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Abstract: Vehicle teleoperation has the ability to bridge the gap between completely automated
driving and manual driving by remotely monitoring and operating autonomous vehicles when their
automation fails. Among many challenges related to vehicle teleoperation, the considered ones in
this work are variable time delay, saturation of actuators installed in vehicle, and environmental
disturbance, which together limit the teleoperation performance. State-of-the-art predictive tech-
niques estimate vehicle states to compensate for the delays, but the predictive states do not account
for sudden disturbances that the vehicle observes, which makes the human-picked steer inadequate.
This inadequacy of steer deteriorates the path-tracking performance of vehicle teleoperation. In the
proposed successive reference-pose-tracking (SRPT) approach, instead of transmitting steering com-
mands, the reference trajectory, in the form of successive reference poses, is transmitted to the vehicle.
This paper introduces a method of generation of successive reference poses with a joystick steering
wheel and compares the human-in-loop path-tracking performance of the Smith predictor and SRPT
approach. Human-in-loop experiments (with 18 different drivers) are conducted using a simulation
environment that consists of the integration of a real-time 14-DOF Simulink vehicle model and Unity
game engine in the presence of bidirectional variable delays. Scenarios for performance comparison
are low adhesion ground, strong lateral wind, tight corners, and sudden obstacle avoidance. Result
shows significant improvement in reference tracking and in reducing human effort in all scenarios
using the SRPT approach.

Keywords: latency; time delay; vehicle teleoperation; Smith predictor; NMPC; successive reference-pose
tracking

1. Introduction

Vehicle teleoperation is an activity of driving a vehicle by sending driving commands
to the vehicle from a control station (that is stationary) and, in most cases it is far away from
the vehicle. In the case of a wireless communication channel, potential civil applications of
vehicle teleoperation can be last-mile delivery of rental/shared vehicles, human remote
assistance in the event of autonomous vehicle failure, valet parking, etc. It can also be
useful in military application, including rescue, reconnaissance and patrol missions. The
4G LTE wireless broadband connection is the best candidate for the data communication
protocol in vehicle teleoperation due to its widespread availability around the world.

The advent of autonomous vehicles is likely to transform individual and public
transportation [1] as well as freight transport and intralogistics [2,3]. Autonomous vehicles
may perform well in the scenarios above, but they may still struggle in critical traffic
circumstances that a human could easily handle, such as parking lots, pedestrian crossing
areas, or construction roads. Vehicle teleoperation may be able to assist in the transition
from human-driven to autonomous vehicles. Most military robotic systems, according to
Cosenzo and Barnes [4], will require active human control or, at the very least, supervision,
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with the capacity to take over if necessary. This application also comes under the use cases
of vehicle teleoperation. Vehicle teleoperation can also be beneficial to human driver safety
because the human operator is in the control station and not inside the vehicle.

Vehicle teleoperation also has shortcomings; the human operator is often constrained
to operating the vehicle using 2D video feeds with limited resolution and field of view
(FOV) [5]. Additionally, time delay in data processing and transmission across a wireless
network causes the video stream and driving command to be hundreds of milliseconds late.
Time delays reduce the speed and accuracy with which human operators can accomplish a
teleoperation task [6,7]. When delays are considerable, human operators have a tendency
to overcorrect steer, causing oscillations that might degrade teleoperation performance and
possibly destabilize the control loop [8,9].

1.1. Related Work

Predictive display and waypoint-based vehicle teleoperation are the two major cate-
gories in the literature. In human-in-the-loop experiments, predictive displays have been
shown to be effective in compensating delays and improving vehicle maneuverability [10–17].
To estimate the vehicle position, it takes into account the delay in the control loop as well
as the driving commands issued by the human operator. One way to convey the predicted
position of the vehicle to a human operator is by displaying a “third-person view” of the ex-
pected position [14]. The prediction model can either be model-based [13], model-free [15],
or a blend of both [16]. A vehicle model is necessary to forecast the vehicle response in
model-based predictors, and the prediction accuracy is dependent on the vehicle model’s
correctness. Prediction accuracy deteriorates in the presence of unforeseen disturbances in
the driving environment, such as a low-adhesion road or a cross wind. In the model-free
approach [15], delayed state dynamics received from the vehicle are used to make the
prediction. It suffers from an another delay due to the convergence time involved in the
state prediction. The blending of both approaches results slightly improved operation.
Alonzo Kelly et al. [17] estimated the vehicle predicted position based on a velocity-driven
non-linear vector differential equation assuming con. Even though it makes no attempt to
simulate the forces of ground contact and traction, it has shown to be more than adequate
for replicating the network delays of less than a second. Smit Saparia et al. [18] introduced
an active safety system for collision avoidance in vehicle teleoperation. It receives the usual
steering and reference velocity commands from the control station, but modulates them
as per the potential fields of the obstacles. Sterling J. Anderson et al. [19] also retained
steer-based driving in vehicle teleoperation. Their approach relies on path homotopies
identification, which satisfy a set of position constraints, bounding a heuristically optimal or
driver-preferred set of collision-free paths. The control authority of vehicle steer is allocated
between the driver and obstacle collision threat minimization by a means weighted average.
Vehicle steer is transmitted to the driver using visual or steering torque feedback to inform
him/her about the predicted and action already being taken by the vehicle. However, this
approach attaches an additional safety layer, and the robustness of teleoperation under
the presence of delay is not discussed. In brief, predictive displays attempt to counter the
time delay in loops by anticipating states using delayed states as input. This is useful for
human-in-loop teleoperation, as it allows the human operator to not have to wait for the
feedback and provides the sense of controlling the vehicle in real time. The drawback is
that when prediction accuracy declines, the chances of asynchrony rise.

In waypoints-based driving (shared/cooperative control), vehicle control is based
on automated driving along predefined paths. This eliminates network time delay out
of the control loop. Michael Fennel [20] proposed an offline path follower, where the
operator is not actively controlling the maneuver but just supervising. Additionally, the
generation of a path is an extra task to be performed by the control station. Macharet and
Florencio [21] proposed a navigation system that employs artificial potential fields and
vector field histograms, with a human operator in the loop. Sen Zhu et al. [22] introduced
a touchscreen-guidance-point-based cooperative control for vehicle teleoperation. The set
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of guidance points (in navigable regions) are generated by the vehicle-perception system.
Subsequently, the vehicle autonomous control system generates the desired trajectory
based on the kinematic constraints of the vehicle. As the steering commands is being
generated by the vehicle control system, the network delay is out of the control loop, which
stabilizes the loop. However, compared to natural steer-based driving, this approach
involves touchscreen-based path selection.

The shared-control approach in vehicle teleoperation still possesses some potential
improvements. Many prior works considered navigation only in structured environments.
In circumstances such as an autonomous navigation based on a road network, global
path points can be selected in advance. In unstructured environments, such as off-road
places, often, it is not reasonable to assume that the navigation control system knows the
prominent homotopies to reach the goal position.

1.2. Contribution of Paper

It is important to note how the current publication differs from the past and ongoing
research given the extensive body of work that precedes the work provided here. Despite
using sophisticated position-predicting techniques, predictors suffer from prediction errors
and environmental disturbances (such as low-adhesion surface and cross wind) that the
real vehicle observes, as the after-effect of these disturbance are seen by the human operator
after a delay.

In our previous work [23], we introduced a position-based control strategy, SRPT,
for vehicle teleoperation to account for environmental disturbances. In this strategy, the
upcoming reference-pose to be followed by the vehicle is transmitted (∼30 Hz) discretely
to the vehicle, which makes the vehicle aware of the reference pose to be reached. Conse-
quently, the vehicle controller takes into account the actuator constraints and environmental
disturbance (if any), to optimize for the steer and speed command. The reference-pose
decider in the control station is a mathematical model of a driver, which accounts for the
already known mission plan and the received delayed vehicle position.

In the proposed SRPT approach, the control station transmits reference poses instead
of steer and speed commands. To accommodate for humans in the operation loop, first, this
paper proposes a steering-joystick-based method to generate successive reference poses for
the SRPT approach. The successive poses correspond to the target position to be reached by
the vehicle in the immediate future. Later, to assess the performance improvement, human-
in-loop vehicle teleoperation experiments are conducted using a simulation environment
(Figure 1). It consists of integration of a real-time 14-DOF Simulink vehicle model and Unity
game engine through UDP (User Datagram Protocol) data transmission, incorporating
bidirectional variable delays. Two scenarios are considered: the first consists of non-
traffic but progressively increasing difficult maneuvers, and the second consists of getting
around sudden obstacles. The importance of this work is it that it keeps the usual steer-
based physical interface for the human operator, while converting the steer reference to
pose reference for the real vehicle. This, in addition to compensating for environmental
disturbances, also allows the human operator to compensate for the under/over-steer
nature of the vehicle, eventually reducing cognitive load as per the literature [24]. The
next importance is performance comparison with the Smith predictor using human-in-loop
drive experiments in the presence of disturbances/sudden obstacles, which exhibits the
performance benefits of the SRPT approach.
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Figure 1. Integration of Simulink and Unity for human-in-loop vehicle teleoperation experiments.

1.3. Outline of Paper

The rest of the paper is organized as follows. Section 2.1 presents the characteristics
of network delay. Section 2.2 explains the modes of vehicle teleoperation simulated for
comparison and the explanation of the novel SRPT mode. Section 3 provides an overview of
the simulation platform. Section 4 discusses the experimental structure. Section 5 presents
and discusses the results. Section 6 concludes with the work summary, key findings, and
aspects to be considered for virtual to real-world replication.

2. Method

This section first discusses the characteristics of the network delay observed. Then, it
explains the various modes of vehicle teleoperation considered.

2.1. Uplink Delay and Variable Downlink Delay Characteristics

From the control station perspective, the time delay involved in vehicle teleoperation
can be divided into two parts. One is downlink delay (τ2), which is associated with the
streamed images received by the control station. The other is uplink-delay (τ1), which
is associated with the delay between the generation of driving commands at the control
station and the actuation of those at the vehicle. τ2 can be considered a lumped sum of
camera exposure delay, image encoding time consumption, network delay in transmitting
the images toward the control station and image-decoding time consumption. τ1 can be
considered a lumped sum of network delay in transmitting the driving commands towards
the vehicle, and vehicle actuation delay. In the case of wireless communication using 4G,
variability is associated with both downlink and uplink delays. Figure 2 presents both
sided delays with corresponding utilized bandwidth. The information corresponds to
5000 picture frames and driving commands. This test is carried out in a typical urban
setting, with the vehicle connected to 4G mobile connectivity and the control station via
wired LAN to the internet. τ1 is measured at the vehicle by subtracting the timestamp of
driving commands from the current timestamp, and τ2 is measured at the control station
by subtracting the timestamp of an image received from the current timestamp.

Figure 2. Delays observed in data transmission over 4G. Reprinted with permission from Ref. [23].
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Uplink delay is unknown and downlink delay is known at the control station. As the
amplitude and variability of uplink delays are smaller, a constant high stochastic value (an
approach adopted in [13]) of 60 ms is used in the following teleoperation simulations. For
downlink delay, generalized extreme value distribution, GEV(ξ = 0.29, µ = 200, σ = 9) is
used [13,16]. Here, ξ is the shape parameter, µ is the location parameter and σ > 0 is the
scale parameter. Positive ξ means that the distribution has a lower bound (µ− σ

ξ ) ≈ 169 ms
(>0) and a continuous right tail based on the extreme value theory. During a stable 4G
connection (Figure 2), data packets received are found to be in FIFO order. This indicates
no data loss and FIFO queue behavior of the communication.

2.2. Vehicle Teleoperation Modes

To evaluate the benefits of the proposed method in compensating for network delay
and disturbances, four driving modes are considered and compared in the simulation
testing environment:

2.2.1. No-Delay Mode

This mode is closest to driving a vehicle from the driver seat. As delays are absent in
this mode, the human operator perceives the vehicle undelayed state and his/her control
actions are applied to the vehicle instantly.

For this mode, delays (τ1; τ2) are zero. Relating mode schematic (Figure 3) with
simulation infrastructure (Figure 1), the Simulink 14-dof vehicle model receives the steer
from the steering joystick and outputs the vehicle position to the Unity visual interface
through UDP packets. A PI cruise control placed just before the 14-dof vehicle model
maintains the vehicle speed near the reference speed (22 km/h).

Disturbances

X

Vehicle Pose

SpeedRef = 22 km/h

X e-�2s

(steer)

δ

Visual feedback

Human UnityH

uplink

downlink

Vehicle 14dof

P
e- 1s

e- 2s

Figure 3. Schematic of typical vehicle teleoperation data flow.

To make the human quickly aware of the steering ratio, a steer indicator (Figure 4)
based on kinematic vehicle motion is overlayed on the visual. The indicator is in the form
of a rectangular outline of the vehicle. Its 2D-Pose (xind , yind , ψind ) relative to the base
pose (Figure 4) is given as

ψind =
Lind

R
xind = R sin ψind − lF(1− cos ψind )

yind = R(1− cos ψind ) + lF sin ψind

(1)

where R is the Ackermann radius given by

R =
L

tan δ

{
δ = 1e−3 ; if δ == 0
δ ; otherwise

}
, (2)

where δ is the front axle steer; Lind is the ahead-distance of the indicator; lF is front axle
distance from the CG; L is the wheel base. As the purpose of the steer indicator is just to
indicate the neutral steering motion, a short enough distance (Lind = 4 m) which makes
the indicator visible after the vehicle bonnet is considered. The distance is constant for
no-delay, delay and Smith modes.

As delays are absent in the no-delay mode, the steer-indicator 2D pose is relative to
the undelayed vehicle pose received by Unity (Figures 4 and 5a).
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X

Y

Figure 4. Steer indicator in respective modes.

a) No-Delay b) Delay

d) SRPTc) Smith

Steer indicator

Predicted
pose

Figure 5. Vehicle perspective in (a) no-delay mode, (b) delay mode, (c) Smith predictor mode, and
(d) SRPT mode.

2.2.2. Delay Mode

This mode represents typical delayed vehicle teleoperation, where τ1 and τ2 in Figure 3
are given in Section 2.1. To simulate this, the Simulink 14-dof vehicle model receives delayed
steer, and Unity receives delayed vehicle pose. As a result, the human operator observes
delay in his/her control actions and respective visual feedback. The steer indicator (inside
Unity) still receives undelayed steer from human, but as the vehicle pose received (from
the Simulink vehicle model) is delayed, it is only able to overlay the indicator respective to
the delayed vehicle pose (Figures 4 and 5b).

2.2.3. Smith-Predictor Mode

Schematic of the Smith predictor for the vehicle teleoperation control loop is shown in
Figure 6 for known time delays.

Disturbances

X

(steer)

Vehicle Pose
Visual feedback

SpeedRef = 22 km/h

X e 2s

Vehicle model

P'

e ( 1 + 2)s +
-

+

Xp

Human

Vehicle 14dof

P

Unity

e 1s

e 2s

H

Figure 6. Smith-predictor scheme.

The steer input (δ) is passed through a local predictor model (P′) of the vehicle,
which then passes through (1− e−(τ1+τ2)s), where a time-delayed version of the output
is subtracted from the real-time version. With this schematic, feedback (Xp) given to the
human operator is

Xp = P′δ
(

1− e−(τ1+τ2)s
)
+ δe−τ1sPe−τ2s (3)
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which, in turn, if the predictor model (P′) is equal to vehicle model (P) becomes

Xp = Pδ (4)

It provides the human operator the sense of controlling the vehicle in real time. If
P′ = P, the transfer function of the closed-loop delayed system is

X
XREF

=
HP

1 + HP
e−τ1s (5)

In reality, P and P′ are different. In our simulation environment, P is a non-linear
14-dof vehicle model, while P′ is non-linear single-track vehicle model provided by Simulink
block Vehicle Body 3DOF Single Track [25].Block inputs are velocity and steer, while its
constant parameters are single-track vehicle dimensions and cornering stiffnesses (Table 1).

The Smith predictor bypasses the delay in the observation and transforms the system
into a pure forward-delay system (Equation (5)). The system still tracks the input with a
constant forward delay offset; however, this will not affect the controllability of the vehicle.
Further explanation is presented in previous work [23].

A problem with the previous delay-mode is that the steer indicator is respective to
the delayed vehicle pose. To rectify it, Smith mode predicts the undelayed vehicle pose
(XP). Consequently, the steer indicator is overlayed relative to the predicted vehicle pose
(Figure 5c) instead of to the delayed vehicle pose.

2.2.4. SRPT Mode Using NMPC

In the above approaches, the control station transmits steer commands to the vehicle.
In this SRPT approach, reference poses are transmitted to the vehicle. To generate reference
poses, the idea of the steer indicator (previously discussed in Figures 4 and 5) is extended
and used. Instead of having a constant ahead distance (Lind) for the indicator, the below
relation is used for it:

Lind = V · τ + max(V · ∆tHorizon, lF) (6)

Here, V is the vehicle speed, τ = τ1 + τ2 is the round trip delay, and ∆tHorizon = 1s is
the NMPC horizon that acts as the look-ahead time for the steer indicator. The first term in
Equation (6) accounts the delay in the control loop. The second term in Equation (6) refers
to the terminal of the NMPC horizon. The max condition ensures non zero Lind at zero
speed. The use of a steer indicator is multifaceted in this approach. The first use is for the
indication of steer, and the second is to generate reference poses. Referring to the schematic
of the SRPT approach (Figure 7), Unity (control-station) overlays the steer indicator relative
to the delayed vehicle pose (Figures 4 and 5d). As the control station also receives delayed
vehicle pose, X(t)e−τ2s in global reference frame, the global pose of the steer indicator can
be calculated. Eventually the global pose of the steer indicator, XRe f (t + τ1 + ∆tHorizon), is
transmitted to the vehicle, which act as a reference pose for the vehicle.

Disturbance

X(t)opt Vehicle

14dof P
NMPC

X(t) e 2s

(Reference pose)

e 2s
Vehicle pose, speed

e 1s
XREF(t + 1+ tHorizon) XREF, (t+ tHorizon)

lookahead time

( 2 + 1 + tHorizon) 

Human Unity

H

Figure 7. Successive reference-pose-tracking (SRPT) scheme.

NMPC Prediction model: On the vehicle side, the NMPC block receives the reference
poses, and by analyzing the vehicle current states, actuator constraints and environmental
disturbances, it optimizes for steer-rate and acceleration commands [23].
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A single-track model (Figure 8) with states

x =
[

β; ψ̇; ψ; Fy,F; Fy,R; x; y; δ; Vx
]T , (7)

and dynamics given below is used in the NMPC prediction model:

ẋ =



1
mV
(

Fy,F cos δ + Fx,F sin δ + Fy,R
)
− β·a

V − ψ̇
1
IZ

[(
Fy,F cos δ + Fx,F sin δ

)
lF − Fy,R lR

]
ψ̇

V
λ

[
Fy,F,ss − Fy,F

]
V
λ

[
Fy,R,ss − Fy,R

]
V cos(ψ + β)
V sin(ψ + β)

δ̇
a


. (8)

X

Y

δ

αR

β

αF

lF

lR

F    x                           ,                             F

F    x                           ,                             R

F    y                           ,                             R

F    y                           ,                             F
V

ψ
y                     

x                    L

Figure 8. Single-track vehicle model. Reprinted with permission from Ref. [23]

In this work, states (x) are considered known, as they are a simulation of a 14-dof
vehicle model. However, in the physical experiment, a state estimator has to be present for
state estimation, where the measurement of [ψ̇; lateral acceleration] from IMU and [δ; Vx]
from encoders can be accounted for in the correction step.

Accounted longitudinal forces (Equation (9)) consist of inertial force, rolling force, and
aerodynamic force. During acceleration, a major part of the traction is provided by the front
axle due to the front-wheel-drive (FWD) vehicle. During deceleration, the braking force is
divided among the axles as per the braking bias distribution. For simplicity, longitudinal
dynamics without relaxation length phenomenon is considered and thus given by

Fx,F =

{
m a + fV mR g + CAero V2, if a ≥ 0

γ (m a + fV m g + CAero V2), otherwise

Fx,R =

{
− fV mR g, if a ≥ 0

(1− γ) (m a + fV m g + CAero V2) otherwise.

(9)

Considering the non-linear saturation model for tire force characteristics, [26]

Fi,ss = Di atanh(Ci Bi σ), (10)
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knowing longitudinal forces from Equation (9), independent longitudinal slips are given by

σx,F '
atanh Fx,F

Dx,F

Bx,FCx,F
; σx,R '

atanh Fx,R
Dx,R

Bx,RCx,R
, (11)

and independent lateral slips are given by

σy,F ' tan δ− β− ψ̇ lF
V

σy,R ' −β + ψ̇ lR
V

. (12)

Net slips are given by
σF =

√
σ2

x,F + σ2
y,F

σR =
√

σ2
x,R + σ2

y,R

. (13)

Steady-state lateral forces used in Equation (8) are given by

Fy,F,ss =
σy,F
σF

Dy,F atanh(By,F Cy,F σF)

Fy,R,ss =
σy,R
σR

Dy,R atanh(By,R Cy,R σR)
. (14)

The outputs of the NMPC optimization routine are, a, the vehicle acceleration, and δ̇
the steer angular velocity. To make it applicable for zero vehicle speed, wherever the V is
in the denominator in Equation (8), it is substituted by max(0.01, V).

Parameters used in the NMPC block correspond to a FWD typical passenger vehicle
and mentioned in Table 1.

Table 1. Vehicle parameters for the single-track model.

Parameter Value

m 1681 kg

IZ 2600 kg s2

[mF; mR] [871.6; 809.4] kg

[lF; lR] [1.3; 1.4] m

[Bx,F; Bx,R] [9.94; 10.6]

[Cx,F; Cx,R] [1.46; 1.46]

[Dx,F; Dx,R] [9643.4; 9019.0] N

[By,F; By,R] [9.8; 10.4]

[Cy,F; Cy,R] [1.29; 1.29]

[Dy,F; Dy,R] [8361.2; 7827.2] N

λ (Relaxation length) 0.3 m

γ (Braking bias) 0.6

CAero (Aerodynamic drag) 0.3675 N/(m2/s2)

fV (Rolling resistance coeff) 0.01

NMPC objective function: The aim is to keep the vehicle motion along with the
received successive reference poses. The clothoid path is a preferred path in the vehicle
motion because it resembles natural driving where steer changes linearly. Eliou and
Kaliabetsos [27] suggest that cubic spline can be a first approximation for the clothoid curve.
Each received reference pose (Figure 7), XRe f (t + ∆tHorizon) which is in the global reference
frame, is transformed into the vehicle reference frame [xRe f ; yRe f ; ψRe f ], on which a local
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cubic spline is estimated (Equation (15), Figure 9, [23]). The spline maintains G1 continuity
at both ends, i.e., starting tail with β and end tail with ψRe f . Note that spline coefficients
update before every prediction horizon:

y = Ax3 + Bx2 + Cx + D (15)

x

y

β

ψRef
(xRef, yRef)

cubic spline

Figure 9. Cubic spline generation in vehicle reference frame.

The terminal cost of NMPC is such that the predicted vehicle pose at the end of the
horizon lies closer to the spline. The stage cost contains NMPC outputs [δ̇; a] and deviation
from the reference vehicle speed. The net cost formulation over prediction horizon, N, is
given by

min
N−1

∑
i=0

Ut
i R Ui +

N−1

∑
i=0

Xt
i Q Xi + Xt

N P XN (16)

where,

Ui =

[
δ̇
a

]
∀i ∈ [0, N − 1] (17)

Xi =


[
VRe f −Vi

]
∀i ∈ [0, N − 1]

[
Ax3

i + Bx2
i + Cxi + D − yi

tan−1(3Ax2
i + 2Bxi + C

)
− ψi

]
∀i = N

(18)

Here, [xi; yi; ψi] are vehicle poses in prediction horizon (in vehicle reference frame
shown in Figure 9). NMPC cost penalties are summarized in the following table (Table 2).

Table 2. NMPC cost penalties.

R Q P

diag([1, 0.1]) 0.1 diag([50, 3])

NMPC constraints: Steer-rate constraint (actuator limitation) and acceleration con-
straint (for passenger comfort) are[

δ̇min = −20◦/s
]
≤ δ̇ ≤

[
δ̇max = +20◦/s

][
amin = −3 m/s2

]
≤ a ≤

[
amax = 1 m/s2

] (19)

Output constraints (Equation (20)) are the maximum steer, non-negative vehicle veloc-
ities, and tire friction utilization constraint, which prohibit the vehicle from utilizing road
friction beyond a threshold (µcons). This eventually limits longitudinal and lateral accelera-
tions. Considering a typical urban environment, a conservative friction limit, µcons = 0.3
is assigned to maintain the tire characteristics in the linear region for the majority of road
conditions:

[δmin = −25◦] ≤ δ ≤ [δmax = +25◦]
0 ≤ V

‖(Fx,F , Fy,F,ss)‖2
mF g ≤ µcons

‖(Fx,R , Fy,R,ss)‖2
mR g ≤ µcons.

(20)
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The optimal control problem is discretized in N = 50 intervals using discrete multiple
shooting and solved by sequential quadratic programming using the real-time NMPC
solver ACADOS [28,29].

3. Simulation Platform

A real-time driver-in-the-loop simulation test platform is developed using MATLAB
Simulink + Unity3D to emulate the network delayed vehicle teleoperation system, as
shown in Figure 1. The human operator generates steer commands using the Logitech
G920 steering wheel, which is connected to Simulink and as well as to Unity. The Simulink
output is connected to Unity to provide visual feedback through monitors. The data flow,
respective to different teleoperation modes, is mentioned in Section 2.2.

A snapshot of the visual driving interface is shown in Figure 10. It displays the
first-person view that is captured from a camera placed on the vehicle roof in the Unity
environment and some other useful information too. The camera has a horizontal and
vertical field of view (FOV) of 120◦ and 80◦ respectively. The main vehicle model consists of
a 14-dof vehicle model and Pacejka tire model with parameters of a passenger vehicle. The
powertrain is customized to be treated like an electric motor vehicle. The simulation runs
using ODE4 solver with a fixed time step of 1 ms. The Simulink ‘simulation pace block’with
sync sample time of 10 ms is included to slow down the simulation to real time. This
simulation platform is not set for distributed simulation. Instead, both the driver side and
the vehicle side are simulated in the same Simulink model on one computer, and signals are
transmitted internally without a physical communication network. Therefore, simulated
delays, either constant or varying, are added optionally to simulate a teleoperated vehicle
system with the delays of interest as discussed in Section 2.1.

Figure 10. A snapshot of simulation in SRPT mode. Using steering joystick, human operator tries to
keep the blue steer indicator on the purple trajectory. The NMPC controller inside the vehicle tries to
follow the received reference-poses.

To simulate downlink delay, delayed vehicle pose is passed to Unity (Figures 7 and 10).
Unity places the vehicle on delayed pose which simulates delayed visual feedback to
the human.

4. Human-in-the-Loop Experiments

Human-in-the-loop experiments were performed using the aforementioned simula-
tion platform to compare the performance of vehicle teleoperation with various modes
mentioned in Section 2.2 under varying delays. The experiment design, including the task
and scenarios, test setup, test procedures, and analysis methods, are described in detail in
this section.

4.1. Experiment Design
4.1.1. Scenario 1

A test track of 438 m length is created in the Unity3D environment, as shown in
Figure 11. It has six interesting regions, namely A–F.
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Figure 11. Scenario 1: Track with difficult maneuvers.

A–B is cornering, C is double lane change, D is cornering on low-adhesion (wet) road,
E is strong lateral wind with Chinese hat profile [30,31] and F is slalom. The task is to
follow the track center line. To reduce the human learning effect, during training sessions,
volunteers are asked to drive in a reversed version of the track (F to A).

4.1.2. Scenario 2

A straight track of 16m length, as shown in Figure 12, is used to simulate the avoidance
of sudden obstacles, such as falling cargo from a truck. The task is to circumvent the obstacle
and return to the previous lane (purple centerline) without entering into the opposite lane.
As this is sudden obstacle performance testing, no training session is considered. Volunteers
are asked to perform it after scenario 1.

Sudden obstacles
Appears when vehicle is in 10m range

40m
40m

50m

Direction

Vehicle

Opposite

lane traf�ic

Figure 12. Scenario 2: Sudden obstacle avoidance in urban environment.

The reference vehicle speed for all the scenarios is same, VRe f = 22 km/h. It is chosen
as such to have instances where required the steer rate approaches its limit of δ̇lim = ±20◦/s.
Thus, each experiment contains 4 (modes) × 3 (laps for each mode) runs over scenario 1
+ 4 (modes) runs over scenario 2. Each volunteer must complete a total of 16 (12 + 4) test
runs. To lessen the learning effects on a particular scenario or one mode, the order of the
runs is randomly assigned in an even distribution (Figure 13). In particular, no mode is
tested more than once in a row.
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NoDelay-1
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NoDelay-2
NoDelay-3
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Delay-2
Delay-3

Smith-1
Smith-2
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SRPT-1
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NoDelay-Lap

SRPT-2
SRPT-3

Delay-Lap
Smith-Lap

SRPT-Lap

Scenario-1 { Internally shuffled} Scenario-2
{ Internally shuffled}

Figure 13. Randomization of test runs for each volunteer.

4.2. Test Procedure

Before the test, volunteers filled out an informed consent form and provide some
basic information about themselves, including their age, driving years, kilometers driven
in last 1 year, and their level of experience driving in a virtual environment. The runs
for each volunteer are divided into training (∼15 min) and testing (∼30 min) sessions.
Training session is intended to make volunteers familiar with the track, vehicle response,
teleoperation modes, and delays present in the teleoperation loop. Since driving behavior
varies person to person, to attain at least one similarity among the volunteers, they were
verbally instructed to try to keep the steer indicator (Figure 5) aligned with the track center
line while driving. They were not informed of the whole performance metrics, which in
addition to consisting deviation from the center line, also consists of steer effort and task
completion time. For scenario 1,training was conducted with each driving mode until the
metrics between runs showed consistent performance and the volunteer felt comfortable
with the mode.

5. Results and Discussion

The simulation was run on a Desktop computer with Intel i7-7800X CPU core fre-
quency of 3.5 GHz supplemented with Nvidia GTX 1050Ti GPU. Among 18 volunteers (all
researchers), 2 volunteers had no car driving experience. One inexperienced driver (racing
video game player) completed the runs successfully while the other (not a racing video
game player) struggled in following the path given the difficult maneuvers. Therefore,
the data of only 17 volunteers are analyzed below. Some of the related information of the
volunteers are the following:

• Age group 26–31 years;
• Driving experience of 7–11 years (except the 1 inexperienced driver);
• Seven of them are familiar with racing video games.

5.1. Scenario 1

It consists of 6 different regions namely A–F. Here, the performance indices to be
monitored are rms and max deviation from the track center-line, rms and max steer, rms
steer-rate, and completion time.

Since the difficulty level of each region is different, the performance indices are
calculated region-wise. Root mean square (rms) for a particular region is computed over
the traveled distance along the center-line, as given below

Yrms =

√
1

Di,end − Di,start

∫ Di,end

Di,start

[Y(D)]2 dD (21)

where
Y—is the performance index to be observed.
D—is the distance traveled along the reference trajectory.
[i, start], [i, end]—indicates the start and end of the particular region, i.

Due to a prior training session, no improvement was found in consecutive laps for the
same teleoperation mode. Thus in the following data analysis, all three laps for each mode,
are considered to carry equal weightage. Figure 14 presents the region-wise observed
lateral deviation vs. steer by the human in the experiment. In ‘Region-A’ sub-figure,
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the data points correspond to the rms lateral deviation and rms steer angle realized in
region-A for all laps and by all drivers. Data points closer to the origin represent improved
performance, as they signify lower lateral deviation from the track center line and lower
steer requirement.
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Figure 14. Scenario 1: Lateral deviation from the center line vs. steer by human at control station.

Red points which represent ‘Delay + no control’ mode show poor performance. This
is anticipated in a teleoperated driving activity with delays as overactuation in the form
of oversteering and repeated corrections [32]. ‘NoDelay’ mode shows better performance,
which is expected, as the delays are absent. ‘Delay + Smith control’ lying between the
‘NoDelay’ and ‘Delay + no control’ mode, shows significant performance improvement.
The ‘Delay + SRPT’ mode shows the best performance, compared to all modes. A similar
trend and performance improvement with the ‘Delay + SRPT’ mode are observed in all of
the regions of the track. Lateral deviation is always significantly reduced, with a decrement
in steer effort too, especially in regions D-E-F, which are relatively aggressive maneuvers.

Figure 15 presents the mean and standard deviation of lateral-deviation data points
presented in Figure 14. SRPT mode always shows the lowest standard deviation, which
means high repeatability.

A B C D E F

0

1

2

3

Figure 15. Lateral deviation in regions vs. modes.

Figure 16 presents a holistic overview of the enhancement of performance indices
among the teleoperation modes in all regions of the track. The completion time index is
represented as ‘T’. Desired characteristics are lesser lateral deviation, lesser steer effort and
lesser completion time, which means that the smaller the shaded region in the spider plot,
the better the performance. The blue shaded region of SRPT mode encompasses smaller
area for all the regions, particularly for regions D-E. The attribute of the SRPT mode over
other modes is the regulation of vehicle speed. The SRPT mode resulted in a slight increase
in the completion time, which is because, for better reference path tracking, it moderates
the vehicle speed when required. For scenario 1, apart from the slalom (region F), the
increment in completion time is insignificant in other regions (Figure 17). Considering the
intricacies of the slalom region, an increase in completion time is justified for improved
path-tracking performance (improved safety).
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Figure 16. Scenario 1—Summary of performance indices.

Figure 17. Scenario 1—Completion time for track regions.

Table 3 reports the performance improvement of the two prime performance indices,
lateral deviation and steer effort, considering the ‘Delay + no Control’ mode as reference.
The performance improvement for a given mode is calculated as a percentage reduction in
index compared to the reference mode as given below:

Per f ormance improvement =
rRef − rmode

rRef
× 100%. (22)

where r is the mean of the respective index for the particular region of the track. For both
performance indices, the SRPT mode reports better performance improvement.

Table 3. Performance improvement in ∆Yrms and δrms. SRPT mode performance is highlighted with
blue background.

∆Yrms ⇓ δrms ⇓

Region
No-

Delay
Mode

Smith
Mode

SRPT
Mode

No-
Delay
Mode

Smith
Mode

SRPT
Mode

A 40% 54% 59% 6% 5% 12%
B 47% 59% 62% 10% 8% 16%
C 61% 71% 72% 26% 22% 31%
D 62% 50% 74% 25% 21% 37%
E 56% 22% 66% 27% 14% 52%
F 77% 72% 84% 38% 22% 39%

5.2. Scenario 2

Here, the performance indices to be monitored are the minimum safety distance from
the sudden obstacle and rms of lateral movement from the track center line. The safety
distance relates to the distance margin with which the vehicle is able to evade the collision
with obstacle. The rms of lateral movement relates to the controllability of the vehicle. More
lateral movement means more chances to enter the opposite lane, and higher difficulty to
return to the straight reference path.

Figure 18 shows the experiment result of 1 of the 17 drivers. The SRPT mode trajectory
is nearer to the no-delay mode compared to the other modes. This means better control
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over the teleoperation. This is possible because of the automatic speed moderation (by
NMPC block) in the SRPT mode when rapid steering is observed.

Obstacles

Safety distance

Figure 18. Scenario 2—Trajectories and vehicle speed profile.

Figure 19 shows the mean safe distance recorded for all 17 drivers. The SRPT mode
results in a safe distance that is comparable and even slightly more than that in the no-delay
teleoperation mode. It means that the vehicle passes farther from the obstacle, thereby
being safer.

Obs1 Obs2 Obs3
0

0.5

1

1.5

2

2.5

Figure 19. Scenario 2—Mean safe distance for all drivers.

Figure 20 shows 17 data points for each mode, which belong to 17 full runs performed
by all driver for each mode. Again, lateral movement corresponds to the distance from
the straight center line, and completion time corresponds to the time taken to traverse the
150 m path with 3 obstacles. The no-delay data points show the best performance, as they
carry less lateral movement and less completion time. Keeping safety the priority, the SRPT
mode outputs comparable lateral movement at the cost of increment in completion time,
while the rest of the modes show increments in the lateral movement, indicating risk in
entering in the opposite lane and less controllability.

25 30 35 40 45 50 55
0.5

1

1.5

2

2.5

Figure 20. Scenario 2—Performance assessment summary. At the cost of higher completion time,
SRPT mode resulted similar lateral movement as observed in No-delay mode. Lesser lateral move-
ment indicates better controllability.
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6. Conclusions

This article presents human-in-the-loop evaluation of the SRPT approach (previously
conceptualized in [23]) in vehicle teleoperation. It assesses its ability to improve vehicle
drivability/controllability in a reference path following task and safety assessment in a
sudden-obstacle-avoidance scenario. The SRPT approach relies on transmitting succes-
sive reference poses to the vehicle instead of transmitting steer commands in classical
approaches. The problem of generating reference poses in live vehicle teleoperation is at-
tempted to be solved by an innovative method of kinematic steer indicator. The successive
reference-poses are later received by the vehicle, where the NMPC block optimizes for
steer and acceleration commands. These reference poses represent the driver intent for the
maneuver. The NMPC block uses the ACADOS framework, which shows the capability to
run at 50 Hz, as the mean computation time observed is 8 ms. The optimization routine
penalizes the cross-track error and eventually decelerates the vehicle to dilate the time
window available for steering to account for saturation of the steering actuator. Human-in-
the-loop simulations with 17 volunteers and with 4 different control modes are carried out
to assess performance enhancement. The framework simulates the vehicle teleoperation
environment considering real-network-like variable delays and provides delayed visual
feedback to the human operator accordingly.

Scenario 1 simulates a classical path-tracking use case. It consists of different regions
with progressively increasing difficulty, e.g., wet terrain (region D) and strong cross wind
(region E). Performance indices considered are related to cross-track error and steer effort.
Laps traversed with SRPT mode shows evident performance enhancement compared to
laps with other modes. This indicates better controllability and human–operator confidence.

Scenario 2 simulates bypassing a sudden obstacle and returning back to a straight path.
Performance indices considered are related to net lateral movement and min safe distance
observed from the obstacle. Evidently, in the case of sudden obstacles, without reducing
speed, it is not possible to complete the track safely. Laps traversed with SRPT mode
shows the maximum achieved safety distance and lesser net lateral movement compared
to runs with other modes. Reduction in net lateral movement indicates better stability and
improved operation safety.

Future work—Moving from virtual to real world. In this work, vehicle states fed to
the NMPC block are considered known. First, in real-world experiments, a state estimator
would be required to estimate vehicle states that are given in Equation (7). Its estimation
accuracy is important for the success of the SRPT approach, e.g., over-estimation of lateral
tire forces may lead the NMPC block to choose a conservative steer. Nevertheless, the
IMU, steer encoders and speed encoders-based vehicle state estimator shows adequate
accuracy for normal street-case maneuvers [33]. Second, the vehicle must be equipped
with an emergency (stop) maneuver in case of failure of the sensor, actuator, or network.
Third, the robustness of the SRPT approach must be assessed with variation of the model
parameters, such as tire characteristics (due to wear), vehicle mass (and its distribution),
road bank angle, etc. Indices used in the result section are applicable then also to assess
performance improvement.
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