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EMBEDDED HOMOTOPY FOR CONVEX LOW-THRUST
TRAJECTORY OPTIMIZATION WITH OPERATIONAL

CONSTRAINTS

Christian Hofmann* and Francesco Topputo†

A novel homotopic approach for convex low-thrust trajectory optimization is de-
veloped to improve convergence, accuracy, and computational effort compared to
state-of-the-art methods. The homotopy is included in the optimization process
where the homotopic parameter is updated continuously based on the constraint
violation. This method is applied to a low-fidelty model that is gradually trans-
formed into a high-fidelty model with n-body dynamics, solar radiation pressure,
and a real thruster model. In addition, engine shutdown constraints are considered
where the thruster is required to remain off for certain periods. The effectiveness
of the approach is assessed in several fuel-optimal transfers and compared to a
state-of-the-art solver.

INTRODUCTION

Trajectory design is of key importance for all space missions. Typically, trajectories with mini-
mum fuel consumption are sought due to the high launch cost and limited propellant mass [1]. Even
though this is already a challenging task, the current trend toward more autonomy aims at shifting
this task on board [2]. Ideally, the spacecraft shall determine its trajectory autonomously on the fly,
therefore reducing operational costs significantly and reducing the dependence from ground. Yet,
designing a trajectory requires solving a nonlinear optimal control problem. As analytical solutions
exist only for special cases, numerical methods are most commonly used to determine a solution.
Direct and indirect methods are the state-of-the-art techniques to solve the low-thrust trajectory op-
timization problem [3]. Both methods require a decent initial guess, and due to the relatively small
convergence domain, non-convergence is often one of the biggest issues, especially for onboard
applications. Therefore, sequential convex programming (SCP) has been identified as a promising
method due to its rapid speed and high reliability [4, 5]. Generally, infeasible initial guesses of-
ten suffice, and the computational effort can be significantly lower compared to standard nonlinear
programming solvers. Instead of solving the nonlinear problem directly, a sequence of convex prob-
lems is solved until the original, nonlinear constraints are satisfied. Yet, such methods often suffer
from poor accuracy and convergence in case of more complex dynamical models [6]. Due to the
requirement that all constraints need to be convex, nonlinear dynamics are usually linearized using
a first-order Taylor series. This often works well for simple problems, but becomes critical in case
of more complex models [7]. When trying to solve highly nonlinear problems directly, convergence
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is often only achieved if a good initial guess is provided. This is the reason why SCP is mostly used
with two-body dynamics only [5, 8]. Methods based on nonlinear programming techniques seem
to be a more natural choice when more complex dynamical systems are considered. Only very few
examples in the literature consider higher-fidelity models such as the circular restricted three-body
problem [6]. In that work, however, the SCP approach was combined with a nonlinear programming
method to deal with the highly nonlinear dynamics and to achieve convergence. In [7], a homotopic
approach was incorporated in the sequential convex programming method to compute low-thrust
trajectories when additional perturbations are present. A sequence of simpler problems is solved
first, and some homotopic parameter is used to model the path to the desired, more complex prob-
lem. Even though it was demonstrated that the success rate can be increased with this approach,
the number of iterations is considerably larger. The reason is that each optimization problem is
solved to full optimality. This approach is similar to indirect methods where a homotopy from the
smooth energy- to the discontinuous fuel-optimal problem is performed [9,10]. The step size of this
homotopic path, however, is often fixed. Potential useful information from previous iterations is not
taken into account.

In this work, the step size is updated in each iteration based on the constraint violation, therefore
allowing for smaller or larger steps depending on the progress of the algorithm. This technique
is incorporated into a SCP algorithm where a homotopy from simple two-body dynamics toward
a more sophisticated model with additional perturbations is performed. N-body dynamics, solar
radiation pressure, variable specific impulse and maximum thrust, and operational constraints are
considered. In particular, no-thrust periods are taken into account where the engine needs to remain
off for certain periods. Even though such constraints are crucial for real space missions, they are
rarely included in the trajectory optimization process [11]. The developed approach is assessed in
fuel-optimal transfers to two asteroids and compared with a state-of-the-art nonlinear programming
solver.

The paper is structured as follows. Section II describes the optimal control problem and dis-
cretization technique. The homotopic approach is explained in Section III, and the results are pre-
sented in Section IV. Section V concludes this paper.

OPTIMAL CONTROL PROBLEM AND FIRST-ORDER-HOLD DISCRETIZATION

We briefly state the nonlinear optimal control problem and the transformation into a convex prob-
lem. Moreover, the first-order-hold method is addressed that is used to discretize the problem in this
work.

Optimal Control Problem

The equations of motion for the two-body model read in Cartesian coordinates:

ṙ(t) = v(t) (1)

v̇(t) = −µ r(t)

r(t)3
+

T(t)

m(t)
(2)

ṁ(t) = −
∥T(t)∥2
g0 Isp

(3)

where r(t) ∈ R3×1 (r = ∥r(t)∥2), v(t) ∈ R3×1, and m(t) ∈ R denote the position, velocity,
and mass of the spacecraft, respectively. µ is the gravitational constant of the primary body, T(t) ∈
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R3×1 the thrust vector, g0 the gravitational acceleration at sea level, and Isp the specific impulse. In
this work, the initial (subscript 0) and final (subscript f ) final boundary conditions are fixed (except
for the final mass that is free):

r(t0) = r0, v(t0) = v0, m(t0) = m0 (4)

r(tf ) = rf , v(tf ) = vf (5)

We decouple states and controls using a change of variables [12]:

Γ(t) ..=
∥T(t)∥2
m(t)

, τ (t) ..=
T(t)

m(t)
, z(t) ..= lnm(t) (6)

The equations of motion in the new variables are then

ẋ(t) = f(x(t),u(t)) =

 v(t)
−µ r(t)/r(t)3 + τ (t)

−Γ(t)/(g0 Isp)

 (7)

with x =
[
r⊤,v⊤, z

]⊤ being the states and u =
[
τ⊤,Γ

]⊤ the controls. The non-convex thrust
magnitude constraint 0 ≤ ∥T(t)∥2 ≤ Tmax is linearized about the reference z̄:

0 ≤ Γ(t) ≤ Tmaxe−z̄ (1− z(t) + z̄(t)) (8)

The minimum-fuel problem is then given by [5]

minimize
u(t)

− z(tf ) + λν ∥ν(t)∥1 + λη max(0, η(t)) (9a)

subject to: ẋ(t) = A(x̄(t))x(t) +Bu(t) + q(x̄(t), ū(t)) + ν(t) (9b)

Γ(t) ≤ Tmaxe−z̄(t) (1− z(t) + z̄(t)) + η(t) (9c)

∥τ (t)∥2 ≤ Γ(t) (9d)

∥x(t)− x̄(t)∥1 ≤ R (9e)

r(t0) = r0, v(t0) = v0, z(t0) = z0 (9f)

r(tf ) = rf , v(tf ) = vf (9g)

with

A(x̄(t)) ..=
∂f

∂x

∣∣∣
x̄(t)

, B ..=
∂f

∂u

∣∣∣
ū(t)

, q(x̄(t), ū(t)) ..= f(x̄(t), ū(t))−A(x̄(t)) x̄(t)−Bū(t) (10)

Slack variables ν(t) and η(t) ≥ 0 are included in the linearized dynamics in Eq. (9b) and the
performance index in Eq. (9a) to handle artificial infeasibility [5]. Equation (9d) is obtained by
relaxing the constraint ∥τ (t)∥2 = Γ(t) [12]. The trust-region constraint in Eq. (9e) with radius R
is added to avoid artificial unboundedness and keep the linearized dynamics close to the reference
solution.
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First-Order-Hold Discretization

In the first-order-hold method, state and control trajectories are divided into N − 1 equidistant
segments

t0 = t1 < t2 < · · · < tN = tf (11)

with N being the number of discretization points. The control history u(t) is approximated using
piecewise affine functions:

u(t) =
tk+1 − t

tk+1 − tk︸ ︷︷ ︸
=..λ−(t)

uk +
t− tk

tk+1 − tk︸ ︷︷ ︸
=..λ+(t)

uk+1 = λ−(t)uk + λ+(t)uk+1, t ∈ [tk, tk+1] (12)

The discretized dynamics are then given by [13]

xk+1 = Ak xk +B−
k uk +B+

k uk+1 + qk + νk (13)

where

Ak = Φ(tk+1, tk) (14a)

B−
k = Ak

∫ tk+1

tk

Φ−1(t, tk)B(t)λ−(t) dt (14b)

B+
k = Ak

∫ tk+1

tk

Φ−1(t, tk)B(t)λ+(t) dt (14c)

qk = Ak

∫ tk+1

tk

Φ−1(t, tk)q(t) dt (14d)

The state transition matrix Φ satisfies

d

dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = 1 (15)

where 1 is the identity matrix. Integrating the state transition matrix in Eq. (15) along with the
nonlinear dynamics in Eq. (7) and the integrands in Eqs. (14b)–(14d) simultaneously yields the
matrices Ak ∈ R7×1, B−

k ∈ R7×4, B+
k ∈ R7×4, and the vector qk ∈ R7×1. The reference state at

t ∈ [tk, tk+1] is computed using

x̄(t) = x̄k +

∫ t

tk

f(x(ξ),u(ξ)) dξ (16)

EMBEDDED HOMOTOPIC APPROACH FOR HIGH-FIDELITY MODELS

A homotopic approach is a popular choice for indirect methods to solve complex optimal control
problems. Due to the small convergence domain, a series of easier (often smooth) problems is solved
first where the solution of each subproblem is used as the initial guess for the next problem. This
process continues until the desired (often non-smooth) problem is eventually solved. The problems
are connected by the homotopic parameter ε ∈ [0, 1] that is successively decreased by ∆ε from
ε = 1 (corresponds to an easier problem) to ε = 0 (corresponds to the problem that is to be solved).
In general, each subproblem is solved to full optimality and the step size ∆ε is fixed and defined
by the user [7]. Often, a small step size is chosen to avoid non-convergence. This, however, may
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result in a large number of homotopic steps and thus, iterations and CPU time increase. Even if
a larger step size is chosen and then reduced by some heuristic when the solver fails, this would
require additional (and unwanted) iterations and CPU time. It is therefore desirable to adjust the
step size dynamically based on the progress of the algorithm. In this work, we use the maximum
constraint violation cmax as a measure to decide when and to what extent to update ε. Instead of
solving each subproblem to full feasibility and optimality, ε is adjusted within each major SCP
iteration. Figure 1 illustrates two homotopic paths h1 and h2 that relate the homotopic parameter
to the maximum constraint violation. cmax gives an indication about the progress of the algorithm
in terms of feasibility, and a large value suggests that the current solution is far from a feasible
point. Therefore, we want to solve an easier problem to drive the algorithm toward feasibility, and
ε should be selected to be close to 1. When cmax decreases, the complexity of the model can be
increased and hence, ε is reduced according to the homotopic path. This procedure continues until
the desired problem with ε = 0 is solved. The boundaries of the homotopic path can be chosen
based on the maximum constraint violation of the initial guess cguess and the desired feasibility
tolerance ctol. This approach is flexible because for a simple optimization problem (or if a good
initial guess is provided), cmax decreases quickly and the algorithm computes larger step sizes that
result in faster convergence. Likewise, if a problem is more difficult to solve, cguess varies only
slowly, and consequently, ∆ε will also be small to stay within the feasible region.

This approach is used to gradually increase the fidelity of the dynamical model as explained in
the following sections.

Figure 1: Two examples of smooth homotopy paths h1(c) and h2(c) that define the relationship
between the homotopic parameter ε and the maximum constraint violation cmax.

N-Body Dynamics and Solar Radiation Pressure

Instead of solving the problem with n-body dynamics and solar radiation pressure (SRP) directly,
we include the homotopic parameters εnbody and εSRP in the dynamical model to obtain:

f(x,u) =

 v
−µ r/r3

0

+ (1− εnbody)

 0
anbody
0

+ (1− εSRP)

 0
aSRP
0

+Bu (17)

where anbody and aSRP are the additional accelerations caused by the gravitational pull of other
bodies in the solar system and the solar radiation pressure, respectively. Bu is the control term (see
Eq. (9b)). When the constraint violation is large, ε is close to one, and the perturbing acceleration
hence small. When ε = 0, the full perturbation is considered. That way, convergence improves as
the nonlinear term is only added step by step.
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A simple cannonball model is used for the solar radiation pressure where the projected area ASC
of the spacecraft is assumed constant, and the acceleration is given by [14]

aSRP =
SSunCRASC

m

r

r3
(18)

with

SSun =
LSun

4πc
(19)

LSun = 4πCSunAU2 (20)

CR is the reflectivity coefficient of the spacecraft, SSun the solar pressure constant, LSun the lumi-
nosity of the Sun, and CSun the solar constant. c and AU denote the speed of light and astronomical
unit, respectively. Note that the mass m in the denominator of Eq. (18) is replaced by ez in the
implementation due to the change of variables according to Eq. (6).

With regard to the n-body dynamics, the n = 10 perturbations of the barycenters of Mercury,
Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto are considered in this work.
The perturbing acceleration is calculated as follows:

anbody =
n∑
i

µi

(
rsat,i

r3sat,i
− ri

r3i

)
(21)

µi is the gravitational constant of the ith body, ri is the position of the ith body with respect to the
Sun, and rsat,i = ri − r denotes the position of the ith body with respect to the spacecraft. The
time-dependent positions ri of the perturbing bodies can be obtained using the software SPICE [15].

Variable Specific Impulse and Maximum Thrust

With regard to the variable specific impulse Isp and maximum thrust Tmax homotopy, a standard
approach is to solve the problem with fixed Isp and Tmax, and then use this as the initial guess
to solve another optimization problem with the real thruster model. This is not ideal due to two
reasons: first, the solver might not be able to find a solution even when the solution of the constant
Isp and Tmax case is provided as the initial guess for the real model. This is especially true if the
constant and real thruster models differ a lot. Second, such an approach would require solving
another optimization problem with a potentially significantly different thruster curve, and therefore
more computational effort and time. We propose two modifications:

1. A smooth representation of the input power Pin over Tmax curve.

2. A homotopy from an easier to the real thruster model to improve convergence.

As Tmax depends on the input power, the saturation logic of a real thruster is given by [16]

Tmax =


Tmax(Pin,max) if Pin(r) > Pin,max

Tmax(Pin(r)) if Pin,min ≤ Pin(r) ≤ Pin,max

0 if Pin(r) < Pin,min

(22)
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where r is the distance to the Sun, and Pin,min and Pin,max denote the minimum and maximum input
power, respectively. As this results in a non-smooth curve, we propose the following smooth Tmax
function:

Tmax =


Tmax(Pin,max) if Pin(r) > Pin,max + ρ

g(Pin(r)) if Pin,max − ρ ≤ Pin(r) ≤ Pin,max + ρ

1
2Tmax(Pin(r))

[
tanh

(
Pin(r)−Pin,min

ρ

)
+ 1
]

if Pin(r) < Pin,max − ρ

(23)
with some function g(Pin(r)) that depends on the order of the polynomial of the Pin-Tmax curve,
and a smoothing parameter ρ. This function allows us to adjust the smoothness of the curve and
the maximum available thrust at the same time. This way we can not only compute analytical
derivatives, but also control the complexity of the problem. This is done by shifting the Pin-Tmax
curve along the x-axis, which increases the maximum available thrust for a given input power as
shown in Fig. 2. It is expected that the problem is easier to solve if more thrust is available. At the
same time, ρ is adjusted to smooth the curve, thus enhancing convergence as abrupt changes of Tmax
values are avoided. When the constraint violation reduces, the complexity is increased by gradually
shifting the curve back to the original one and decreasing the smoothness. Linear maps M∆P , Mρ

are defined to describe the relationship between the shifting of the power curve ∆P , the smoothing
ρ, and the homotopic parameter ε ∈ [0, 1]:

M∆P : ε 7 −→ ∆Pmin +
∆Pmax −∆Pmin

εmax − εmin
(ε− εmin) (24a)

Mρ : ε 7 −→ ρmin +
ρmax − ρmin

εmax − εmin
(ε− εmin) (24b)

where Pmin, Pmax, ρmin, and ρmax are constants that depend on the problem. εmin and εmax are the
lower and upper bound of the homotopic parameter, typically 0 and 1.

Remark: The matrix B in Eq. (9b) becomes now B(x) due to the dependence on the distance to
the Sun. Instead of linearizing this term, we use the approximation B(x) ≈ B(x̄). Numerical sim-
ulations suggest that this is often advantageous for convergence. Likewise, the maximum available
thrust depends on r, and we approximate it using Tmax(r) ≈ Tmax(r̄).

Remark: Even though different homotopic parameters can be defined for each perturbation, we
combine them into one such that ε ..= max

(
εnbody, εSRP, εTmax

)
. This reduces the number of param-

eters and complexity of the algorithm.

No-Thrust Periods

We focus on operational constraints where the thruster has to remain off for certain periods. This
is crucial for real space missions as thrusting for several weeks or even months is often not feasible
due to mission constraints such as duty cycles. We briefly describe how thruster off periods can be
included in a first-order hold discretization method by extending the approach in [17]. No-thrust
periods ∆toff in a given trajectory segment [tk, tk+1] are defined as follows:

[ti, ti +∆toff,i], ∀i = 1, . . . , n (25)

Without loss of generality, we require them to lie strictly within the segment, i.e. ti > tk and
ti +∆toff,i < tk+1. Therefore,

u(t) = 0, ∀t ∈ [ti, ti +∆toff,i] (26)
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Figure 2: Illustration of shifting and smoothing the power vs. Tmax curve.

and
u(t) = λ̃−(t)uk + λ̃+(t)uk+1, ∀t ̸∈ [ti, ti +∆toff,i] (27)

where λ̃−(t) and λ̃+(t) are the factors that define the control interpolation. Assuming that there is
one no-thrust period in a segment, we have

[tk, tk +∆ton] −→ thrust (28)

[t1, t1 +∆toff] −→ no thrust (29)

[t2, tk+1] −→ thrust (30)

where t1 ..= tk +∆ton and t2 ..= t1 +∆toff. The modified dynamics are then given by

x(t1) = A(t1, tk)x(tk) +B−(t1, tk)u(tk) +B+(t1, tk)u(t1) + q(t1, tk) (31)

x(t2) = A(t2, t1)x(t1) + q(t2, t1) (32)

x(tk+1) = A(tk+1, t2)x(t2) +B−(tk+1, t2)u(t2) +B+(tk+1, t2)u(tk+1) + q(tk+1, t2) (33)

Substituting Eqs. (31) and (32) into Eq. (33) yields the state at tk+1 when no-thrust periods are
considered. The matrices A(·, ·), B−(·, ·) and B+(·, ·) and the vector q(·, ·) can be obtained using
the relations in Eqs. (14b)–(14d).

Remark: It is straightforward to include an arbitrary number of no-thrust periods within one
segment using the same procedure.

NUMERICAL SIMULATIONS

The performance of the developed homotopic approach in terms of success rate, CPU time, and
obtained final mass is compared with a standard SCP method without any homotopy [5] and the
state-of-the-art optimal control software GPOPS-II [18] in combination with the Sparse Nonlinear
Optimizer (SNOPT) [19]. Moreover, it is investigated how SCP performs when no-thrust periods are
included. All simulations are performed in MATLAB on an Intel Core i7-8565 1.80 GHz Laptop
with four cores and 16 GB of RAM. With regard to SCP, the numerical integration of Eq. (7)
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and Eqs. (14b)–(14d) is performed using a mex function. The open-source Embedded Conic
Solver (ECOS) [20] is used to solve the second-order cone program within SCP. We compute fuel-
optimal trajectories from the Sun-Earth Lagrange point L2 (SEL2) to the asteroids 2000 SG344 and
Dionysus. Relevant parameters for the transfers and algorithms are given in Tables 1 and 2. Physical
constants are given in Table 3.

Table 1: Simulation values for the transfers from SEL2 to the asteroids 2000 SG344 and Dionysus
[16, 21].

Parameter SEL2 - 2000 SG344 SEL2 - Dionysus

Initial epoch 04-Feb-2024 12:00:00 UTC 23-Dec-2012 00:00:00 UTC

Initial position r0, AU
[−0.70186065, 0.70623244,

−3.51115× 10−5]⊤
[−0.023941014, 0.99325372,

−3.02763× 10−5]⊤

Initial velocity v0, VU
[−0.73296949,−0.71590485,

4.40245× 10−5]⊤
[−1.02637347,−0.02809721,

1.98538× 10−6]⊤

Initial mass m0, kg 22.6 4000

Final position rf , AU
[0.41806795, 0.82897114,

−0.00143382]⊤
[−2.04061782, 2.05179130,

0.55428895]⊤

Final velocity vf , VU
[−0.96990332, 0.43630220,

−0.00123381]⊤
[−0.14231932,−0.45108800,

0.01894690]⊤

Final mass mf , kg free free
Min. input power Pin,min, W 90 62.5
Max. input power Pin,max, W 120 1000
Max. thrust Tmax, N 2.2519× 10−3 0.5
Max. specific impulse Isp,max, s 3067 3000
Spacecraft area ASC, m2 0.05 100
Reflectivity coefficient CR 1.3 1.3
Time of flight tf , days 700 3534

Table 2: Parameters of the algorithms.

Parameter Value

Feasibility tol. εc 10−6

Optimality tol. εϕ 10−4, 10−5

Max. iterations 1500, 3000

Table 3: Physical constants in all simulations.

Parameter Value

Gravitational const. µ 1.3271244× 1011 km3/s2

Gravitational accel. g0 9.80665× 10−3 km/s2

Length unit AU 1.495978707× 108 km
Velocity unit VU

√
µ/AU km/s

Time unit TU AU/VU s
Acceleration unit ACU VU/TU km/s2

Mass unit MU m0

N-body dynamics, solar radiation pressure, and a real thruster model with variable specific im-
pulse and maximum thrust are considered. In particular, the following thruster model is used for the
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transfer to 2000 SG344 [16]:

Tmax(Pin) = a0 + a1Pin + a2P
2
in + a3P

3
in + a4P

4
in (34a)

Isp(Pin) = b0 + b1Pin + b2P
2
in + b3P

3
in + b4P

4
in (34b)

Pin(r) = c0 + c1r + c2r
2 + c3r

3 + c4r
4 (34c)

with a0 = −0.7253 mN, a1 = 0.02481 mN/W, a2 = a3 = a4 = 0, b0 = 2652 s, b1 = −18.123
s/W, b2 = 0.3887 s/W2, b3 = −0.00174 s/W3, b4 = 0, and c0 = 840.11 W, c1 = −1754.3 W/AU,
c2 = 1625.01 W/AU2, c3 = −739.87 W/AU3, c4 = 134.45 W/AU4, and r in AU. For Dionysus,
we use a modified version of the model presented in [22]:

Tmax(Pin) = ã0 + ã1Pin (35a)

Isp(Pin) = Isp,max (35b)

Pin(r) =
1

r2
(35c)

where ã1 = 0.1069 N, ã2 = 3.9307× 10−4 N/W, and r in AU.

Assessment of the Embedded Homotopic Approach

With regard to GPOPS-II, we choose different numbers of nodes and optimality tolerances to
account for potential discrepancies in the performance if an inappropriate value is selected. We
consider 5 and 10 nodes per segment for each transfer, and choose 30 and 15 segments for 2000
SG344, respectively, and 50 and 25 segments for Dionysus, respectively. This way, the total number
of nodes is 150 (2000 SG344) and 250 (Dionysus), respectively. A total of 101 (2000 SG344) and
301 simulations (Dionysus) is performed. A simple perturbed cubic interpolation is used to generate
infeasible initial guesses that neither satisfy the dynamical nor the endpoint constraints [23]. The
numbers of revolutions of the initial guesses range from 1.6 to 2.6 for 2000 SG344, and 4 to 7
for Dionysus. Note that we do not include no-thrust periods in this simulation to ensure a fair
comparison with GPOPS-II.

The results are shown in Figs. 3 and 4. SCP is the standard SCP method without homotopy,
SCPH the homotopic approach. The notation GPOPSk

i refers to the number of nodes i ∈ {5, 10}
per segment, and k ∈ {10−4, 10−5} to the optimality tolerance for GPOPS-II. Even though we use
10−4 for SCP, selecting a smaller value would not change the results as feasiblity is the main factor
for SCP. With regard to the 2000 SG344 transfer, the benefit of a homotopic approach becomes clear
in Fig. 3a. When the nonlinear problem is solved directly with a SCP method, the success rate is
only 61%, whereas SCPH is able to converge in more than 76% of the cases. Remarkably, only a
low success rate of approximately 31 - 36% is obtained with GPOPS-II regardless of the number
of nodes and optimality tolerance. The reason is that this example is particularly challenging due
to the large minimum input power of 90W, hence making a homotopic approach highly beneficial.
According to Fig. 3b, the CPU time is lowest for SCP, followed by SCPH which requires more
iterations. GPOPS-II and SNOPT as a nonlinear programming solver require more computational
effort and therefore more time. The final mass, however, is similar for all methods (cf. Fig. 3c).
Moreover, all methods yield an excellent accuracy as the propagation error (i.e. the difference
between the optimized final state and the state obtained when integrating the dynamics with the
obtained controls) is of the order of few kilometers only.
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Although the standard SCP method is able to converge in 73% of the simulations of the Dionysus
transfer, this number can be increased to 83% when including the embedded homotopic approach
(see Fig. 4a). Depending on the optimality threshold, GPOPS-II achieves a success rate of only
64% (εϕ = 10−4) and 50% (εϕ = 10−5). Clearly, GPOPS-II struggles to find an optimal solution
when the tolerance is small. However, if a larger value is chosen, the obtained final masses can
be considerably lower as shown in Fig. 4c, also compared to SCP. With regard to the mean CPU
time per simulation, it is evident from Fig. 4b that both SCP methods require up to one order of
magnitude fewer seconds to converge than GPOPS-II. Even though the CPU time per iteration is
similar for SCP and SCPH, the latter requires twice as many iterations and therefore, also twice as
much CPU time. The propagation error is of the order 101 to 102 km, therefore again being very
small.

Even though a homotopic approach requires in general more iterations, the simulations confirm
that convergence can be improved by gradually increasing the complexity of the dynamical model.
Due to the rapid speed of SCP, the additional iterations may not be as relevant when compared to
methods that usually require more computational effort, such as nonlinear programming solvers.
Remarkably, the number of iterations can be reduced considerably with an embedded approach
compared to the method in [7] where each optimization problem is solved to full optimality.

Performance With No-Thrust Periods

We briefly assess the solutions obtained with SCP when including no-thrust periods as per Section
III. In this context, we consider periods of two (2000 SG344) and three (Dionysus) days per segment
where the thruster has to remain off. Typical profiles of the thrust magnitude are shown in Figs.
5a and 5b. The dotted black line refers to the maximum available thrust, and the vertical lines
correspond to the on and off switches. Clearly, the thrust magnitude follows the available maximum
thrust, being either zero or taking the maximum value that depends on the distance to the Sun. Note
that the available thrust is zero between 175 and 250 days in Fig. 5a because the input power drops
below the required minimum value of 90W. With regard to the Dionysus transfer, it is evident
that the available maximum thrust decreases considerably over time as the spacecraft gets farther
away from the Sun. Due to the long transfer time, there are many no-thrust periods, making this
problem difficult to solve. The corresponding trajectories are depicted in Figs. 6a and 6b. The
discontinuous thrust arcs in red show the no-thrust periods. Compared to the transfer to 2000 SG344
which requires nearly two revolutions, more than five revolutions are needed to reach Dionysus.
Despite the higher complexity when no-thrust constraints are considered, the CPU time and number
iterations do not increase significantly. If SCP is able to determine an optimal solution for the
problem without no-thrust constraints, it is in general also able to converge successfully when such
constraints are considered using the homotopic approach (provided that a solution exists).

CONCLUSION

This work combines the sequential convex programming method with an embedded homotopic
approach to solve the low-thrust trajectory optimization problem for high-fidelity models. The sim-
ulations show that increasing the complexity of the dynamical model only step by step can increase
convergence. Despite the larger number of iterations that is required to reach convergence, the rapid
speed of the proposed method makes it an excellent alternative to nonlinear programming solvers
even for highly nonlinear problems. As no-thrust constraints can directly be included in the opti-
mization process without a significant increase in computational effort and decrease in convergence,
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Figure 3: Comparison of SCP, SCPH and GPOPS-II in terms of convergence, CPU time, and final
mass for the 2000 SG344 transfer. Mean values are shown, the error bars refer to the standard
deviation ±1σ.
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Figure 4: Comparison of SCP, SCPH and GPOPS-II in terms of convergence, CPU time, and final
mass for the Dionysus transfer. Mean values are shown, the error bars refer to the standard deviation
±1σ.
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(a) Thrust profile for transfer to 2000 SG344.
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(b) Thrust profile for transfer to Dionysus.

Figure 5: Typical thrust profiles for the transfers to 2000 SG344 and Dionysus when no-thrust
periods are considered.
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(b) Trajectory for Dionysus transfer.

Figure 6: Typical trajectories for transfers to 2000 SG344 and Dionysus when no-thrust periods are
considered.

this work can be considered another step toward computing more mission-compliant trajectories us-
ing convex programming techniques.
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[17] J. M. Carson and B. Açıkmeşe, “A Model Predictive Control Technique with Guaranteed Resolvability
and Required Thruster Silent Times for Small-Body Proximity Operations,” AIAA Guidance, Naviga-
tion and Control Conference and Exhibit, 8 2006. AIAA Paper 2006-6780.

[18] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for solving multiple-phase opti-
mal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear
programming,” ACM Transactions on Mathematical Software (TOMS), Vol. 41, No. 1, 2014, pp. 1–37.

[19] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained
optimization,” SIAM review, Vol. 47, No. 1, 2005, pp. 99–131.

[20] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP Solver for Embedded Systems,” European
Control Conference, Zurich, Switzerland, 2013, pp. 3071–3076, doi: 10.23919/ECC.2013.6669541.

[21] E. Taheri, I. Kolmanovsky, and E. Atkins, “Enhanced Smoothing Technique for Indirect Optimization
of Minimum-Fuel Low-Thrust Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 39,
No. 11, 2016, 10.2514/1.G000379.

[22] E. Taheri, J. L. Junkins, I. Kolmanovsky, and A. Girard, “A Novel Approach for Optimal Trajectory
Design With Multiple Operation Modes of Propulsion System, Part 1,” Acta Astronautica, Vol. 172,
2020, pp. 151–165, 10.1016/j.actaastro.2020.02.042.

[23] C. Hofmann, A. C. Morelli, and F. Topputo, “On the Performance of Discretization and Trust-Region
Methods for On-Board Convex Low-Thrust Trajectory Optimization,” AIAA Scitech 2020 Forum, 2022,
10.2514/6.2022-1892.

16


	Introduction
	Optimal Control Problem and First-Order-Hold Discretization
	Optimal Control Problem
	First-Order-Hold Discretization

	Embedded Homotopic Approach for High-Fidelity Models
	N-Body Dynamics and Solar Radiation Pressure
	Variable Specific Impulse and Maximum Thrust
	No-Thrust Periods

	Numerical Simulations
	Assessment of the Embedded Homotopic Approach
	Performance With No-Thrust Periods

	Conclusion

