On the optimal period of spanwise forcing for turbulent drag reduction

F. Gattere¹, A. Chiarini^{1,2}, M. Castelletti¹ & M. Quadrio¹

EDRFCM 2024

¹ Politecnico di Milano, Italy

² Okinawa Institute of Science and Technology, Japan

Spanwise forcing: how does it work?

It works:

- at large Reynolds number
- at large Mach number
- with complex configurations
- with real discrete forcing devices

Spanwise forcing: how does it work?

It works:

- at large Reynolds number
- at large Mach number
- with complex configurations
- with real discrete forcing devices

How does it work?

- to get insight of the working mechanism
- to design more performing actuators

Oscillating wall (Jung et al., PoF 1992)

$$W_{wall}(t) = A\sin\left(\frac{2\pi}{T}t\right)$$

Oscillating wall (Jung et al., PoF 1992)

$$W_{wall}(t) = A \sin\left(\frac{2\pi}{T}t\right)$$

It creates a spanwise Stokes layer (SL)

$$W_{SL} = A e^{y/\delta_{SL}} \sin\left(\frac{2\pi}{T}t - \frac{y}{\delta_{SL}}\right)$$

Oscillating wall (Jung et al., PoF 1992)

$$W_{wall}(t) = A \sin\left(\frac{2\pi}{T}t\right)$$

It creates a spanwise Stokes layer (SL)

$$W_{SL} = A e^{y/\delta_{SL}} \sin\left(\frac{2\pi}{T}t - \frac{y}{\delta_{SL}}\right)$$

- T: oscillation period
- δ_{SL} : SL thickness $(W_{SL}(\delta_{SL}) \approx \frac{1}{3}A)$

Oscillating wall (Jung et al., PoF 1992)

$$W_{wall}(t) = A \sin\left(\frac{2\pi}{T}t\right)$$

It creates a spanwise Stokes layer (SL)

$$W_{SL} = A e^{y/\delta_{SL}} \sin\left(\frac{2\pi}{T}t - \frac{y}{\delta_{SL}}\right)$$

• T: oscillation period

•
$$\delta_{SL}$$
: SL thickness ($W_{SL}(\delta_{SL}) \approx \frac{1}{3}A$)

3

Oscillating wall (Jung et al., PoF 1992)

$$W_{wall}(t) = A \sin\left(\frac{2\pi}{T}t\right)$$

It creates a spanwise Stokes layer (SL)

$$W_{SL} = A e^{y/\delta_{SL}} \sin\left(\frac{2\pi}{T}t - \frac{y}{\delta_{SL}}\right)$$

- T: oscillation period
- δ_{SL} : SL thickness $(W_{SL}(\delta_{SL}) \approx \frac{1}{3}A)$

$$\delta_{SL} = \sqrt{rac{
u T}{\pi}}$$

- Time scale
- Longitudinal length scale
- Lateral displacement
- Penetration depth length scale

Jimenez, PoF 2013

- Time scale
- Longitudinal length scale
- Lateral displacement
- Penetration depth length scale

- Time scale
- Longitudinal length scale
- Lateral displacement
- Penetration depth length scale

- Time scale
- Longitudinal length scale
- Lateral displacement
- Penetration depth length scale

Thought experiment manipulating the control

X Oscillation of the wall

 \checkmark Directly imposition of the desired spanwise velocity profile W_{ESL} at each time step

Thought experiment manipulating the control

X Oscillation of the wall

 \checkmark Directly imposition of the desired spanwise velocity profile W_{ESL} at each time step

νT

π

We decouple T and δ :

$$W_{ESL} = Ae^{y/\delta}sin\left(\frac{2\pi}{T}t - \frac{y}{\delta}\right)$$
 $\delta \neq \sqrt{\delta}$

Validation

• Channel flow

• $Re_{\tau} = 400$

$$T^+_{opt} = 100, \, \delta^+_{opt} \approx 6$$

$$\rightarrow \mathcal{R} \approx 30\%$$

•
$$T_{opt}^+ = 30, \, \delta_{opt}^+ = 14$$

• $\mathcal{R} \approx 40\%$

The area of the maximum $\ensuremath{\mathcal{R}}$

- $20 \le T^+ \le 50$
- $8 \le \delta^+ \le 14$

corresponds to

- the regeneration time-scale of the streaks
- the position of buffer layer

- $T^+ \leq 20$
- \mathcal{R} small and almost constant with δ
- T is too small compared to the flow time scales

•
$$\delta^+ \leq 4$$

- \mathcal{R} small and almost constant with T
- The spanwise motion is confined in the viscous sublayer

• For large *T*, the control is more effective if confined close to the wall

Large spanwise fluctuations induced by the control erode *R* ΔW^{rms} = 100 (W^{rms}_{est}) - (W^{rms}_{ref}) (W^{rms}_{ref})

7

- Successfully decoupling the effect of T and δ
- $T^+_{opt} \approx 100$ and $\delta^+_{opt} \approx 6$ do not possess a special physical meaning
- Way paved for the design of alternative control strategies (actuation \neq control)
- Ongoing: computation of the net power saving

- Successfully decoupling the effect of T and δ
- $T^+_{opt} \approx 100$ and $\delta^+_{opt} \approx 6$ do not possess a special physical meaning
- Way paved for the design of alternative control strategies (actuation \neq control)
- Ongoing: computation of the net power saving

Thank you for the attention