduce each 100-
wavelength HSI cube to 3 components, resulting in three 1-channel
images. For example, Fig. 5 depicts the three components derived
from the PCA and t-SNE decompositions for the liver.

2.3.2. Step II: detection of the ablation area
Object detection is a fundamental task in computer vision, which

involves identifying the presence and location of objects in an image or
video. Over the past decade, deep learning has revolutionized the field
of computer vision, where Faster R–CNN (Region-based Convolutional
Neural Network) has become one of the most popular deep learning-
based approaches for object detection. Faster R–CNN was proposed by
Shaoqing Ren et al. [30] and builds upon the success of previous deep
learning-based approaches, such as R–CNN and Fast R–CNN. The key
innovation of Faster R–CNN is the introduction of a Region Proposal
Network (RPN) that generates object proposals in a single forward pass.
This is a departure from previous methods that relied on external pro-
posals, such as the selective search algorithm. The RPN uses a fully
convolutional neural network to predict object proposals at different
scales and aspect ratios. These proposals are then refined by a
region-based convolutional network, which predicts the class and
location of objects within the proposals. Notably, the RPN shares con-
volutional layers with the detection network, making it computationally
efficient. The entire network is trained end-to-end using a multi-task loss
that combines object classification and bounding box regression.

Although several advanced object detection algorithms have been
developed since the introduction of Faster R–CNN, including YOLO (You
Only Look Once) [31], SSD (Single Shot Detector) [32] and RetinaNet

[33], Faster R–CNN has several advantages. It is more accurate than
YOLO and SSD because it uses a two-stage detection process that gen-
erates region proposals before performing object detection. Addition-
ally, Faster R–CNN is more computationally efficient than RetinaNet
because it shares convolutional layers between the region proposal
network and the detection network.

Therefore, we selected Faster R–CNN for the detection of ablation
areas on hyperspectral images, specifically after dimensional reduction.
By training a deep learning model with Faster R–CNN, we identify and
locate ablation areas within hyperspectral images. The RPN generates
proposals for potential ablation areas, which are then refined by the
R–CNN to accurately identify the location and extent of the ablation.
This application is particularly useful in the context of laser-mediated
thermal treatment, where precise and localized removal of cancer cells
is critical for effective patient treatment.

As described in Step I: dimensionality reduction, the dataset,
comprising 233 hyperspectral cubes with 100 wavelengths each, was
converted into 699 single-channel images using PCA and t-SNE de-
compositions. These images were then divided into training and test
subsets and used in the neural network analysis.

We would like to note that we conducted four experiments, each
training a different network as shown in Table 1. To investigate the ef-
fects of dimensionality reduction and data modality on neural network
accuracy, we created four datasets with different combinations of
dimensionality reduction types and data modalities. To ensure that
network performance estimates are consistent across experiments, we
split the dataset identically for all four. Furthermore, we would like to
point out that the dataset we obtained is slightly imbalanced, with 40 %
of liver images, 32 % of pancreas images, and 28 % of stomach images.

To tackle the multi-task nature of object detection, our network
employs two losses: a classification loss L(y, ŷ)cls for label prediction (Eq.
(1)), and a regression loss L(y, ŷ)reg for bounding box prediction (Eq.
(2)). We compute the total loss L(y, ŷ) as a weighted sum of the two
losses (Eq. (3)):

L(y, ŷ)cls = −
∑

yi ∗ log(ŷi) (1)

L(y, ŷ)reg = |y − ŷ| (2)

L(y, ŷ)=wcls ∗ L(y, ŷ)cls + wreg ∗ L(y, ŷ)reg (3)

where y is the true class label for L(y, ŷ)cls and the target value for
L(y, ŷ)reg, while ŷ is the predicted class probability for L(y, ŷ)cls and the
predicted target value for L(y, ŷ)reg. The scalar weights wcls and wreg

determine the relative importance of the two losses in multi-task
learning. In our study, we set both weights to 1.

During the training phase of our study, we employed the stochastic
gradient descent optimizer with specific parameter settings to enhance
the effectiveness of the learning process. These settings included an
initial learning rate of 0.0025, a momentum of 0.9, and a weight decay
of 0.0001. In addition, we implemented a strategy to dynamically adjust
the learning rate of the backbone by reducing it by a factor of 10. To
avoid unstable gradients during training, we incorporated gradient
clipping. It is important to note that all models underwent training for a
fixed duration of 100 epochs.

To increase the size of our dataset and prevent overfitting during
model training, we used a series of augmentation transformations that
were applied during training. These transformations included:

• Contrast limited adaptive histogram equalization (with a probability
of 20 %).

• Random-sized crop (with a probability of 20 % and a weight-to-
height ratio of 1; the range of crop was randomly selected between
0.7× Ih and 0.9× Ih, where Ih is the source image height).

Fig. 4. Distribution of the variance explained by the PCA across the different
components and organs.

V.V. Danilov et al.
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• Rotation (with a probability of 50 % and a random angle between
− 15◦ and +15◦).

• Horizontal flip (with a probability of 50 %).
• Random brightness and contrast adjustment (with a probability of
20 % and a factor range of − 0.2 to +0.2 for both).

We maintained consistency among the trained models by assigning a
batch size of 16, which we experimentally determined to allow the GPU
to utilize approximately 90–100 % of its memory. The models were
trained on a desktop computer equipped with an Intel Core i9-10940X
processor clocked at 3.30 GHz, an NVIDIA GeForce RTX 3090
graphics card with 24 GB of video memory, 256 GB of RAM, and the

Windows 10 operating system.

2.3.3. Step III: segmentation of the ablation area
As mentioned earlier, the final step in our proposed workflow in-

volves adapting unsupervised segmentation techniques. After consid-
ering several options, we finally chose Mean Shift Clustering as our
primary method. This non-parametric clustering algorithm has been
widely used in many unsupervised segmentation tasks and offers
numerous advantages over other algorithms such as k-means and hier-
archical clustering. First, unlike k-means, mean shift clustering does not
require a predetermined number of clusters, which is often limiting
[34]. Second, it is robust to noise and outliers because it assigns data
points to the nearest mode of the density function. Finally, it is
computationally efficient and does not require pairwise distance com-
putations, unlike hierarchical clustering.

Mean Shift has also been successfully applied in various domains
such as computer vision, biology, remote sensing, and others. For
example, it has been used for tasks such as histological image segmen-
tation [35] and retinal blood vessel segmentation [36]. Similarly, it has
been used to identify subpopulations in single-cell gene expression data
[37]. In remote sensing, Mean Shift has been used for forest

Fig. 5. Example of 3 components obtained by PCA and t-SNE decompositions for the 100-wavelength HSI liver cube for both the absorbance and reflec-
tance modalities.

Table 1
Distribution of the data over the experiments.

ID Reduction Modality Train images Test images Total images

1 PCA Absorbance 558 141 699
2 PCA Reflectance 558 141 699
3 t-SNE Absorbance 558 141 699
4 t-SNE Reflectance 558 141 699

V.V. Danilov et al.
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segmentation [38]. In our study, we use Mean Shift clustering to
segment image data and compare its performance with other clustering
algorithms.

We chose Mean Shift Clustering as our method of choice due to its
simplicity, effectiveness, and flexibility. This clustering algorithm offers
several advantages over traditional methods that rely on predefined
assumptions or distance metrics. Mean Shift clustering is nonparametric
and relies on density estimation. It identifies the modes or peaks of the
density function and assigns data points to the closest mode. The
nonparametric nature of Mean Shift clustering makes it particularly
suitable for handling complex and irregularly shaped data sets, as it does
not assume any specific cluster shape or size. This is a significant
advantage when dealing with data that may not conform to traditional
clustering assumptions.

Another valuable feature of Mean Shift clustering is its ability to
automatically determine the optimal number of clusters. Traditional
clustering methods often struggle with determining the appropriate
number of clusters, which can be a challenging task. In the case of
hyperspectral data applications, such as our specific use case involving
laser-induced damage to tissue, the number of clusters representing
different classes of damage is unknown in advance. Laser-induced
damage to tissue exhibits heterogeneity and is typically classified
based on its effect on cells [6]. Fig. 2 provides visual examples where
different classes of damage, such as the central area, the ring area, and
the outer undamaged area, can be easily distinguished. However, the
number of clusters representing these classes of thermal damage in HSI
data is not known a priori. Therefore, Mean Shift clustering is an
appropriate choice for this application.

3. Results

After training the networks on the dataset described in Step II:
Detection of the ablation area and detailed in Table 1, we observed a
consistent trend in the dynamics of the mean Average Precision (mAP)
values. However, it is important to highlight that there were significant
variations in the values obtained among the networks we trained. In
particular, the highest mAP value of 0.744 was obtained by the model
trained on the PCA+ Reflectance dataset. Conversely, the model trained
on the PCA + Absorbance dataset yielded the best mAP value of 0.712.
The t-SNE-based models yielded mAP values of 0.726 for the t-SNE +

Absorbance dataset and 0.695 for the t-SNE + Reflectance dataset. A
visual representation of the mAP changes during the training process is
shown in Fig. 6, which illustrates these fluctuations. It is also important
to note that these evaluations were performed on an unseen test subset
of 141 images.

After training and testing the ablation detection networks, we pro-
ceeded to evaluate the performance of the segmentation component

within the proposed workflow. To accomplish this, we compared the
selected clustering algorithm, Mean Shift, with several modern and
state-of-the-art unsupervised solutions. These solutions included k-
means, BIRCH, agglomerative clustering, spectral clustering, Gaussian
Mixture Models (GMM), affinity propagation, DBSCAN (Density-Based
Spatial Clustering of Applications with Noise), and OPTICS (Ordering
Points To Identify the Clustering Structure). A visual comparison of
these algorithms is presented in Fig. 7.

Based on the results obtained, it is evident that the nature of the
ablation segmentation results differs significantly from one algorithm to
another. An interesting observation is that the two most accurate clus-
tering solutions, namely DBSCAN and OPTICS, which are known for
their reliability against noise and outliers, had difficulties in performing
normal segmentation. Despite the fact that both algorithms do not
require a predefined number of clusters and automatically determine the
number of clusters based on the density and connectivity of the data
points, they showed a tendency to oversegment the image, creating
unnecessary small regions. Similar to DBSCAN and OPTICS, the affinity
propagation clustering algorithm also showed a tendency to overseg-
ment hyperspectral images. While DBSCAN and OPTICS are powerful
techniques, they have limitations. These limitations include sensitivity
to parameter settings, oversegmentation in complex scenes, low resil-
ience to image artifacts such as noise, texture, and uneven illumination,
and difficulty in handling objects with similar intensities or textures. In
our study, we confirm these limitations and demonstrate the inability of
the affinity propagation clustering algorithm, DBSCAN and OPTICS to
be effectively applied to the collected hyperspectral images.

On the contrary, K-means, BIRCH, agglomerative clustering, spectral
clustering, and GMM demonstrate superior performance in segmenta-
tion compared to affinity propagation, DBSCAN, and OPTICS. However,
a common problem with these algorithms is the inability to automati-
cally determine the optimal number of clusters, requiring manual input
from the user. This limitation is particularly significant when analyzing
hyperspectral images with multiple wavelengths, as the number of
clusters is unknown beforehand.

Considering the obtained results, we have concluded that despite
being a relatively older clustering algorithm, Mean Shift offers high-
quality segmentation of tissues in hyperspectral images. It also ex-
hibits lower sensitivity to internal parameters and eliminates the need
for manual predefinition of the number of clusters.

In addition, our findings highlight a notable disparity between
human perception, which relies on three primary colors (red, green, and
blue) to perceive a wide range of colors, and 100-channel hyperspectral
cameras, which capture a broader range of wavelengths. HSI has shown
promise in providing a higher level of information compared to what is
visible to the human eye, making it valuable in surgical procedures
where the surgeon’s vision may be limited.

However, due to the specific nature of hyperspectral data, a signifi-
cant challenge arises due to the lack of reference numbers for laser-
induced classes of damage in the images. This limitation hinders our
evaluation of experimental laser cancer therapy and prevents accurate
analysis of tissue treatment progress during therapy [6]. Accurate clas-
sification of different types of laser-induced damage is critical for un-
derstanding the effectiveness of therapy. Without a reliable reference
system, tracking changes in tissue condition over time and drawing
meaningful conclusions from the data becomes challenging.

To address this issue, we used this tailored workflow for laser-
induced damage classes in HSI images. This workflow enables more
accurate evaluation of tissue treatment progress in experimental laser
cancer therapy studies, enhancing our ability to assess the effectiveness
of laser treatment and improve the analysis of tissue response to therapy.

After processing the entire dataset utilizing the trained Faster R–CNN
neural network for ablation detection and the unsupervised Mean Shift
clustering algorithm for ablation segmentation, we obtained the results
shown in Fig. 8. In this plot, we did not aggregate by tissue temperature
or organ; instead, we estimated how the number of clusters varies for theFig. 6. The changes of mAP over training, calculated on the test subset.

V.V. Danilov et al.



Computers in Biology and Medicine 179 (2024) 108849

8

studied modalities, namely absorbance and reflectance.
As depicted, the number of clusters exhibits significant fluctuations

in the reflectance modality. It initially increases and reaches a peak from
550 to 600 nm, achieving nearly 6 clusters for the ablation zone. Sub-
sequently, the number of clusters dramatically drops to 4 within the
range of 650–700 nm, and then gradually increases again to approxi-
mately 5 clusters at 900 nm. On average, the number of clusters for the
reflectance modality was 4.5 ± 1.7.

In contrast, the number of clusters in the absorbance modality ex-
hibits less oscillation and remains relatively stable over the entire
wavelength range. It increases from 2 to 3 clusters for the first 50
wavelengths, i.e. from 500 to 550 nm. After 550 nm, the number of
clusters stabilizes, with a slight change to 4 clusters for the ablation zone

within the wavelength range of 800 nm–850 nm. The average number of
clusters for the absorbance modality is 3.6 ± 1.4, which is closer to
human vision than the average number of clusters for reflectance. This
finding is supported by our previous research [6], where experienced
surgeons manually graded the following classes of damage as 3.

Upon independent analysis of each organ, as presented in Table 2
and Fig. 9, a consistent pattern emerges in the changing number of
clusters across different organs, as described previously. In particular,
the number of clusters for the pancreas demonstrates a close alignment
in both the absorbance and reflectance datasets, with a distinct differ-
ence observed in the range of 500–625 nm. Subsequently, a strong
alignment is observed from 625 to 800 nm, while a slight variation in the
number of clusters becomes apparent beyond 800 nm, indicating a

Fig. 7. Comparison of ablation segmentation performed with different unsupervised algorithms. The top row represents the input data for clustering algorithms.
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downward trend.
Regarding the dynamics of the liver and stomach subsets, we observe

similar changes in cluster numbers on absorbance for both organs. The
cluster number starts to increase from 2 clusters within the range of
500–600 nm. Subsequently, the cluster number remains relatively sta-
ble, with minor oscillations around the average value of 3.6 for both the
liver and stomach. In contrast, the cluster number exhibits more fluc-
tuations in the reflectance subset and shows an M-shaped pattern. There
are two peaks within the range of 500–600 nm and 800–950 nm, with a
cavity observed within the wavelength range of 625 nm–725 nm. It is
worth noting that the cluster number for the stomach fluctuates less on
the reflectance subset compared to other organs, typically ranging be-
tween 4 and 5 clusters.

In addition, we provide the cluster number variation plots as a
function of temperature thresholds for the entire dataset (see Fig. S1)
and three subsets (liver, pancreas, and stomach; see Figs. S2–S4) in
Supplementary Information. The cluster number variation plots represent
changes in the number of distinct clusters identified at different tem-
perature thresholds for the respective subsets.

4. Discussion

The presented results provide valuable insights into the performance
of different algorithms and modalities in the context of ablation detec-
tion and segmentation in HSI acquired during laser treatment intended
for localized tumor removal. A major objective of this study was to
investigate the data processing approaches which allow the extraction of
valuable information and segmentation of the hyperspectral images.

4.1. Dimensionality reduction

In the context of dimensionality reduction, it is important to un-
derstand the strengths and weaknesses of both PCA and t-SNE and to
choose the appropriate method based on the specific research question
or goal. While PCA is a widely used linear technique that can effectively
capture the dominant variations in the data, t-SNE provides nonlinear
dimensionality reduction and can reveal intricate structures and re-
lationships within the data.

To enhance the dimensionality reduction process, it is advisable to
incorporate other complementary methods or techniques. For example,

kernel PCA or local linear embedding can be employed to perform
nonlinear dimensionality reduction when the data exhibits complex
nonlinear relationships. Spectral unmixing or segmentation techniques
can also be applied to extract spectral features or identify regions of
interest in HSI data.

In addition to the dimensionality reduction techniques employed,
there are a number of algorithms that can be beneficial for similar multi-
step workflows for processing hyperspectral data. These algorithms are
employed for the selection of hyperspectral bands aimed at eliminating
spectral redundancy and reducing computational costs [39–41]. The
challenge with band selection lies in choosing a set of representative
bands that can achieve better or, at the very least, comparable perfor-
mance to using the original bands in specific applications such as clas-
sification, detection, or spectral unmixing. However, these algorithms
differ from those utilized in our study by their nature. In the proposed
workflow, we employed a processing block that linearly or non-linearly
transforms 100 hyperspectral bands into three one-channel components
(images). This number of components, on average, explains 98.3 % of
the data variance, which, according to our assumption, is sufficient for
subsequent use in the detection or segmentation stage. Furthermore,
three-channel images align well with the input requirements of most
neural networks, allowing the use of pre-trained backbones and model
weights from sources such as ImageNet or COCO. In contrast, band se-
lection does not guarantee that the selected three bands will explain the
same or a higher level of variance. Typically, scientists and researchers
employ more than 10 bands for testing their algorithms and models
[42]. A key challenge associated with workflows employing the band
selection approach is that subsequent blocks, such as detection or seg-
mentation networks, must appropriately process images of dimensions
X× Y× N, where N is the number of selected bands or components. If
N > 3, it necessitates a change in the architecture of the network, which
is usually beyond the scope of a study. Nevertheless, we have come to
the point where the use of transformation-based approaches (PCA,
t-SNE, UMAP) is more beneficial than band selection, especially in the
early stages of workflow development. These algorithms allow for a
similar level of explainability (redundancy) with a lower number of
linear or non-linear components. Expanding on this understanding and
exploring the advantages of transformation-based approaches over band
selection could provide valuable insights for researchers and practi-
tioners in the field.

In our study, we integrated both PCA and t-SNE into the processing
workflow to leverage their respective advantages and compare their
applicability to the specific dataset. By combining these methods, we
aimed to capture both the dominant variations through linear PCA and
the intricate structures through nonlinear t-SNE. This integration
allowed us to gain a comprehensive understanding of the data and
improve the analysis of the tissue treatment progress in the evaluation of
laser-induced effects. Overall, the integration of PCA and t-SNE, along
with other complementary techniques, can provide a more robust and
insightful analysis of hyperspectral data, enabling researchers to effec-
tively extract meaningful information and make accurate
interpretations.

4.2. Detection of the ablation area

Object detection neural networks, especially Faster R–CNN, play a
crucial role in HSI, particularly in tasks such as identifying and local-
izing ablation areas during medical procedures. The unique two-stage
detection process of Faster R–CNN, which includes region proposal
generation and subsequent object detection, significantly improves ac-
curacy and computational efficiency compared to other methods. In
particular, the use of shared convolutional layers between the region
proposal network and the detection network further enhances compu-
tational efficiency and differentiates it from one-stage approaches such
as YOLO (You Only Look Once) and SSD (Single Shot Detector). This
unique feature positions Faster R–CNN as a valuable tool in HSI

Fig. 8. Cluster number comparison between absorbance (blue) and reflectance
(red) modalities.

Table 2
Number of clusters across studied organs.

Organ Absorbance Reflectance

Liver 3.6 ± 1.4 4.8 ± 1.9
Pancreas 3.4 ± 1.2 3.9 ± 1.4
Stomach 3.6 ± 1.3 4.5 ± 1.5

Overall 3.6 ± 1.4 4.5 ± 1.7
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applications, providing superior accuracy and computational efficiency
compared to alternative algorithms such as RetinaNet.

Our study revealed a consistent trend in the dynamics of mAP values
during training (Fig. 6), with notable variations across different datasets.
The highest mAP, 0.744, was achieved by the model trained on the PCA
+ Reflectance dataset, demonstrating the importance of dimensionality
reduction and reflectance data. The PCA + Absorbance model yielded a
close mAP value of 0.712, indicating the effectiveness of the absorbance

data combined with PCA. The t-SNE-based models also performed well,
with mAP values of 0.726 for t-SNE+ Absorbance and 0.695 for t-SNE+

Reflectance. These evaluations were performed on an unseen test subset
of 141 images, confirming the models’ ability to generalize. The com-
bination of Faster R–CNN and various dimensionality reduction and data
modality pairs effectively detected, localized, and classified objects
within hyperspectral images.

The observed superior performance of PCA + Reflectance data in

Fig. 9. Cluster number comparison across wavelengths for the studied organs.
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achieving the highest mAP value can be attributed to their comple-
mentary characteristics in the experimental setup. PCA reduces the
dimensionality of hyperspectral data and improves the efficiency of
subsequent processing steps by highlighting essential spectral features.
Reflectance data provides insight into the surface properties of objects,
aiding discrimination between materials or objects. The synergy be-
tween PCA and reflectance likely contributes to the combination’s suc-
cess. PCA focuses on relevant spectral features, while reflectance
provides valuable surface information, leading to improved model effi-
ciency and performance. This collaborative benefit is crucial for
achieving the highest mAP value. Further analysis could delve into
specific spectral bands or principal components that play a substantial
role in this success, offering deeper insights into the observed experi-
mental results. This integrated approach not only refines hyperspectral
object detection but also contributes to advancements in various fields.

4.3. Segmentation of the ablation area

Various clustering algorithms were assessed for ablation segmenta-
tion in HSI. DBSCAN, OPTICS, and affinity propagation resulted in
oversegmentation, whereas k-means, BIRCH, agglomerative clustering,
spectral clustering, and GMM demonstrated superior performance.
However, the latter algorithms necessitate manual input for the number
of clusters. In contrast, Mean Shift exhibited high-quality segmentation,
diminished sensitivity to parameters, and eliminated the need for
manual cluster definition. The adaptability, autonomous cluster center
determination, robustness to noise, parameter insensitivity, effective
handling of irregular cluster shapes, and limited dependence on
initialization make Mean Shift particularly well-suited for the segmen-
tation stage in the proposed workflow. These attributes collectively
contribute to its excellence, especially in navigating the dynamic and
intricate spectral landscapes of hyperspectral ablation images.

The number of clusters showed significant variation in the reflec-
tance modality, peaking at 550–600 nm and decreasing at 650–700 nm.
Conversely, the number of clusters remained stable in the absorbance
modality, with a slight change observed at 800–850 nm. On average,
there were 4.5 ± 1.7 clusters for reflectance and 3.6 ± 1.4 clusters for
absorbance, which aligns more closely with human vision. This obser-
vation suggests that the information content regarding the damage
classes varies depending on the spectral range, particularly in the case of
reflectance. Consequently, limiting the analysis to a specific range may
risk losing important information. To further investigate this point, it is
recommended to verify whether these clusters correspond to different
image regions. Moreover, the use of reflectance enables access to addi-
tional information compared to human vision and the absorbance case.

Consistent patterns emerged across different organs, with the
pancreas showing alignment in both modalities. The liver and stomach
subsets exhibited similar changes in cluster numbers in absorbance,
while the reflectance subset showed more fluctuations. Detailed cluster
number variation plots for temperature thresholds are provided in Sec-
tion 1 of Supplementary Information.

The variation in the number of clusters under different organs or
temperature thresholds in hyperspectral ablation segmentation is
influenced by several factors that are critical for tailoring segmentation
approaches to specific organs, temperature conditions, and stages of
laser ablation. Understanding and accounting for these factors is
essential and ultimately contributes to accurate and meaningful analysis
of tissue treatment progress. These factors are as follows:

1. Tissue-specific Spectral Characteristics. Different organs exhibit
unique spectral characteristics, influenced by their composition,
structure, and biological properties. The inherent diversity in tissue
types leads to variations in the number of clusters required to
adequately represent the spectral information associated with
ablation-induced changes. For instance, the pancreas, liver, and
stomach may have distinct spectral responses to laser-induced

thermal treatment, necessitating varying numbers of clusters for
accurate segmentation.

2. Temperature-dependent Spectral Variations. The hyperspectral
images capture temperature-induced changes in tissues during laser
ablation. As the temperature thresholds increase, the spectral sig-
natures of tissues may evolve, leading to variations in the required
number of clusters.

3. Spatial and Temporal Dynamics. Organs may exhibit spatial and
temporal variations in their responses to laser treatment. The num-
ber of clusters could vary spatially within an organ, reflecting
localized variations in tissue damage. Additionally, different tem-
perature thresholds may correspond to distinct temporal stages of the
ablation process, introducing variability in the spectral patterns and,
consequently, the optimal number of clusters.

4. Complexity of Hyperspectral Data. HSI generates rich and com-
plex datasets with detailed spectral information at multiple wave-
lengths. The diversity in tissue responses, coupled with the intricate
nature of hyperspectral data, contributes to the variation in the
number of clusters required for effective segmentation across
different organs and temperature thresholds.

4.4. Limitations and future directions

As we continue to refine our approach, it is imperative to consider
various factors that may influence the reliability and generalizability of
our findings. With this in mind, we highlight key areas for improvement
and outline our strategies for future development:

1. Data Collection. Given the unique nature of experimental studies
involving animals, our study was confined to a limited sample size of
three pigs. However, our future endeavors will prioritize the
collection of additional heterogeneous datasets to enhance the
robustness and generalizability of our findings.

2. Data Annotation. The presence of only one expert annotator in our
study precluded the assessment of inter-annotator agreement,
thereby limiting our ability to assess labeling quality. In future
research, involving multiple annotators will be essential to identify
and correct biases, resulting in more neutral and balanced labels and
ultimately enhancing overall data quality.

3. RGB vs HSI. In exploring the potential value of contrasting detection
performance between models trained on hyperspectral images and
those trained on original RGB images, it is evident that such a
comparison could provide crucial insights into the distinct advan-
tages of hyperspectral imaging in medical contexts. Whereas RGB
images offer visual data limited to three color channels, hyper-
spectral images provide a significantly richer spectral signature
spanning hundreds of contiguous bands. This expanded spectral
range enables superior discrimination between diverse tissues or
materials. By contrasting the performance of models trained on
dimensionally reduced hyperspectral data with those trained on RGB
images, we can highlight the enhanced discriminative power and
diagnostic potential inherent in hyperspectral imaging. Such a
comparative analysis would underscore the importance of exploiting
the complementary spectral information provided by hyperspectral
data in medical tasks. Therefore, our forthcoming study will
encompass a comprehensive experimental comparison between
regular and hyperspectral images, further enriching our under-
standing of their respective capabilities and implications for medical
imaging methodologies.

4. Model Comparison. Currently, expanding the number of stages or
integrating additional data modalities, algorithms, or models would
necessitate a considerable increase in the number of experiments
conducted. In forthcoming studies, we intend to constrain certain
degrees of freedom, such as data modality, and delve deeper into
exploring dimensionality reduction algorithms or object detection
models. This strategic approach aims to foster a comprehensive and
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in-depth understanding of these components, thereby enriching our
analyses and insights.

5. Conclusion

This study introduces a comprehensive multistage workflow for
analyzing ablation detection and segmentation in hyperspectral images
obtained during experimental laser treatment on in-vivo liver, pancreas,
and stomach tissues. Leveraging the combined strengths of PCA and t-
SNE, our approach enhances hyperspectral data analysis, providing
valuable insights into tissue disease progression during laser-mediated
cancer treatment.

The application of Faster R–CNN for ablation detection underscores
the superiority of this deep learning-based algorithm in accurately
identifying and localizing ablation areas within hyperspectral images.
Evaluation on an independent test set reaffirms the generalization
capability of the trained models, indicating their potential applicability
in real-world scenarios. The choice of dimensionality reduction tech-
nique and data modality significantly influences object detection
performance.

In the realm of ablation area segmentation, the Mean Shift algorithm
emerges as a standout performer, offering high-quality segmentation
without the need for manual cluster definition. This automated and
reliable approach contributes to efficient hyperspectral image
segmentation.

Our research opens avenues for future exploration, including further
refinement of algorithmic approaches, exploration of novel dimension-
ality reduction, object detection and segmentation techniques, and
extension of applications to a broader range of medical imaging sce-
narios. Investigating the impact of HSI on different cancer types and
treatment modalities can provide valuable insights for personalized
therapeutic interventions. By judiciously selecting HSI processing
techniques and data modalities, researchers and medical professionals
can extract meaningful information from hyperspectral data, fostering
improved analysis, interpretation, and decision-making in laser cancer
therapy and other medical applications.
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