

Numerical Study of turbulent skin-friction drag reduction via spanwise forcing at large Reynolds numbers

European Drag Reduction and Flow Control Meeting 2024, Turin, Italy

D. Gatti, M. Quadrio, F. Gattere, A. Chiarini, S. Pirozzoli | 10th September 2024

www.kit.edu

Quadrio, Ricco & Viotti, JFM (2009)

mean flow

Quadrio, Ricco & Viotti, JFM (2009)

Pumping power: P_p Drag reduction rate: $\mathcal{R} = 1 - \frac{P_p}{P_{p_0}} = 1 - \frac{c_f}{c_{f_0}}$

mean flow

Quadrio, Ricco & Viotti, JFM (2009)

Pumping power: P_p Drag reduction rate: $\mathcal{R} = 1 - \frac{P_p}{P_{p_0}} = 1 - \frac{c_f}{c_{f_0}}$

Control input power: P_{in} Net power saving rate:

$$S = \mathcal{R} - \frac{P_{in}}{P_{p_0}}$$

Quadrio, Ricco & Viotti, JFM (2009)

Pumping power: P_p Drag reduction rate: $\mathcal{R} = 1 - \frac{P_p}{P_{p_0}} = 1 - \frac{c_f}{c_{f_0}}$

Control input power: P_{in} Net power saving rate: $S = \mathcal{R} - \frac{P_{in}}{P_{e}}$

 \mathcal{R} and \mathcal{S} depend on A, κ , ω and Reynolds number Re!

The drag reduction map at $A^+ = 12$

Data by Gatti & Quadrio, JFM (2016)

The drag reduction map at $A^+ = 12$

Data by Gatti & Quadrio, JFM (2016)

The Re-dependency of drag reduction

Twenty years of research, and counting...

- Difficult to study: many parameters, difficulty to reach large Re
- R decreases with Re
- Early studies on wall oscillations ($\kappa = 0$):
 - \mathcal{R} decreases rapidly with Re as $\mathcal{R} \sim Re_{\tau_0}^{\gamma}$ Choi, Xu & Sung, AIAA (2002); Touber & Leschziner, JFM (2012)
- Later studies on travelling waves:
 - \mathcal{R} can decrease slowly with Re
 - $\gamma = \gamma(A, \kappa, \omega)$

Gatti & Quadrio, PoF (2013); Hurst, Yang & Chung, JFM (2014)

First predictive model by Gatti & Quadrio, JFM (2016)

The GQ database

4020 Direct Numerical Simulation (DNS) in small domains, 20 DNS in large domains

The GQ model

A simple predictive model for the Re-dependency of drag reduction

• Near-wall manipulation induces a "roughness function" ΔB^*

$$U^*(y^*) = \frac{1}{k} \ln y^* + B_0^* + \Delta B^*$$

- $\label{eq:alpha} \Delta B^* = \Delta B^*(A^*,\kappa^*,\omega^*) \text{ is } \textit{Re-independent}$
- A modified P-vK friction relation describes the *Re*-dependency of *R*:

$$\Delta B^* = \sqrt{rac{2}{C_{f_0}}} \left[(1-\mathcal{R})^{-1/2} - 1
ight] - rac{1}{2k} \ln \left(1 - \mathcal{R}
ight)$$

- \mathcal{R} decreases with *Re* due to *Re*-dependency of C_{f_0}
- Rouhi *et al.*, JFM (2023) confirm the GQ model up to $Re_{\tau_0} = 4000$ using LES in small domains

A contrasting evidence: can \mathcal{R} increase with *Re*?

A recent study by Marusic et al., Nature comm. (2021)

 $Re_{ au_0} \leq 2000$:

- Large Eddy Simulation
- Turbulent open channel flows in small domains
- Ideal forcing

 $6000 \leq Re_{\tau_0} \leq 12800$:

- Laboratory experiment
- Turbulent boundary layers
- Discrete forcing

Motivation

overcome some limitations of the present studies

Limitations of the studies so far

- Gatti & Quadro, JFM (2016) and Rouhi et al., JFM (2023) utilised small domains and relatively small Re
- Marusic et al., Nature comm. (2021) compares results obtained with different flows and methods

motivate the present study

- produce a new numerical database of drag reduction data in domains and higher *Re*
- utilising a single method

Methods

- Direct numerical simulation of turbulent open channel flows
- $Re_{\tau_0} = \{1000, 2000, 3000, 6000\}$
- Domain size: $L_x = 6\pi h$, $L_z = 2\pi h$
- Resolution: $\Delta x^+ \sim 8.5$, $\Delta z^+ = 4$
- Natural grid stretching by Pirozzoli & Orlandi, JCP (2021) in wall-normal direction
- GPU-accelerated second-order finite difference solver
- Uncertainty on C_f always below 1% with method by Russo & Luchini, JCP (2017)

The new numerical database

Karlsruhe Institute of Technology

143 simulations at $A^+ = 5$ up to $Re_{\tau_0} = 6000$

Drag reduction rate ${\cal R}$

Drag reduction rate ${\cal R}$

11/14 10.09.2024

Roughness function ΔB^*

Does \mathcal{R} increase with Re?

Marusic et al. (2021) parameters: $A^+ = 5$, $\kappa^+ = 0.00078$, $\omega^+ = -0.0105$

Conclusion

• New DNS database of skin-friction drag reduction up to $Re_{\tau_0} = 6000$

- large domain size, single method
- widest range considered numerically so far
- GQ model confirmed: *R* decreases with *Re*
- Increase of \mathcal{R} with *Re* observed by Marusic *et al.*, Nat. Comm. (2021) not confirmed
- \mathcal{R} at $A^+ = 2.5, \kappa^+ = 0.0014, \omega^+ = -0.009, Re_{\tau_0} = 6000$
 - 6% Chandran et al., JFM (2023)
 - 2.3% ± 1.1 present
- \blacksquare Loci of maximal ${\cal S}$ and ${\cal R}$ almost coincide as predicted by GQ13 and GQ16

Net power saving S $S = \mathcal{R} - P_{in}/P_{p_0} = \mathcal{R} - P_{in}^+/U_{b_0}^+$

Control input power P_{in}^+

Constant with Re in viscous units

Reynolds-number dependence of ${\cal S}$

Marusic et al. (2021) parameters: $A^+ = 5$, $\kappa^+ = 0.00078$, $\omega^+ = -0.0105$

