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Interior decay of solutions to elliptic equations with respect to
frequencies at the boundary

Michele Di Cristo* Luca Rondit

Abstract

We prove decay estimates in the interior for solutions to elliptic equations in diver-
gence form with Lipschitz continuous coefficients. The estimates explicitly depend on
the distance from the boundary and on suitable notions of frequency of the Dirichlet
boundary datum. We show that, as the frequency at the boundary grows, the square of
a suitable norm of the solution in a compact subset of the domain decays in an inversely
proportional manner with respect to the corresponding frequency.

Under Lipschitz regularity assumptions, these estimates are essentially optimal and
they have important consequences for the choice of optimal measurements for corre-
sponding inverse boundary value problem.
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1 Introduction

An important motivation for our study comes from elliptic inverse boundary value problems,
such as the Calderén problem. Let us consider a bounded domain Q ¢ RV, N > 2, which
is regular enough and let 7 be a positive bounded function which is bounded away from
zero and that corresponds to the background conductivity of a conducting body contained
in Q. The aim of the inverse problem is to recover perturbations of the background con-
ductivity, for example inhomogeneities, by performing suitable electrostatic measurements
at the boundary of current and voltage type. Such a problem comes from several types of
nondesctructive evaluation problems in materials, where the aim is to detect the presence
of flaws, as well as from medical imaging problems, where the aim is to detect the presence
of tumors.

Namely, if 4 is the perturbed conductivity, one usually prescribes the voltage f on the
boundary of 2 and measures the corresponding current still on the boundary, that is, yVa-v
on 0f), where v is the outer normal on 02 and #, the electrostatic potential in €2, is the
solution to the Dirichlet boundary value problem
{ div(yVa) =0 in Q

(1.1) u=f on 0f).
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By changing the Dirichlet datum f, one can perform two or more measurements. One often
assumes that the perturbation is well contained inside €2, that is, 4 coincides with the
background conductivity + in a known neighbourhood of 99, that is, outside €, a known
open set compactly contained in €.

Since [16], it has been clear that one source of instability for elliptic inverse boundary
value problems is due to the interior decay of solutions. We consider the solution u to the
Dirichlet problem in the unperturbed body, that is, with 4 replaced by the background

conductivity 7, namely

(1.2) { div(yVu) =0 in Q)

u=f on 0f).

The possibility to recover stably information on the unknown perturbation, using the addi-
tional measurement depending on the Dirichlet datum f, is directly related to the decay of
u, or Vu, in the interior of the domain €, in particular in €2, the region where the pertur-
bation may be present. Therefore it is particularly important to establish decay properties
of u in Q, depending on the Dirichlet datum f and the distance of Q from ), which is
exactly the issue we address in this paper.

In [I6], it was assumed that the domain  is By, a ball of radius 1, and the background
conductivity is homogeneous, v = 1. Then it was shown that the exponential instability of
the inverse problem of Calderén is due to the fact that solutions to (L2]) with boundary
values f given by spherical harmonics decay in the interior exponentially with respect
to the degree of the spherical harmonic itself. We note that a spherical harmonic is a
Steklov eigenfunction for the Laplacian on B; with corresponding Steklov eigenvalue given
by its degree. We also note that the degree is exactly equal to the frequency as defined
in Definition 2.8 The Weyl law on the asymptotic behaviour of Steklov eigenvalues is the
other key ingredient. We recall that p is a Steklov eigenvalue and ¢|sq is its corresponding
Steklov eigenfunction if ¢ is a nontrivial solution to

div(yV¢) =0 in Q
(1.3) { YVo-v=pp on 0N.

We also recall that, for f € H/ 2(00), f # 0, we call its frequency the number

‘f‘?{l/Z(aQ)
frequency(f) = ————=

F .

We refer to Definition 2.8 for a precise statement, here we just note that, if ¢|sq is the trace
of a nontrivial solution to (I.3)), then its frequency is essentially proportional to the Steklov
eigenvalue pu.

The ideas of [16] have been generalised to other elliptic boundary value and scattering
inverse problems in [5,[6] and to the parabolic case in [7], showing that exponential instability
unfortunately holds in all these cases.

Besides showing the instability nature of these problems, these results provide hints on
the choice of optimal measurements, where optimality may be in the sense of distinguisha-
bility as defined in [15], see also [12]. As suggested in these papers, if one has at disposal a
fixed and finite number n of measurements, one should choose the first n eigenfunctions of
a suitable eigenvalue problem involving the perturbed conductivity 4 and the background



one 7. Since the conductivity 4 is unknown, by using the arguments developed in [16] the
best choice should be to employ the first n spherical harmonics, at least when the domain
is a ball and the background conductivity is constant. In a general case, it seems reason-
able to assume that the correct replacement for spherical harmonics is given by Steklov
eigenfunctions. Indeed, the interior decay of the solution corresponding to a Steklov eigen-
function is very fast with respect to the Steklov eigenvalue, at least in a smooth case. For
example, in [14] it is shown that when 9 is C* and ~ is C° the decay is faster than any
power. Moreover, in the real-analytic case, the decay is still of exponential type, as shown
first for surfaces in [I8] and then for higher dimensional manifolds in [8]. Consequently, the
information carried by the measurements corresponding to boundary data given by high
order Steklov eigenfunctions rapidly degrades in the interior of the domain, thus it is of
little help for the reconstruction of perturbations of the background conductivity far from
the boundary.

However, from these examples it seems that the worst case scenario is when the domain
and the background conductivity are real-analyitc, because in this case the interior decay
of the solution corresponding to a Steklov eigenfunction is indeed of exponential type with
respect to the Steklov eigenvalue, or when the domain and the background conductivity are
smooth, say C'*, since the interior decay is still very fast in this case.

Here, instead, we are interested in understanding the interior decay when the domain and
the coefficients are not particularly smooth and also when f is not a Steklov eigenfunction.
In fact, in some occasions it might be very difficult to employ a Steklov eigenfunction and
we wish to show that the decay might be actually due just to the frequency of the boundary
datum f, without the much stronger assumption that f is a Steklov eigenfunction. For
example, this might be significant for the choice of optimal measurements in a partial
data scenario, that is, when data are assigned and collected only on a given portion of the
boundary.

We also wish to mention that, for the Calderén problem, the dependence of the dis-
tinguishability on the distance of Q from the boundary of €, rather than on the choice of
boundary measurements, has been carefully analysed in [10] ] in two dimensions and in
[9] in higher dimensions. Our decay estimate, since the dependence on such a distance is
explicitly given, may also be of interest in this kind of analysis of the instability.

We describe the main estimates we are able to prove, Theorems 1] and [£.21 We assume
that Q is a C"! domain and that v is Lipschitz continuous. We can also assume that v is
a symmetric conductivity tensor, and not just a scalar conductivity, or that the underlying
metric in €2 is not the Euclidean one but a Lipschitz Riemannian one. We call ® the frequency
of the Dirichlet boundary datum f € H'/ 2(09), f # 0. Whenever f has zero mean on 0,
we may use another notion of frequency, which we call lower frequency and which is given
by

If H%z(aa
lowefrequency(f) = —5———

||f||H 1/2 aQ
We refer to Definition 2.9] for a precise statement. Here we point out that, if we call ®; the
lower frequency of f, then ®; < ®. On the other hand, if ¢|sq is the trace of a nontrivial

solution to (I3]) with x> 0, then also its lower frequency is essentially proportional to the
Steklov eigenvalue .



For d > 0 small enough, we call Q¢ the set
Q= {z e Q: dist(z,09) > d}.

The first result is the following. We can find two positive constants C7 and C5, depending
on (), the Riemannian metric on it, and the coefficient v, such that if d® > C7, then the
function u solving (.2) satisfies

Vu|?
: 2 < JollVul” .
(1.4 vl < oo

We refer to Section Ml and in particular to Theorem 1], for the precise statement.

If we are interested in the decay of u instead of its gradient, when f has zero mean on
0f), we obtain an analogous result but we need to replace the frequency ® with the lower
frequency ®1. Namely, we can find two positive constants C; and Cs, depending on 2, the
Riemannian metric on it, and the coefficient -, such that if d®; > C;, then the function u
solving (.2)) satisfies

2
(1.5) / W do < (430247
We refer to Section [l and in particular to Theorem 2] for the precise statement.
As an easy consequence of (L)), under the same assumptions we obtain that, for two
positive constants C7 and Cy, depending on €2, the Riemannian metric on it, and the coef-
ficient v, if d®; > C4, then the function u solving (I.2)) satisfies

Vu|?
: 2 < Jo IVul® .
(16 vl < el

See Corollary 3] for the precise statement. We conclude that, if f = ¢|gq is the trace of a
nontrivial solution to (L3)) with x > 0, then, possibly with different constants C; and Cj,
if du > C1, then the function ¢ solving (L3)) satisfies

Ja IV

1. 2 <
(1.7 [ Ivel? < et

see Remark [4.4] for a precise statement.

Let us briefly comment on the difference between these estimates. Assuming that f €
HY2(89Q), f # 0 with zero mean on 9, since ®; < ®, we have that D in general decays
faster than H. Actually, by Corollary [4.3], we have that, as ®; grows, D decays like (I>_1<I>1_1,
that is, at least like <I>1_2, whereas H decays like <I>1_1. Moreover, if f coincides with a Steklov
eigenfunction with Steklov eigenvalue p > 0, then, up to a constant, ®, ®; and u are of the
same order, therefore for Steklov eigenfunctions we obtain a decay of order p~2, a result
which is in accord with the estimate one can prove using the technique of [14].

In fact, an indication of the optimality of our decay estimates comes from the analysis
developed in [I4] when f = ¢|sq is a Steklov eigenfunction, with positive Steklov eigenvalue
. Following the idea of the proof of [14, Theorem 1.1], it is evident that one can estimate
u(z), for any = € Q¢, by a constant times ,u_leHHl/z(aQ) provided the Green’s function
G (z,-) satisfies

(1.8) 1A (G (@ Doy 17V Ga (@) - vlimzen) < C
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where A is the so-called Dirichlet-to-Neumann map. Roughly speaking, (L8] corresponds to
an H2-bound of G (z,-) away from x, which is what one obtains assuming the conductivity
7 is Lipschitz continuous. Since ||f || ;1/2(g0) is of the order of \/u|[f|lz2(a0) = vEllull L2 (90
and, as we already pointed out, the frequency and the lower frequency of f are of the same
order of y, one can obtain an estimate that is perfectly comparable with (L3]). If one wishes
to prove a decay of higher order, like u(z) bounded by a constant times ,u_QHfHHl/z(aQ), by
the same technique of [I4], one should estimate the functions appearing in (.8]) in terms of
the H3/2(9Q) norm instead of the H'/2(9Q) norm, which corresponds to an H3-bound of
Gy (z,-) away from z. Usually Lipschitz regularity of v is not enough to infer H 3_bounds,
something like C! regularity would be required instead, therefore, under our weak regu-
larity assumptions, our estimate (L.5]) seems to be optimal even for Steklov eigenfunctions.

Another indication of the optimality of our decay estimates comes from the analysis
developed in [3]. In [3] the authors introduce the so-called penetration function and study
its properties for two dimensional domains, in particular for the two dimensional unit ball.
They are particularly interested in low regularity cases, thus they allow discontinuous con-
ductivity tensors. Their aim is to obtain estimates in homogenisation theory, but their
results can be easily interpreted as distinguishability estimates with a finite number of
boundary measurements for corresponding inverse boundary value problems. In particu-
lar, using their notation, if V,, is the space of trigonometric polynomials of degree n on
0B1(0) C R2, d € (0,1) is a constant, and A = v is a symmetric conductivity tensor which
is Lipschitz continuous, we can show that the penetration function Z(V,,, d) satisfies, for a
suitable constant C,

(1.9) Z(V,,d) < C(dn)~L.

In fact, for any f which is orthogonal to V,, in L2(92), we have that its frequency @ is at least
n+ 1 and also its lower frequency ®; is at least n+ 1. Therefore (L9) directly follows from
(LQ). Such a result considerably improves the estimate of [3, Theorem 3.4], which is however
valid for a wider class of conductivity tensors including discontinuous ones. Moreover, they
give evidence by some explicit examples that, when discontinuous conductivity tensors are
allowed, a lower bound for the penetration function is of order n~/2. It would be interesting
to match such a lower bound by an estimate like (I.4]) when ~ is discontinuous, but such
an estimate would require a completely different method from the one used here.

About the technique we developed to obtain our estimates, let us begin by considering
(L4), where we use an ordinary differential equation argument that allows us to estimate
the decay of

D@ = [ Ivul?

when d is positive, and small enough. We closely follow the so-called frequency method
introduced in [11] to determine unique continuation properties of solutions to elliptic partial
differential equations. In [I1], the local behaviour, near a point zy € ), of a solution u to
div(yVu) = 0 in Q was analysed, even in the case of a symmetric conductivity tensor
~v. A key point of the method was to reduce, locally near zg, the elliptic equation with
a symmetric conductivity tensor to an equation in a special Riemannian manifold with a
scalar conductivity. By a special Riemannian manifold we mean one whose metric can be
written in a special form in terms of polar coordinates centred at xzg. Such a reduction is
made possible by the technique developed in [2].



Here we need to perform a similar construction, the only difference, and the main nov-
elty, is that instead of considering a local modification near a point we consider a global
one near the boundary of the domain. Indeed, in order to develop our analysis, we need
that 9Q¢ depends on d smoothly enough or, equivalently, that the distance function from
the boundary is smooth enough, say C!, in a neighbourhood of the boundary. By [4], see
Theorem [2.4], this is true in the Euclidean setting provided 0 is C1! as well. In the Rie-
mannian setting a similar result is much harder to prove. On the other hand, by exploiting
the technique of [2] and suitably changing the metric near the boundary, we can reduce
to the case where the distance from the boundary, in the Riemannian metric, is smooth
enough since it coincides with the distance from the boundary in the Fuclidean metric in a
neighbourhood of 99.

We believe that such a construction, besides being crucial for the proof of our decay
estimates, is of independent interest and is one of the major achievement of the paper. The
major part of the construction is contained in Proposition and Theorem 3.9, with one
interesting application developed in Proposition B.71

Our argument is based on the notion of frequency, which we essentially take from [I1],
and which is given by

N(d) = =——=  where H(d) = / yu? do.

ond
We note that N(0) is of the same order of the frequency of the boundary datum f. We
need to compute the derivative of D and of H, a task we perform following the analogous
computations of [I1]. In particular, for D’(d) we use the coarea formula and a suitable
version of the Rellich identity which is given in Lemma Instead, we compute H'(d) by

a straightforward application of Proposition B.71
The proof of (L5 follows analogous lines of that of (IL4]) by replacing D with H and

H with
E(d) :/ yu?.
Od

However there are some additional technical difficulties to be taken care of, see the proof
of Theorem in Section [4l Moreover, the crucial link between the quotient H(0)/E(0),
which plays the role of N(0), and the lower frequency ®; is provided by the estimate of
Proposition 2171

The plan of the paper is as follows. In Section Bl we present the preliminary results that
are needed for our analysis. In particular, we first discuss the regularity of domains and of the
corresponding distance from the boundary, with the main result here being Theorem 2.4
which is taken from [4]. We also give the precise definitions of frequencies we use. Then
we review the Riemannian setting and the Dirichlet and Neumann problems for elliptic
equations in the Euclidean and in the Riemannian setting, pointing out what happens
if one suitably changes the underlying metric, see Remarks and 213l For instance,
Remark 2-T3]allows us to pass from a symmetric conductivity tensor in the Euclidean setting
to a scalar conductivity in the Riemannian one. We also briefly discuss Steklov eigenvalues
and eigenfunctions. In Section [B] we investigate the distance function from the boundary
in the Riemannian setting. Here the crucial result is Proposition which, together with
Theorem and Remark 2.12] allows us to assume, without loss of generality, that the
distance function from the boundary in the Riemannian case has the same regularity as in



the Euclidean case. Another important technical result in this section is Proposition [B.71
Finally, in Section [, we state and prove our main results, the decay estimates contained in
Theorems [£.1] and 4.2 and Corollary .31
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2 Preliminaries

Throughout the paper the integer N > 2 will denote the space dimension. For any (column)
vectors v, w € RY, (v, wy = vTw denotes the usual scalar product on RY. Here, and in the
sequel, for any matrix A, A7 denotes its transpose. For any = = (z1,...,2x) € RY, we
denote x = (2/,xy) € RN=1 x R. We let e;, i = 1,..., N, be the vectors of the canonical
base and we call 7’ the projection onto the first (N — 1) components and 7y the projection
onto the last one, namely, for any x € RY,

7-(/(1') =7 = (xl,...,xN_l) and 7TN(LZ') =IN-

For any s > 0 and any € RY, B,(z) denotes the open ball contained in RY with radius
s and center z, whereas B’,(z') denotes the open ball contained in RV~ with radius s and
center #’. Finally, for any E C R, we denote Bs(E) = |J,cp Bs(x). For any Borel E C RY
we let |E| = LN (E). We call MY XN (R) the space of real-valued N x N symmetric matrices

Sym

and by Iy we denote the identity NV x N matrix. We recall that we drop the dependence of
any constant from the space dimension N.

2.1 Regular domains and the distance from the boundary

Definition 2.1 Let © C RY be a bounded open set. Let k be a nonnegative integer and
0<a<l.

We say that Q is of class CF if for any z € 9 there exist a C*© function ¢, : RV ~1 — R
and a neighbourhood U, of x such that for any y € U, we have, up to a rigid transformation
depending on x,

y=(y,yn) €Q ifandonly if yy < duly).

We also say that Q is of class C*© with positive constants r and L if for any = € 9Q we
can choose U, = By(z) and ¢, such that ||¢z[|cr.a@v-1y < L.

Remark 2.2 If Q ¢ RY, a bounded open set, is of class C*® then there exist positive
constants r and L such that Q is of class C*® with constants r and L with the further
condition, when k > 1, that for any = € 99 we have V¢, (2') = 0.

We note that a bounded open set of class C%! is said to be of Lipschitz class and that
typically one assumes at least that k + a > 1.

Definition 2.3 Let Q € RY be a bounded open set. For any « € RY, its distance from the
boundary of € is
dist(x,0Q) = inf ||z —y|| = min ||z — y||.
(@.09) = inf [}z ~ ]| = min |}z - |
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We call ¢ : RV — R the signed distance function from the boundary of Q as follows. For
any x € RN
[ dist(x,09) ifx e,
plz) = { —dist(z,09) otherwise.

We call, for any d € R,
Ql={zeRY: () >d} and Q%= {zeRY: p(z)=d}.
Finally, for any d > 0, we call
Ud={zecQ: o) <d.

The regularity of the signed distance function from the boundary has been thoroughly
investigated in [4]. Here we are interested in particular in the case of bounded open sets of
class Cb! which is treated in [4, Theorem 5.7]. Namely the following result holds true.

Theorem 2.4 Let us fir positive constants R, r and L. Let Q C Br(0) C RN be a bounded
open set of class CYY with constants r and L. Then there exists dy > 0, depending on r and
L only, such that, if we call U = {z € RN : |p(z)| < do}, for any = € U there exists a
unique y = Pyq(x) € 02 such that

|z — Pyq(z)|| = dist(x, 092).
Moreover, @ is differentiable everywhere in U and we have
(2.1) (Vo(z)T = —v(Pyq(x)) for any z € U,

where v denotes the exterior normal to ), which we assume to be a column vector. In
particular,
IVo| =1 in U.

Finally, we have that Pyg € CO¥Y(U), with C*' norm bounded by r, L and R only, and,
through 210), we also have that p € CYH(U), with CY' norm bounded by r, L and R only.

PROOF. It easily follows by using the arguments of the proof of [4, Theorem 5.7]. d

Let us note that, under the assumptions of Theorem [24] for any 0 < |d| < do, we have
that Q7 is a bounded open set of class C1' and 9(Q?) = 9Q?. Moreover, for any = € 9(%),
if v(x) denotes the exterior normal to Q% then

(Vo(x)" = —v(z) = —v(Poa(z)).

Definition 2.5 Let Q C RV be a bounded open set. We say that A = A(x) € MYXN(R),

sym
x € Q, is a symmetric tensor in Qif A € L‘X’(Q,Mgan(R)).
We say that a symmetric tensor A in Q is Lipschitz if A € C%1(Q, Mé\;anN (R)) and that

a symmetric tensor A in Q is uniformly elliptic with constant A, 0 < A < 1, if
MNEJ1? < (A()€,€) < ATHI€|I? for almost any z € Q and any ¢ € RY.

If  is of class C1! and A is a Lipschitz conductivity tensor, we can extend A outside
Q) keeping it Lipschitz, and, in case, uniformly elliptic as well. Namely we have.



Proposition 2.6 Let us fiz positive constants R, r and L. Let Q@ C Br(0) C RY be a
bounded open set of class CY' with constants r and L. Let A be a Lipschitz symmetric
tensor in Q. Then there exists a Lipschitz symmetric tensor A in RN such that

A=A inQ and A= Iy outside Bry1(0).

Moreover, the C%' norm of A on RY depends on r, L, R and the C%! norm of A on Q.
Finally, if A is uniformly elliptic with constant X\, also A is uniformly elliptic with the same
constant \.

PrOOF. We sketch the idea of the construction. We pick dy and U as in Theorem 24 and
we first extend A in Q U U as follows. We define, for any x € QU U,

| Ax) ifz€Q
Alw) = { A(Pyo(z)) if € U\

Then we fix a cutoff function y € C°°(R) such that y is increasing, x(¢) = 0 for any
t < —3dp/4 and x(t) = 1 for any ¢t > 0. We extend A all over RY as follows. We define, for
any = € RV, B B
A(z) = x(p(2))A(z) + (1 — x(o(x))) In-

It is not difficult to check, with the help of Theorem 2.4l that such an extension satisfies
the required properties. O

2.2 Riemannian manifolds

Let us consider the following definition of a Riemannian manifold M.

Definition 2.7 Let © € RY be a bounded open set of class C''. Let G be a Lipschitz
symmetric tensor in € which is uniformly elliptic with constant A\, 0 < A < 1. For any = € €,
we denote as usual by g; ;(x) the elements of G(z) and by ¢*’(z) the elements of G™1(z),
the inverse matrix of G(x). Finally, we set g(x) = | det(G(z))|. We call M the Riemannian
manifold obtained by endowing € with the Lipschitz Riemannian metric whose tensor is
given at any z € Q by ¢; j(v)dz; @ dz;.

We finally say that G is a scalar metric if G = 01y with § € C%1(Q), that is, g; ; = 06 ;,
where §; ; is the Kronecker delta.

We recall the basic notation and properties of the Riemannian manifold M. At any point
x € Q, given any two (column) vectors v and w, we denote

(v, wypr = (G(x)v,w)

and, consequently,

lvllar = v/ {0,000 = V(G (@)v,0).
Clearly we have

VAl < Jlollar < VAol

For any u € LY(Q), we have
/ u(z)dy(x) = / u(z)\/g(x) de.
Q Q

9



If h € L'(09), with respect to the surface measure do, that is, with respect to the
(N — 1)-dimensional Hausdorff measure, then

h(z) dow (z) = / h(@) Y2 o),

09 09 o)

where, for any x € 012,
1

VG @)r(e) v(z))
v(z) being the outer normal to the boundary. We call vps(z) = a(z)G~!(z)v(z), which is the
outer normal to the boundary with respect to the Riemannian metric. In fact, ||vas(z)|la =1
and (7,vpr(z))p = 0 for any vector 7 which is tangent to 99 at the point .

At almost every = € ©, the intrinsic gradient of a function v € W1(Q) is defined by

Varu(e) = Vu(@)G @) = ¢ (0) T (w)e

alz) =

where we used the summation convention. Let us note that, for any (column) vector v
Vu(z)o = (Va(@)",0) = (Varu(@)", o)u.
Therefore,
(22) [IVaru(@)lIfy = (Varu(@)), (Varu(@)) ) ar
= (Vu())", (Varu(@))") = (Vu(@))", G z)(Vu(z))T).
Consequently,
(2.3) VAIVu(@)|| < [[Varu(@)|ar < VAZY V()]
The intrinsic divergence of a vector field X € W1(Q,RY) is defined, for almost every
x € ), by .

V()

divy X(z) = div(y/gX)(z).

For X € WHH(Q,RY), we have

/diVMX(x)dM(a;):/ (X (x),var(x))ar dopr(x).
Q

oN
Moreover, if X € WH2(Q,RY) and ¢ € W12(Q), we have that
1
NG

Finally, the following version of the coarea formula holds true. Let ¢ € C*(Q) be such
that Vi # 0 everywhere. Then for any u € L'(f2), we have

B % o (x
/Qu(x) du (@) _/R </{x€Q: ()=t} IV are(z) ||l Aoal )) "

10
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We call T = {7 : [0,1] — Q : 7 is piecewise C'}. For any curve v € T, we denote its

Euclidean length as length(y) = fol II7/(t)]] dt and, analogously, its Riemannian length as

1
lengthyy (7) = /0 I/ ()l .

We have that
VA length(v) < lengthy, () < VA~1length(y).

For any x and y € Q, we call I'(z,y) = {y € ': 7(0) = x and (1) = y} and define

d(z,y) = inf length(y) and dy(z,y) = inf length,(v).

v€l (z,y) el (z,y)
Clearly
VAd(z,y) < du(z,y) < VA-Td(,y),
whereas
(2.4) |z —yll < d(z,y) < C(Q)]|x -yl

where C'(Q2) is a constant depending on 2 only. If  satisfies the assumptions of Theorem 2.4,
then C(€2) depends on r, L and R only.

We finally define the distance from the boundary in the Riemannian case. Let ¢p7 : Q —
R as follows. For any = € Q,

oum(x) = disty (z,00) = ylébfg du(z,y) = min dm(,y).

We observe that ¢, the distance from the boundary in the Euclidean case that was defined
in Definition 2.3], satisfies

o(z) = dist(z,00) = inf d(z,y) = min d(z,y) for any z € Q
yeN yeN

and, consequently,
VAo(@) < op(z) < VA-To(z) for any z € €.
As in the Euclidean case, we adopt the following notation. For any d > 0, we define
O, ={zeQ: poy(x) >d} and 9%, ={z e Q: py(z) =d}.
Moreover, when d > 0, we call
U ={zeQ: oyx)<dl}.

We recall that Theorem [2:4] which easily follows from [4, Theorem 5.7], contains the
regularity properties of ¢, the (signed) distance function from the boundary in the Euclidean
case. For the Riemannian metric, a corresponding regularity result for ¢ is not easy to
prove. We recall that fine regularity properties of the distance function from a general subset
in a Riemannian manifold have been studied in [I7]. In the next Section [l we study the
properties of the distance function from the boundary in the Riemannian case.
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2.3 Definitions of frequencies of boundary data

Let © ¢ RY be a bounded Lipschitz domain. By domain we mean, as usual, an open and
connected set.
We define the space of traces of H!({2) functions on 9% as

HY2(00) = {f = ulgn : ue H(Q)}.

We recall that HY/2(0Q) ¢ L?(99Q), with compact immersion. By Poincaré inequality, an
equivalent norm for H'/2(9), which we always adopt for simplicity, is given by the following

(2.5) ||f||§{1/2(ag) = \|f\|%2(ag) + |f|§{1/2(ag)7

where the seminorm is given by

(2.6) o = [ V0@ da

where ug € H'(Q) is the weak solution to the following Dirichlet boundary value problem
for the Laplace equation

(2.7) { Aug=0 in Q

ug = f  on 9.

Definition 2.8 We call frequency of a function f € HY/ 2(00), with f # 0, the following
quotient

f13
(2.8) frequency(f) = L H20%) for any f € Hl/Q(OQ), f#0.

B0

We denote L2(0Q) = {¢) € L*(09) : [, 1 do = 0} and

H%(09) = {f e H'200): | fdo= 0} .

o0

We call H=/2(99) the dual to H'/2(9Q) and
H2(00) = (n € H™2(00) 2 (0.1)-1/20/2 = 0}.

By (-,-)_1/2,1/2 we denote the duality between H=12(8Q) and H'/?(99).
By Poincaré inequality, we have that

112 00y = 1F 111200y for amy f € Hi'*(99)
is an equivalent norm for H} / 2(89) and, analogously,

Il 1290y = U (0,0) 1j1pp for any € HYV2(00)

||1/1||Hi/2(60)=1

is an equivalent norm for H, 1/2 (092).
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We observe that any 7 € L?(99) is considered as an element of H~'/2(9Q) by setting
(29 (1 0) -1z = | mido for any v € H'2(00).

Moreover, if n € L2(9) then n € H;lm(@Q). It is important to note that here, and in the
definitions of L?(99) and L2(99), we use the usual (N — 1)-dimensional Hausdorff measure
on Jf). In the sequel we adopt the same convention even if € is endowed with a Riemannian
metric G which is different from the Euclidean one. This simplifies the treatment of certain
changes of variables for the Neumann problem or for the Steklov eigenvalue problem, see
Remark

Definition 2.9 We call lower frequency of a function f € Hi/2(8Q), with f # 0, the
following quotient

1122 0

(2.10) lowfrequency (f) for any f € Hi/z(aQ), f#0.

= 2
7T 2 e

Here

fll - = sup / fodo = sup / fodo.
” ”H* 1/2(89) 1 o 50

”w”Him(BQ): ¥l 17290y =1

From this definition, we immediately infer that, for any f € H ; /2 (092), with f # 0, we
have

hence

(2.11) lowfrequency(f) < frequency(f) for any f € Hi/2(8Q), f#0.

2.4 Boundary value problems for elliptic equations

Let © c RY be a bounded Lipschitz domain. We consider Dirichlet and Neumann problems
in Q for elliptic equations in divergence form, in the Fuclidean and in the Riemannian
setting.

Let A = A(x) be a conductivity tensor in €, that is, A is a symmetric tensor in  which
is uniformly elliptic with some constant A1, 0 < Ay < 1. If A = ~vIy, where v € L>®(9)
satisfies

A <7(x) < )\1_1 for a.e. z € Q,

we say that A (or 7) is a scalar conductivity.

We say that a conductivity tensor A is Lipschitz if A is a Lipschitz symmetric tensor.
Analogously, A (or ) is a Lipschitz scalar conductivity if v € C%1(€Q).

Let G be a Lipschitz symmetric tensor in €2 which is uniformly elliptic with constant A,
0 < A < 1, and let M be the corresponding Riemannian manifold on Q as in Definition 2.7

In this subsection we adopt the following assumption.

Assumption 2.10 We assume that either A is a scalar conductivity tensor, that is, A =
vIn with v € L®(Q), or G is a scalar metric, that is, G = #Iy with 8 € C%(Q).

13



For any f € HY2(99), let u € H'(Q) be the weak solution to the Dirichlet boundary
value problem

leM(AVMu) =0 in®
(2.12) { u=f on 0f).

We recall that u € H!(Q2) solves [212)) if u = f on dQ in the trace sense and
AT asu(@) (Tara) Dasdas(a) =0 for any v € HY(®),
For the sake of simplicity, we sometimes drop the transpose in the sequel, considering, with

a small abuse of notation, the gradient as a column vector.
The following remark holds true.

Remark 2.11 Let u and ug be the solution to (ZI2) and (2.7)), respectively. Then there
exists a constant c1, 0 < ¢; < 1 depending on A and A; only, such that

(2.13) / Vo ()2 do < / (A(2)V ), Varu(@))ar du () < ¢! / Vo ()| da.
Q Q Q
In fact, on the one hand, by the Dirichlet principle,
/Q (A(2)Y aru(z), Varw(@)) s dar (2) > o1 /Q IVu(@)|dz > e /Q Vo ()] da

On the other hand, correspondingly we have

/Q<A(:E)VMU(:E),VMU(:E)>M dy(x) < /(A(x)VMuo(:E),VMuo(x)>M dpr(x)

Q
< cl_l/ Vo (2)|[2 da
Q

As a consequence of Remark ZIT] we can define equivalent H'/2(9) norm and semi-
norm which are given by, for any f € H/? (092),

(214) sy = [ A@T aru), Tagua)) s dus (o),
HY*00) ~ Jq
where u solves (2.12]), and
(2.15) ”f”id/z(m) = IF1I22 o0 + ’f@l‘/z(m)-
We can also define an equivalent H /2 (0€2) norm given by, for any n € H -1/ 2(00),

”77HH21/2(89) = sup <T,71/}>—1/2,1/2'

||¢||H114/2(BQ)=1

We note that here we drop the dependence on the metric M, although the seminorm, and
thus the norms as well, clearly also depends on it.
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Analogously,

1/2
”f”Hi’/j(aQ) = ‘f‘H}qm(aQ) for any f S H*/ (89)

is an equivalent norm for Hy / 2(89) and

~1/2
HU”H71/2(89) = sup (M) _1y2,1/2 for any n € H, / (09)
A ||1/’||H1/2(am=1
*, A

is an equivalent norm for H, 1/2 (092).

For any n € H, Y 2(69), let v € H'(Q) be the solution to the Neumann boundary value
problem

divyf(AVpyv) =0 in Q
(2.16) (AV pv,var)pr =n  on 0N
Joqvdo =0.

By a solution we mean v € H'(Q2) such that v|sq € Hi/z(aQ) and that

/Q<AVMU,VM¢>M = (n,¥]oa)—1/2,1/2 for any ¢ € H'(Q).

We also note that, for simplicity and by a slight abuse of notation, we denote Au,,, =
(AV prv,vpr) pr- Such a notation is actually correct when A = Iy is a scalar conductivity.
In fact, in this case,

Ay, = Yy,

where u,,, is the (exterior) normal derivative of u with respect to {2 which, in the Rieman-
nian setting, is given by
Uy, = (Varw) ' var)ar = Vuvyy.

By Poincaré inequality and Lax-Milgram lemma, we have that there exists a unique
solution both to (ZI2) and to (ZI6). Moreover, there exists a constant ¢, 0 < c2 < 1
depending on ©, X and \; only, such that for any f € H'/2(9%)

all flurzen) < lular@) < a1 lmeeo)
and for any n € H*_l/z(aQ)

1
2l g-1200) < Ivlla@) < & Inllg-1/200)-

If Q € Br(0) is Lipschitz with positive constants r and L, the dependence of ¢5 on € is just
through the constants r, L and R.
Let A : HY/2(0Q) — H*_l/z(aQ) be the linear operator such that

A(f) = (AV v, vpy)y for any f e HY?(09)

where u solves (Z12]). Here, we mean

((AV MY, M) M Y) —1/2,172 = / (AVaru, Vard)ardar - for any o € HY2(99),
Q

15



where 1 is any H'(Q) function such that 1|sq = 1. We infer that A restricted to H 12 (092)
is invertible and both A and A~ : H;1/2(8Q) — H:/2(8§2) are bounded operators with
norms bounded by constants depending on 2, A and A; only. As usual we refer to A as the
Dirichlet-to-Neumann map and to A~! as the Neumann-to-Dirichlet map.

We are interested in eigenvalues and eigenfunctions of the Dirichlet-to-Neumann map
A, which coincides with the so-called Steklov eigenvalues and eigenfunctions. Namely, we
say that u € C and ¢ € L?(09), with ¢ # 0 are, respectively, a Steklov eigenvalue and
its corresponding eigenfunction if there exists w € H'() such that w = ¢ on 9Q and w
satisfies

(2.17) {
that is,
/Q<AVMU),VM¢>M dy = (pwloq, ¥lea)—1/2,1/2 = /aQ pwp do - for any ¢ € H'().

In other words, ¢ satisfies A(¢) = u¢. Clearly (2.17)) is satisfied by = 0 and w a constant
function. It is well-known that the Steklov eigenvalues form an increasing sequence of real
numbers

divy (AVyw) =0 in
(AV pv,var) = pw  on 0€2,

O=po<pr <p2<...<pup, < ...

such that lim, u, = +o0o. For any n > 0, we can find a corresponding eigenfunction ¢,,
normalised in such a way that [|¢n | 72(90) = 1, such that {¢y, },>0 is an orthonormal basis of
L%(99) and {¢, }nen is an orthonormal basis of L2(99). Moreover, {¢n/+/T + fin }n>0 and

{én/~/TF tin }nen are an orthonormal basis of HY/?(92) and H. 2 (092), respectively, with
respect to the H/14/ 2(89) norm. Finally, we call {1, = ¢,,/\/fin}nen and we note that it is
an orthonormal basis of Hy/ ?(89) with respect to the H i/ j (092) norm.
If o € H. i /2 (09) is a Steklov eigenfunction with eigenvalue u, and w is the corresponding
solution to ([2.I7]), then
- Joq 1o do - Jo(AV w0, Vyyw) a dyg
he Jog®?*do Joq % do 7

hence by Remark 2.11] we have, with the same constant ¢y,

(2.18) ¢1 frequency(¢) < pu < ¢! frequency(¢).

An important property of Steklov eigenfunctions is that their frequency and lower frequency
are of the same order. In fact, for g > 0 we have ¢ € Hi/z(ﬁﬁ) and, setting faQ ¢ =1,

Cl’qﬁﬁ]lm(ag) < ”¢H§{1/3(89) = U < 01_1’(25‘?1]1/2(5%2)7

therefore

A 11y < VI gy = 17 < O
and, finally,
(2.19) ¢1 lowfrequency(¢) < p < ¢j " lowfrequency (o).

Although their proofs are elementary, and actually quite similar, the next two remarks
are crucial.
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Remark 2.12 Let A be a conductivity tensor in 2 which is uniformly elliptic with some
constant A1, 0 < A\; < 1. Let G be a Lipschitz symmetric tensor in €2 which is uniformly
elliptic with constant A, 0 < A < 1, and let M be the corresponding Riemannian manifold
on . Let Assumption 2-10] be satisfied.

Let us take n; € C%1(Q) such that A\; < m < )\1_1 in Q, for some constant A\;, 0 < A\; < 1.
Let us define G = 1;G and let us consider the Riemannian manifold M obtained by endowing
Q with the Lipschitz Riemannian metric given by G.

We define

- nf—NwA,

and we note that A = A if N = 2.
Then, for any 11, 12 € H'(2) we have

/(AVM¢17VM¢2>M dy =/<AVMT/’17VM7/’2>M‘1M'
Q 0

The next remark shows that, under Assumption 210 and if A is Lipschitz, we can always
assume that the conductivity tensor is a scalar conductivity, up to changing the Riemannian
metric. For example, this applies when A is a Lipschitz conductivity tensor and the metric
is the Euclidean one. Namely we have the following.

Remark 2.13 Let A be a Lipschitz conductivity tensor in 2 which is uniformly elliptic
with some constant A1, 0 < A\; < 1. Let G be a Lipschitz symmetric tensor in €2 which is
uniformly elliptic with constant A\, 0 < A < 1, and let M be the corresponding Riemannian
manifold on €. Let Assumption 2.10] be satisfied.

We call A1 = \/gAG_1 and y; = (det Al)l/N so that A; = 711211 with det A} = 1.

If N > 2, we define A = Iy and

G = (det(A;))YN=2 47T,
If N =2, we define A = v1In and
G=AL

Let us consider the Riemannian manifold M obtained by endowing Q with the Lipschitz

Riemannian metric given by G.

Then, for any 11, 12 € H'(2) we have

/(AVM¢17VM¢2>M dn =/<AVMT/’17VM7/’2>M‘1M'
Q 0

Both for the case of Remark and the one of Remark 2.13] we infer the following
consequences.

Fixed f € H'/?(9Q), let u be the solution to (ZI2). Then u solves
div7(AVzu) =0 in Q
(2.20) { u=f on 0f.
Analogously, fixed n € H, 1/2 (092), let v be the solution to (Z.I6]). Then v solves

div 7 (AVzv) =0 in Q
(2.21) (AV v, vy)p =n on 0K
Joq vdo = 0.
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Finally, if w solves (Z.I7) for a constant y, then w solves

{ div7(AVzw) =0 in Q

(222) (AV qw,vy) 5 = pw  on 0L

We conclude this section by investigating the regularity of the solutions to (Z12]), ([216])
and (2.I7). We need stronger assumptions on the domain Q and the conductivity tensor A.
Namely we assume the following till the end of the section.

Let us fix positive constants R, r, L, Cy, C1, A and A, with 0 < A <land 0 < A < 1.
We refer to these constants as the a priori data.

Let Q € Br(0) € RY be a bounded domain of class C1! with constants r and L.

Let G be a Lipschitz symmetric tensor in 2 which is uniformly elliptic with constant A
and such that [|Gl|co. ) < Co.

Let A be a Lipschtitz conductivity tensor in €2 which is uniformly elliptic with constant
A1 and such that [|A[|cor @) < Cr.

We suppose that Assumption 2.10 holds. We note that, without loss of generality,
through Remark I3l we could just assume that A is a scalar conductivity.

The first remark is that, by standard regularity estimates for elliptic equations, if u is
any weak solution to diva(AVpru) = 0 in ©Q, then u € HZ _(€2) and the equation is satisfied
pointwise almost everywhere in €.

Here we are interested on the conditions that guarantee that our solutions are actually
belonging to H?(12).

We adopt the standard definition of H3/2(9Q), see for example [13], and by H. 3/2 (092)
we denote the elements of H%2(9Q) with zero mean on 9. Let u be the solution to (ZI2)
with boundary datum f € HY?(9Q) and v the solution to ([2.I6) with boundary datum

neH, 1 2(89). The following regularity properties hold true.

Proposition 2.14 There exist a positive constants c3, 0 < c3 < 1 depending on the a priori
data only, such that for any f € H3/2(8Q)

(2.23) esl| fllsrzon) < llullmz@) < e 1F 1 gsreon)
and for any n € Hi/z((‘)Q)
(2.24) eslnll gz on) < lvlrze) < ¢t Il en)-

In (m): we can replace ||77HH1/2({)Q) with ||77HH1/2(89)’ H77||H2/2(39) or HnHHi,/:(aQ)

As a consequence, A is bounded between Hf/2(8Q) and Hi/2(8Q), with a bounded in-
verse, and their norms are bounded by constants depending on the a priori data only.

Before sketching the proof of this standard regularity result, we state the following
important remark.

Remark 2.15 Let v € H%(Q2) be a solution to divy (AVv) = 0 in Q. Then Vo € H(Q),
therefore Vv is well-defined, in the trace sense, on 0f2. It follows that Av,,, is well-defined

for instance in L?(9Q). Moreover, using integration by parts, we conclude that for any
Y € HY(Q) we have

/(AVMU,VMldeM:/ AUVM¢dUM:/ ?’]1/Jd0'
Q 0N o0
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where

(2.25) n= gAv,,M = g(AV yv,v).

Therefore, in the Riemannian setting, the Neumann condition
Av,,, =n on 0N

is in general not valid in a pointwise or L? sense, even when both Av,,, and n are well-
defined as L%(9€) functions. The correct pointwise or L? boundary condition is given in

2.25).

PRrROOF OF PROPOSITION 2.14] This result is essentially proved in [13].
Using for instance [13] Theorem 1.5.1.2] and [I3| Theorem 1.5.1.3], with the help of
Remark 2.T5] we immediately infer that the left inequalities of (2.23]) and (2.24]) hold true.
The right inequalities of (2.23) and (2.24]) easily follow by [13, Corollary 2.2.2.4] and
[13, Corollary 2.2.2.6]. O

An important consequence of Proposition 214 for Steklov eigenfunctions is the following.

Corollary 2.16 Let ¢ € Hi/2(8§2) be a Steklov eigenfunction with eigenvalue p > 0 and
let w be the corresponding solution to ([2.17)).
Then

(226) G+ )]0 < lolheg) < 52020 + e ) 6] 2200

where ¢y is as in [2I8) and c3 is as in Proposition 214], thus they depend on the a priori
data only.

ProOF. By (2I8]), we have that

cll6l3 o0y < 1612200 < et Hlll22 00

Therefore
(1 -+ 900y < 1612 smq0m < (1 + e )82 0m-
Then the result follows by Proposition 2.14] in particular by (224 with n = u¢. O

Finally, we state and prove the following result.

Proposition 2.17 There exists a constant Co, depending on the a priori data only, such
that for any f € HY?(09Q) we have

(2.27) ullz2@) < Collfll 172060

where u is the solution to (2.12]).

Proor. Without loss of generality, we can restrict our attention to f € Hi/ 2(69) and we

can replace the H~/2(9Q) norm with the H;fl;/z(aQ) norm. Given f € Hi/2(8Q), we can
find a sequence {ay, }nen of real numbers such that

f= Z an, and |’f|’Hifj(69) = Z Q.

neN neN
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Furthermore, it is easy to infer that

11, 20 Z
neN

:w|:w

We have that

= Z Qi flnPn,

neN

IACS) H2 1/2 (09) Zanl‘n'

neN

By Proposition 2141 in particular by (2.:24]), for any f € o} / 2(89), we have that

therefore

2 2 2 2 —2
CSZanMn < HuHH?( < C3 Zanl%w
neN neN

possibly for a different constant 0 < c¢3 < 1 still depending on the a priori data only.

Let us now consider a function v € H%(Q) such that h = v|gq € bigh 2(89) In particular

h =73, cn Bntn for a suitable sequence {3, }nen of real numbers. We call ¢ the solution to
(212) with boundary datum given by h. Then

neN
If we call, for any n € N, B, = B pin, then

~ 1/2
2
Z Z Ay ~ Z «
Zn ﬁn— eN Hn Zn B%SI neN Hn neN Hn

In other words, for any v € H2(Q) with h = v|sq € Hi/2(8§2) we have

/Q<AVMU Vmv)m dM‘ < |Ifll *1/2(59) (Z

1/2
1 -
72LIU’$L> < c3 ”f”H;i‘m(@Q)”UHHz(Q)
neN
2 1
<c Iflly, 12 (00) 12/l 32 a0y < ea 111 12 (00) 0]l r2(0),

where 0 < ¢4 < 1 is a constant still depending on the a priori data only
Now, for any ¢ € L?(€), let w be the weak solution to

divyr(AVyw) = ¢  in
(2.28) (AV pyw,vpr)pr = ¢ on 092
Joqwdo =0,

where the constant c is such that

/(mcda = /Qcp(a:) dx.
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By a solution we mean w € H'() such that w|sn € Hi/2(8§2) and that

/(AVMw,VMwM = / cpdo — / o(x)Y(z)dz  for any ¢ € HY(Q).
Q o0 Q
Still by standard regularity estimates, see for instance [I3 Chapter 2], we have that

lwllzz@) < CsllellLz)

where Cj3 is a constant depending on the a priori data only.
We conclude that, for any ¢ € L?(€2),

| wladeta)da| = | [ (AVar, Daswhasdag
Q Q
< 021HfHH;}A/z(m)HwHHm) < CsCZleHH;L/z(aQ)HcpHLzm),
therefore
”uHLZ(Q) < C3CZ1HfHH;114/2(aQ)
and the proof is concluded. O

3 The distance function from the boundary

Let M be a Riemannian manifold as in Definition 2.7 We begin by investigating the con-
sequences of assuming that @ is smooth enough, namely we consider the following.

Assumption 3.1 For M, a Riemannian manifold as in Definition 2.7l we assume that there
exists dp > 0 such that ¢y € Cl’l(U]‘\iJO).

The first consequence of Assumption [3.1]is the following.
Proposition 3.2 Under Assumption 3.1, we have
(3.1) IVapllu =1 in UG,

Proor. We divide the proof into several steps.
First step. We show that Vi, is different from 0 on 0f). In fact, for any = € 9 we have

Oew ) eule = @) — (@) - ewle = )
ov(x) t—0+ t t—0+ t
> VA lim PEZ@) 3y, P @) —el@) oy
- t—0+ t t—0+ t

In the last equality we used (2T]).

Second step. We prove that |Varonm|ar <1in Uf\l}[). This follows from the obvious fact that
s is Lipschitz with Lipschitz constant 1 with respect to the distance djyy, that is,

on () — e (y)| < dar(z,y) for any z,y € Q.
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Then, let x € UJ‘\i} and let v : [0,1] — Q be a C! curve such that v(0) = x and 7/(0) = v,
with v = —v(x) if z € 0. We have

d

= (310 7)(0) = Veour(@)o = {(Vargar (@) v)r.

On the other hand,

d e (v(#) = e ((0)]
- =1
'dt(‘PM ov)(O)‘ i "
A ®.90) o S I Gleds
< lim . < [lim . 17" (O)llar = [Jvllas
Thus, for any v or for v = —v(x) if z € 0, we have

(Varonm (@) v)ar] < Nl

hence |Varon (2)|ar < 1.
Third step. By the first step and continuity, there exists di, 0 < di < dg, such that we have
0 < [[Varoar(2)|lar < 1 for any = € U

We show that ||[Varea(x)|m =1 for any z € U]C\l/}. By contradiction, we assume there
exist xg € Uf\l/}, r >0 and 0 < ¢ < 1 such that B,(zg) C UJ‘\i/} and 0 < [|[Vyem(y)|m < c
for any y € B,(zp). In particular, there exists 0 < ¢y such that yo = x9 + toVry € Br(xo)
and it satisfies the following conditions

err(yo) > our(ro) and  2dar(zo,yo) < dar(yo,y) for any y € Ui\ B, (xo).

We call h = ¢pr(yo) — o (xo) and we obviously have 0 < h < dps(xg,yp). Finally, we fix ¢

such that
1—-c

0<5<min<1, >h and  pu(yo) + ¢ < di.

Let v € T be such that ([0, 1]) C UJ‘\i/}, ~v(0) = yo, v(1) € O and

length,,(7) < pamr(yo) + ¢ < dy.

There must be sp, 0 < 59 < 1, such that o (v(s0)) = ¢ar(xo). Therefore

h=om(1(0)) = enr(v(s0)) < dar(7(0),7(s0)) < lengthy,(v([0, s0])) < h+e.
But ([0, s0])) C By(z¢), otherwise
0 < 2h < 2dpr(o,y0) < length;(v([0, s0])) < h+¢e < 2h

which leads to a contradiction. Therefore,

h = oar(1(0)) — oar(1(50)) = '— [ veutron' dt'

- \ /0 ((Taroar (V)T A (0) ar | < /0 " el () dt
= clength,;,;(v([0,s0])) < c(h+¢) <h
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which leads to a contradiction, thus [|Vasear(x)||ar = 1 for any = € Uf\l/}.
Fourth step. Let

dy =sup{d: 0<d<dyand ||Vyror(z)|ar =1 for any = € U}

By the third step we have d; < ds. If do = dp then the result is proved. Assume, by
contradiction, that dy < dp. Then, by continuity, there exists d, de < d < dy, such that
0 < |[Varen (2)|a < 1 for any o € U¢,. By the same reasoning used in the third step, we
conclude that | Vasear|[ar = 1 in Ug,, which contradicts the definition of da. O

Under Assumption B.I we have that, for any 0 < d < dy, Qﬁl\/[ is a Cb! open set and
(Q4,) = 004,. Let v denote the exterior normal to 24, on 904, and v its corresponding
one in the Riemannian setting. Then we have.

Proposition 3.3 Under Assumption BIl, for any 0 < d < dy, we have
(3.2) (Varen)T = —var on 999,

In particular this is true on O0S).

PROOF. It is clear that, for any z € 9Q%,, we have (Vou (2))T = —a(x)v(z) for some
positive constant a(z) depending on z. By the definitions of Varpar(z) and of vy (x),
we easily conclude that (Varpn(2))T = —ay(x)var(z) for some positive constant aq(x)
depending on z. Since, by Proposition B2 ||Varenm(z)|ar = |lvar(x)||ar = 1, the result
immediately follows. O

Remark 3.4 Under Assumption B if HgoMHCm(UdO) < Cy, then U is a O open set
M

with constants r1 and Ly depending on 7, L, R, dg and Cy only. This result can be obtained
by an approximation argument, namely by suitably approximating OUJ‘\iA‘,) N Q with OQ‘fVI as
d—d .

The key point is the following complementary result.
Proposition 3.5 Fized dy > 0, let f € Cl’l(Uf\l}[)) be a nonnegative function such that
IVyufllar =1 in U]C\lf and =0 on 09.

Then f = oy on U]C\l}[).

Moreover, if || f|| < Cp, we have that

CLUUR)
(3.3) |’vaH00,1(UJ‘\i/})7RN) < Cy,

with C1 depending on Cy, A and the Lipschitz constant of the metric G only.

PROOF. First of all, we note that, since f = 0 on 9Q and f > 0 in UJ‘\i/‘}, for any x € 09
we have (Vf(z))T = —a(x)v(z) for some positive constant a(z) depending on =, thus,
reasoning as in Proposition B3] (Vs f)T = —vas on 9Q. We can also easily conclude that
f>0on U]C\l}[)\ﬁQ.
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Let z € U]C\l/‘[) \OR. Fixed y € 09, let v € I'(y, ). Without loss of generality we can assume
that v([0,1]) C UJ‘\i/‘[). Then

1
f(@) = F(@) — f(y) = /0 V£ (1(5))(s) ds
1

1
- / (Varf (1 ()T 7 () ar ds < /0 /()| as ds = lengthys()-

0

We can conclude that
(3.4) f(x) <op(x) for any = € U]C\l}[).

Since V f is Lipschitz, by the definition of Vs f and the properties of G, we immediately
infer that also Vj,f is Lipschitz. Analogously, one can prove (3.3]).
For any = € UJ‘\ZO, let v, be the (maximal) solution to the Cauchy problem for the

ordinary differential equation
{ Vo = (VMf(%c))Ty

’Yx(o) =Z.
Since Vs f is Lipschitz, we have existence and uniqueness of a solution ~, for t € [0,T),
for some suitable T" > 0 depending on x, even if x € 9. Moreover, for any =z € U do,
Y (t) € U]C\l}[)\E?Q forany 0 <t <T.
Let ¢ € U]C\l}[). For any tg, t; € R such that ¢y < t; and for which ~, is defined, let us call
20 = Vz(to) and z; = 7, (t1). Then we observe that

t1

F(z1) — Flz0) = / Y (ra(5))(s) dis

to

- / (T arf ()T 74 () ar ds = lengthyy (e (o, 1)) = t1 — fo,

to

therefore dps(20,21) < f(21) — f(20). In particular, if zy € 9, then

om(21) < du(z0,21) < f(21) = f(20) = f(21),

thus, by the previous inequality (3:4]), we have par(z1) = f(21).

We claim the following result. Let di, 0 < d; < dp be such that f(x) = ¢p(z) for any
T e U;é‘; with @as(z) < di. Then there exists d such that d; < d < dg and f(x) = o (x)
for any x € U]C\lf with ¢p(z) < d.

In order to prove the claim, let us begin with the following remark, where we assume
that d; > 0. Let = € UJ‘\i} be such that ¢y (z) = f(x) = di. By the implicit function
theorem, there exist a C' function ¢, : R¥~! — R and an open neighbourhood U, of z
such that for any y € U, we have, up to a rigid transformation depending on =,

(3.5) {vete: s Saf={y=0ym el yv S 0xs)}.
Without loss of generality, up to changing U,, we can assume that
Uy ={y=0"syn) € Us: yn < 62(4)}
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is connected. We want to show that (3:5]) holds true even if we replace f with ¢,/. By (84),
it is clear that

{yeUs: ouly) >di} D{yelUs: fly)>di}={y="yn) €Us: yn > ¢2(y)}.

Moreover, by our assumption,

{yeUe: ouy) Sdiyc{yecls: f)Sdi}={y=W yn)€Us: yn < 0.(¥)}.

Since pps can not have interior local minimum points, there exists y; € U, such that
om(y1) < di. Then f(y1) < dy and y; € U, . Assume by contradiction that there exists
y2 € U, such that pp(y2) > di > f(y2). Actually, by continuity, we can always assume
that war(y2) > di > f(y2), hence that yo € U, as well. We connect y; to y2 with a smooth
curve all contained in U . There must be a point y along this curve on which ¢,/ (y) = di,
thus we obtain a contradiction since f(y) < dj.

This remark allows us to show that there exists ¢ > 0 such that dy + ¢ < dy and
fly) > dy for any y with di < ¢p(y) < di + . Assume by contradiction that there
exists yo such that di < f(yo) < em(yo) < di + /4. We note that it is well-defined
20 = Yyo(d1 — f(v0)). It happens that f(z0) = di and du(20,y0) < (f(y0) — d1) < /4,
therefore par(z0) < di+¢/2. By 34), di < va(20) but ¢ar(zp) can not be greater than dj,
otherwise f(zp) should be greater than d; as well. We conclude that ¢ps(z9) = d1, therefore
e (Yo) < @um(z0) + drr(z0,90) < di + (f(yo) — d1) = f(yo) which gives the contradiction
and proves the claim.

Let us conclude the proof by defining

dy =sup{d: 0 <d<dyand f(x) = pp(z) for any x € U]C\l/([) with pp(z) < d}.

If ds = dg the proof is concluded. If, by contradiction, do < dgy, by continuity we have that
f(x) = ¢p(x) for any x € UJ‘\i/A,0 with ¢p/(x) < dy and the claim contradicts the definition of
ds. O

We point out the following important property. Under Assumption [B.1] or equivalently
under the assumptions of Proposition B.5] for any « € UJ‘\i/‘[), let v, be the (maximal) solution
to the Cauchy problem for the ordinary differential equation

(3.6) { :jz(g) (:VJ;[‘SDM(/VIE))Tv

Then v, : [—pm(x),do — pam(x)) with vz(—pm(x)) = y € 9Q. In other words, for any
x € UJ‘\i/A,0 there exists y € 0 such that x = v,(¢n(x)) and

v () = dy(z,y) = lengthyr (7 ([0, oar (2))))-

We can then state the following result.

Corollary 3.6 Under Assumption B, or equivalently under the assumptions of Proposi-
tion B.5], we can define a coordinate system for U]C\l}[) given by T : 09 x [0,dy) — UJ‘\i/A,0 such
that for any (y,d) € 0 x [0, dy) we have T'(y,d) = v,(d). We note that, for any 0 < d < dy,
we have T(9Q x d) = Q4.

Moreover, if we assume that ||| < Cy, then T is bi-Lipschitz, that is, T and

Cl’l(UZ?)
its inverse T~ are Lipschitz, with Lipschitz constants bounded by a constant depending on

Co, do, A, the Lipschitz constant of the metric G and C(Q) as in (2.4) only.
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PRrROOF. The fact that T is injective simply depends on the uniqueness for the solution to
[B:6). We begin by showing that 7" is Lipschitz, using an argument that is related to the
continuity of solutions to ordinary differential equations with respect to the data.

First of all, as for (83]), we note that

(3.7) |’vM90MH00,1(UJ‘\i/})7RN) < Ch,

with C7 depending on Cy, A and the Lipschitz constant of the metric G only.
For any i = 1,2, let x; € UJ‘\i/A,0 and t; € [—pum(x;),do — onm(x;)). We wish to estimate
|Vas (t2) — V2, (t1)]]. By Volterra integral equation, we have that

to t1

Voo (t2) — Vo (t1) = (952 + VMSOM(’YxQ(S))dS> - (961 + VMCPM(’Yxl(S))dé’) :

0 0

We begin by considering the case t; = t5. Then

(3:8)  MVao(t1) = Yar (B < M2 — 21| + '/0 1 IV aron (Vs (8)) = Varon (va, (5))] ds

< lzg — o1 + Cy

)

/ es (8) — e (5)]] s
0

where we used (B.7). Then, by Gronwall lemma, we have that

(3.9) 17z (1) = 7y (8] < €190 |22 — 4]].

Moreover, we infer that

(3.10) | (Yas (t1) — 32) — (Y21 (1) — 1) || < C171% |29 — 21]||t1],

an inequality that will be crucial later on.
We now turn to the general case. If t; <0 < ty, or t5 < 0 < ¢y, then

(3.11) v (t2) = Yar (Bl < |Vao (B2) — @2 + [[22 — 21| + [|21 — Y2, (1) ]
17 t1
<z — a1 + \ /0 IV a0t (aa (5)) | ds /0 IV 31001 (e ()] ds

< g — w1l + VATt ] + [t2]) = |22 — 1] + VAT Ea — 1],

+

where we used (23]) and the fact that ||Vareoar|ar = 1.
Otherwise, up to swapping x1 with x9, we have 0 < t; <t or to < t1 <0, and then

(3:12)  [Jyms (t2) = Yar BN < 72 (F2) = Yo GO + 1725 (B1) — 72 (£1) ]

/ 93001 (aa () | + [ (1) = 7, (80

t1

<

< VATt = tr] + [Vea (1) = Yar (1) -
By B3) and (812) we can conclude that

(3.13) s (t2) = 7y (t1)I] < €X g — 2| + VATt — ta].
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By (BII) and BI3), it is immediate to prove that 7" is Lipschitz and that its Lipschitz
constant is bounded by a constant depending on Cjy, dg, A and the Lipschitz constant of the
metric G only.

Let us now pass to the properties of T~!. For any = € UJ‘\iJO, we have that

T7H(z) = (va(~pu(2)), par(x)) € 92 x [0, dp).

We recall that ¢, is Lipschitz, with Lipschitz constant 1, with respect to the distance dj;.
Hence we can conclude the proof using again (3.13)). O

The following technical proposition is a crucial ingredient for the proof of our main
decay estimate and it may be of independent interest as well.

Proposition 3.7 Under Assumption BIl, or equivalently under the assumptions of Propo-
sition 3.0, let H"DMHcLl(U‘iO) < Cy.

M

Let w € VVlicl(Q) and let, for any 0 < d < dy,
S(d) = / w(z) doa ().
o004,

We have that S is absolutely continuous on any compact subinterval of (0,dy) and, for
almost any d, 0 < d < dy,

(3.14) S'(d) = — o Vw(x)vy(x) dopy (x) + A(d)

_ _/ (agwla), var (@) dorvg () + A(d)
oy
where

AW <C [ Jut)|dow)

for a constant C depending on Cy, do, A and the Lipschitz constant of the metric G only.
In particular, if w > 0, then

(3.15) |A(d)| < CS(d).

Remark 3.8 If w € W11(Q), then we can define
SO = [ w@)dou() = [ wi)do(a),
o9, oQ

and we have that S is absolutely continuous on any compact subinterval of [0, dp).

PROOF. We just assume w € WH1(Q) as in Remark 3.8 since, when w € VVJ)CI(Q), the
result easily follows by the arguments we present in the sequel.
We begin by observing that, for any s, 0 < s < dy, we have

/39?&4 w(x) dop () :/ w(@)h(z) do(z)

o0,
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where

h(z) = V(G @)y (x),v(2))Vg(x).
Moreover, for any s1, s2 € [0,dp), we call Ty, 4, : 903, — 0237 the change of coordinates
such that

Ty, 55 (1) = y2(s52 — 51).

By (B3) and the fact that Ty, s, is invertible with T 1 = Ti, ,,, we deduce that Ty, , is
bi-Lipschitz, therefore

| w@dnn(o) = [ s = s))h(s2 = s0)k(a) doa)
o032 oL

where k(z) can be computed as follows. For almost every x € 0Q}}, with respect to the
(N —1)-dimensional Hausdorff measure, T, s, admits a tangential differential at z. Namely,
for any orthonormal basis v1,...,vn—1 of the tangent space to 93} at x, there exists

oT. oT.
51,52 z)-- 51,52 T

JT(J?) - JTT81,52(x) = |: 8/01 . aUN—l

Then
(3.16) k(a) = \/det ((J:(@))T ().

Let us call Ty, o, = T4y .5, — Id and let, analogously, J;(z) = J,Ts, s, (). By @I0), we infer
that for any i =1,..., N — 1,

afswz

(3.17) T(az) < 011 %|sy — 5.

Therefore, for almost every x € 0§}, again with respect to the (N — 1)-dimensional

Hausdorff measure, we call a(z, s1, s2) the number such that

h(yz(s2 — s1))
h(z) K

By using (B.I6) and (BI7) to handle k(z), it is not difficult to show that, for some
constant Cy depending on Cy, dy, A and the Lipschitz constant of the metric G only,

(x) =1+ a(x, s1,s2).

(3.18) la(x,s1,52)] < Calsg —s1| for almost every x € 00}

Then, for almost every x € 903}, or for almost every z = 7, (s2 — s1) € 9037,

wa(sz — 1)) = w(z) + /0 T V() (s) ds

S§2—S1 §2—S81
@) = [ Vel ds = w@) = [ Vol (=s)rax(=s) ds.
We call ), s, the following set
Q‘;\/{,\Qi\fl if S1 < S92
Q51782 =

Q}E\Q?\} if S9 < S1
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and we call

1 if 51 < 89
b(Sl,Sg) = 0 if S1 = S92
—1 if 51 > s9.

Then, by Fubini theorem and the coarea formula,

[ @ dou) [ wi)donte)
- /69;} w(z)a(z, s1, s2) doy () _/BQE (/OS2_51 vw(Vz(_S))VM(’YZ(—s))ds> oy ()

52

:/ . w(m)a(m,sl,SQ)daM(a:)—/ ( Vw(x)uM(a:)(l+a(a:,t,32))daM(a;)) dt
o5} s1 \/oQy,

:/ . w(x)a(x,sl,SQ)daM(m)—b(31,32)/ Vw(z)vy (x)(1+ a(zx, s, s2)) dy(x)
o0}

951,82

:/ . w(z)a(z, s1,s2) dop(x)
o0l

— b(Sl,SQ)/Q Vw(x)var(x) dyr(x) — b(Sl,SQ)/Q | Vw(x)var(x)a(z, s, s2) dyr(x)

= A(s1,s2) — B(s1,52) — C(s1,52)

where, for any x € Qj, 5, we set s = ppr(z). First of all, we deduce that

[0,dp) > s w(z) dop ()
093,

is a continuous function.
Again by coarea formula, we have that the function

[0,dy) 2 s+ B(dy/2,s) =b(dy/2,s) Vw(x)vy (x) das ()

Qdo,s
:/ < Vw(x)vp(x) daM(x)> dt
do/2 \Jo0,

is absolutely continuous, with respect to s, on any compact subinterval of [0,dy) and, for
almost every s; € (0,dp), we have

B'(dp/2,s1) = lim B(do/2,s2) — B(do/2, 51)

5251 S9 — 81

. B(s1,82
— lim B(s1,59)
$2—81 SS9 — S1

_ / V(@) doy(a).
o0}

The function

[0,do) > s > D(s) = /m w(z) dor (x) + Bldo)2, )
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is clearly Lipschitz continuous on any compact subinterval of [0,dp), therefore, for almost
every s1 € (0,dy), there exists

D'(s1) = lim M: lim A(51,82)—C(81,82)'

5281 S92 — 81 $2—S1 S92 — 81

It is easy to see that

M — 0 as sy — s
S92 — 81
and that A
Alsr52) | 02/ w(z)] doas (@).
52— 51 005}
Therefore the proof can be easily concluded. O

Our aim is to modify our metric G near the boundary of €2, by multiplying it with a scalar
function 7, in such a way that the new metric satisfies Assumption B.Il The construction is
given in the next theorem.

Theorem 3.9 Let us fix positive constants R, v and L. Let Q C Br(0) C RN be a bounded
open set of class CY' with constants r and L. Let us consider do > 0 as in Theorem 241
and ¢ the distance to the boundary of 2 as in Definition 2.3

Let G be a Lipschitz symmetric tensor in ) which is uniformly elliptic with constant A,
0 <A <1, in S and such that [|Gl|co g < C.

Then there exist a constant C1 > 0, depending onr, L, R, A\ and C' only, and a function
n € C%Y(Q), which is uniformly elliptic with constant X\ in Q and such that 1nllcor @) < C1.
such that the following holds.

Let us call G = nG and M the corresponding Riemannian manifold on Q. Let oy be the
corresponding distance from the boundary and, for any d > 0, Uj‘él ={z€Q: pyx) <d}.

Then we have that UCZO/2 = Ui;[)/z and

(3.19) o =¢ in U]Cé[)/Q.
PRrROOF. Let us define 7 : U — R such that
i = [Varglliy in UP.
By (Z3), we obtain that A <% < A~! in UCZO, and we have that
i [V arglhy =1 U,

Then we fix a cutoff function x € C*°(R) such that x is decreasing, x(t) = 1 for any
t < dp/2 and x(t) = 0 for any t > 3dy/4. We define, for any z € €,

n(r) = x(e(@))n(x) + (1 — x(p())

and we qbserve that A <n < A~ 1in Q.
Let G = nG. By construction of n and by (2.2]), we have that

Vel =1 inU%/2
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Therefore, applying Proposition with f = ¢, we conclude that, at least in a neighbour-
hood of 99, ¢ ;; = . It is not difficult to show that such a neighbourhood is actually equal

to U%/2 and that it coincides with UJ“?/ % as well.
It remains to show the Lipschitz regularity of 7 and for this purpose it is enough to show
that 7 is Lipschitz in U%. Again by ([2.2)), we infer that for any 2 € U%

() = IVae@)is = (Vo) G (2)(Ve()T).
Then we can easily conclude by exploiting the Lipschitz regularity of G and the fact that
¢ € CH1(U%) as proved in Therem 2.4l O
We conclude that G = nG constructed in Theorem 39 is a Lipschitz symmetric tensor
in © which is uniformly elliptic with constant A\; = A? in € and such that |G Hco,l(ﬁ) < (s,

with Cy depending on C, C1 and A only. Moreover, by Theorem 2.4] and (3.19), G satisfies
Assumption Bl with dy = dy/2.

4 The decay estimate

Let us fix positive constants R, r, L, Cy, C1, A and A, with0 < A< 1land 0 < Ay < 1. We
refer to these constants as the a priori data.

Let Q@ C Bgr(0) € RY be a bounded domain of class C''! with constants r and L.
Let us consider dyp > 0 as in Theorem 4] and ¢ the distance to the boundary of © as in
Definition 2.3

Let G be a Lipschitz symmetric tensor in € which is uniformly elliptic with constant A
and such that HGHco,l(ﬁ) < Cp.

Let A be a Lipschtitz conductivity tensor in €2 which is uniformly elliptic with constant
A1 and such that ||AH00,1(§) < (1.

We further suppose that Assumption [2.10] holds.

Let us fix f € HY/2(9Q), with f # 0, and let us call ® its frequency as in Definition 2.8
We assume that ® > 0, that is, f is not constant on 9. Let u € H(£2) be the solution to
(212). We recall that u € HZ,_(£2) and the equation is satisfied pointwise almost everywhere
in .

The important remark is that, without loss of generality, we can assume that the fol-
lowing fact holds.

By Remark [Z13] we can assume that

(4.1) A = yIy with v € COH(Q).

We can assume that G satisfies Assumption B.I] with some positive constant dy. Under

this assumption, we need to add do and ||| 1., (0o to the a priori data. In particular,
M

by Theorem and Remark 2.12] we can assume that

(4.2) do = do/2, U® :UJ‘\ZO and @y =¢ in U]C\l}[).

In this case, by Theorem 2.4], dy and H(’DMHClJ(UdO) depend on 7, L and R only.
M

Before stating our decay estimates, we need to set some notation. For any 0 < d < dp,
let us define

D(d) = / @ V(@) (@) and  H(d) = / ()P () do (2).

Q]\/I o9 %/I
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We recall that, for any such d, 004, = 9(Q4,) and, if ([@2) holds, Q¢ = Q¢, and 90¢ =
89%4 = 9(Q4). Moreover, by unique continuation, for example by [I1] for N > 3, and the
maximum principle, both D(d) and H(d) must be strictly positive for any 0 < d < dy. We
define the frequency function N as follows

D(d)
4. N(d) = —+ <d < dy.
(13 W= fg  0<d<d
We note that, by Remark 2.11], there exists a constant ¢1, 0 < ¢; < 1 depending on A and
A1 only, such that

(4.4) Aer® < N(0) < (Ajer) '@

where @ is the frequency of the boundary datum f.
For any s > 0 we define

(4.5) h(s) = { ?;;)—1 gZii

We note that h(0) = 1 and h is a positive O strictly decreasing function.

Theorem 4.1 Let f € Hl/z(aQ), with f # 0, and let its frequency @ be positive. Under the
previous assumptions and notation, there exist two positive constants Co and co, depending
on the a priori data only, such that, for any d, 0 < d < dy, we have

(4.6) D(d) < e“2YD(0)h(cod®).

In the next theorem, we control the decay of the function, instead of that of its gradient.

Namely, we assume that f € H} / 2(89), with f # 0, and that ®; is its lower frequency. We
recall that ®; < ®.

Theorem 4.2 Let f € Hi/2(8§2), with f # 0, and let ®1 be its lower frequency. Under the
previous assumptions and notation, there exist two positive constants Cs and c3, depending
on the a priori data only, such that, for any d, 0 < d < dy/2, we have

(4.7) H(d) < e“TH(0)h(c3d®y).

As a corollary, we obtain a higher order decay for D with respect to the lower frequency.

Corollary 4.3 Let f € Hi/z(ﬁﬁ), with f # 0, and let ®1 be its lower frequency. Under
the previous assumptions and notation, there exists a further absolute positive constant Cy
such that, for any d, 0 < d < dy/4, we have

(4.8) D(d) < %6303d/2H(0)h(C3d(1)1 /2)

h(C3dq)1/2)

h(63d¢1/2)
)\161(1(1) '

< Gie**2D(0) Aerd®
1€1 1

S C4e303d/2D(0)
Remark 4.4 If f = ¢ where ¢ is a Steklov eigenfunction with Steklov eigenvalue p > 0,
that is, u = w where w is a solution to (L3]), then the results of Theorems (.1l and and
of Corollary still hold, possibly with different constants still depending on the a priori
data only, even if we replace both ® and ®; with the Steklov eigenvalue .
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PROOF OF COROLLARY .3l We sketch the proof of the corollary. Let 0 < d < dp/4. Then
we have, by coarea formula and (4.7,

3d/2

(4.9) / yu?dy = H(t)dt < H(0)de3PY2h(c3d®, /2).

d/2 3d/2

\34 /2

Then we apply a Caccioppoli inequality. Let x € C5°(R) be an even positive function

such that x is decreasing on [0,1), x = 1 on [0,1/2] and x = 0 on [3/4, +00). We define the
function ny as follows

na(z) = x <2W> for any = € Q2

and we note that

2 _
Vuna(z) = EX/ <2W> Vuem(z) for any z € Q.

Therefore

do/2

IV ama(z)|[ar < for any x € Q\Q);

2 Q

where C' is an absolute constant.
Then

0=/’Y<VMU7VM(WI§)>MdM
Q

:/Q’YWM% Y nu) g dM+2/Q’Y<VMU7 YV vna) mung d

We obtain that
/d/2 ad 7<VMU,VMU>M77§CZM:/’7<VMU,VMu>M77§dM
\254/ Q

= —2/9’7<VMU, V una)mung dy = —Q/d/z\ﬂad/2 YV mw, Viuna) suna da

00 1/2 1/2
2 2
< i (/d/Q\QM/Q YV aru, Vru) g dM> (/Qd/Q\QSd/2 YU dM>

M M
and we conclude that

4C?

2 2

(4.10) /d/2 a2 YV aru, Varu) vmg da < o grare yu” dpy-
\ M\ M

Since

2
/3(1/4\90(1/4 Y(Varu, Vyu) v dy < /d/2 YV pw, Vo) vrng da

by (@I0) and (4£.9]), we infer that

\QBd/2

4C?

(4.11) /3d/4\Q5d/4 YV, Vuyar dyr < H(0)7€303d/2h(03d<1>1/2).
M M
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Now we consider the function ug = ung/4 and we easily prove that

| Al das <2 [ (2l Dl + 19 asmanlf) dos

M M

16C> 5
<
<2 (/{2%‘;/4\9?\21/47<VMU7VMU>MCZM+ 7 /935/4\955/4’YU dM)

2
< H(O)%e?’@d/%(q},d@l /2).

We have that wg = u — ug solves, in a weak sense,

divM(’yVde) = —diVM(’vaud) in Q%/[
wg =0 on 8&’25{/1,

from which we deduce that

[/,

M

1/2 1/2
YV arwall3 dM) < </Qd VIV aruallas dM) ;
M

hence o2
1
D(d) < H(O)%e?’@dmh(q},dfbl /2).
and the proof of (8] is concluded by taking Cy = 160C2. O

The rest of the section is devoted to the proofs of Theorems [£.1] and

We also need the following notation. We note that, since u € HZ (), for any d with
0 < d < dy, Vu is well-defined, in the trace sense, on 89?\4 and that Vu € L2(0Q%,, RN).

For any d with 0 < d < dy, and almost any z € 89‘11\/[, with respect to the (IV — 1)-
dimensional Hausdorff measure, we call u,,,(z) the (exterior) normal derivative of u at
with respect to Qﬁl\/[ in the Riemannian setting which is given by

Uy (2) = (Varu(@)", var (@) = Vu(z)vy (@).

We note that, analogously, u,,, € L? (89%) is well-defined, again in the trace sense. More-
over, using the equation and the divergence theorem, we have, for any d with 0 < d < dp,

D@ = [ @), @) dow (z).

Finally we call, for any d with 0 < d < dy,

T(d) = /an ’y(az)u%M(x) dopy(z) and F(d) = %

We note that, by a simple application of the Cauchy-Schwarz inequality, we have
F(d) > N(d) for any 0 < d < dp.

Following essentially the arguments developed in [I1], we compute the derivatives, with
respect to d, of D and H.
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By coarea formula and the properties of @7, we infer that D is absolutely continuous
on every compact subinterval contained in [0, dy) and that, for almost every d € (0, dp),

D) == [ @Vasu@)lf dos(z).

Then we use the following lemma, which is a suitable version of the Rellich identity.

Lemma 4.5 Let u € HZ (Q), v € C¥(Q) and v = (v},...,0") € COYQ,RY). Then

(4.12)  divpy (v{(Varu, Vgu) o) + 2divas (YV aprw) (Vagu, v)
= y(Varu, Varu)adivar (v) + (Vo) (Varu, Varu)ar + (Vg v)uu,
+ 2div s (Y {(Vyu, v) v Vru) — 2791’julukvf.

PRrROOF. It follows by straightforward computations. In fact, with the summation convention
and using subscripts for partial derivatives,

div s (Y(Varu, Vagu) pv) = vV yu, Vru) prdivay (v) + (ng’juluj)kvk
= Y (Vpu, Vyu) prdivag (v) + (V’yv)(gl’juluj) + ’y(Vgl’jv)uluj + ’ygl’j(ulkuj + ulujk)vk.

On the other hand,

2divpr (Y(Varu, ) pr Viru) = 2divas (YVarw) (Varu, ) pr + 29(V pru, V(Vuw))
= 2div s (YV arw) (V arw, v) ar + 295w (upo®)

= 2divy (YV pru)(Varu, v) ar + 27gl’julukvf + QVgl’julUkjvk.

Finally,

k k

1,7 _ 1,7 _ 1,7 k
Y9 wugvt = v wupv” = vg-l wpuvt,

which follows by symmetry of the Hessian matrix and by observing that ~g"’ ulkujvk =

’ygj’lujkulvk = ’ygl’julujkvk since again by symmetry ¢ghJ = g7,

Putting the three previous equality together, the lemma is proved. O

We construct a Lipschitz function v on ©Q, with values in RY, coinciding with vy in
U]C\l/([). By Remark [3:4] and Proposition 2.6] or with a much simpler argument if (4.2)) holds,
we can construct v in such a way that ||v]| CO1(@RN) 18 bounded by a constant depending on
the a priori data only.

Then we apply the Rellich identity (4.12]) in Qﬁlw, with 0 < d < dp, to our solution u and
such a function v. Namely, by the divergence theorem,

/ YV pru, Vyru)ay dopyy = YV pru, Varw) s (v, var) v doag
094, o004,

- / (v (3 (Vs V) ae) + 2divar (Y aru)(V ast, )ar) da
QM

-

divar (v(Vapru, v) pr Varu) dar + Ao(d) = 2/ yuz,  doy + Ao(d)

fu o0g,

35



where

aua) = |

In other words, for almost every d € (0, dp),

((VMU, Varw) ar(vdivar (v) + Vo) + ’y(Vgl’jv)uzUj — 2791’%1%’0?) dp -

d
M

D'(d) = —2T(d) — Ay(d).

Finally, it is not difficult to show that there exists a positive constant C, depending on the
a priori data only, such that for any d with 0 < d < dy we have

[Ao(d)] < CD(d),

consequently, for almost every d € (0, dp),

(4.13) 2F(d) - C < —
Now we turn to the computation of H . We wish to prove a similar estimate, namely
that there exists a positive constant C, depending on the a priori data only, such that for

almost every d € (0,dp),

(4.14) 2N(d) - C < —

Such a result directly follows by applying Proposition 3.7 to w = yu?. In fact, we obtain
that H is absolutely continuous on every compact subinterval contained in [0, dy) and that,
for almost any d, 0 < d < dy,

—H'(d) =2D(d) + /agd (Vy(x)var(2))u? () don (z) + A(d) = 2D(d) + Ay (d).

Again, it is not difficult to show that there exists a positive constant C, depending on the
a priori data only, such that for any d with 0 < d < dy we have

|41(d)] < CH(d),

consequently, for almost every d € (0,dp), (£14) holds.
We are now in the position to conclude the proof of Theorem 11

PrROOF OF THEOREM (.1l We use an ordinary differential equation argument, exploiting
#I3) and (@I4). With C as in ([@I3]), let us define, for 0 < d < dp,

D(d) = e~ “ID(d).

Then

D'(d) B B
B > 2F(d) = 2(F(d) — N(d)) + 2N (d).
Therefore, for any 0 < d < dp,

B _ d d
log(D(0)) — log(D(d)) > 2 /0 (F(t) — N (1)) dt +2 /0 N(t) dt.
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We call
Go(d) = 2B 7 and  G(d) = e 2N and  Gy(d) = e 2SN

and we obtain that

therefore
(4.15) D(d) < e%Go(d)D(0) = e“G(d)G(d)D(0).

Since

we infer that

(4.16) 2(F(d) — N(d)) - C < —

where C' = C + C. Let us define, for 0 < d < dy,
N(d) = e %N (d).

Then, by ([4.10), we conclude that

(d)
@ 2 2(F(d) — N(d)) > 0.

In other words, N is decreasing. We note that this is the crucial point in the argument of
[11]. However, in our case, such a property is not enough, since, in order to estimate G, we
need to control how fast N can decrease. Still by ([4.I6]), we infer that

(4.17) N(d) > e UG (d)N(0).

We note that G(0) = 1 and, since F — N > 0, G is positive and decreasing with respect

to d. We estimate G(d) by using (LI7) and the fact that G(s) > G(d) for any 0 < s < d,
obtaining that

G1(d) < e 2NOG@ Jole=Csds _ ,~b(d)N(0)G(d)

)

where

_ 2 —Cd
bd) = = (1 e ) .
We consider the auxiliary function g(x) = ze™**, x € [0, 1], with o > 0, and note that

—h
Joax. g(z) = h(a),

thus we conclude that

(4.18) D(d) < e“D(0)h(b(d)N(0)).
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Since A1c;® < N(0) and 2e=Cdog < b(d), the proof of (L6 is concluded by setting
Cy=C and ¢y = 2)\1616_éd0. O

We note that, without any control on F' — N, besides the fact that it is positive, using
this technique it is in practice impossible to improve the estimate of Theorem [£.11

We now turn to the proof of Theorem We need the following notation. For any
d € [0,dp) we define

E(d) = / yu? dyy.
af,
We note that F is a strictly positive function which is absolutely continuous on any compact
subinterval of [0, dp). Moreover, for almost any d € (0,d), we have

E@:—/ 2 dony = —H(d).
004,

We construct a Lipschitz function v; € C%1(Q,RY) coinciding with vy in U]‘\i/?/ ? and
such that [jv || CO1@RN) 1S bounded by a constant depending on the a priori data only and

”U1HM < 1 in ﬁ

Such a construction is fairly easy. We consider a C'° function x : R — R such that y is
increasing, x = 0 on (—00,3dy/5] and x = 1 on [4dy/5, +00). We can define v; with the
desired properties as follows

€1

(G(z)er, e1)

Then we have, for any d, 0 < d < dy/2,

vi(@) = x(pu (@) + (1= x(par(@))var(x) for any z € Q.

(4.19) H(d) :/ yu? daM:/ div s (yu?vy) das
0ag, s

22/d yul(Varu)™, o1) ar dM+/d divas (yo1)u? dys = 28(d) + As(d).
@ Q]\I

M

It is not difficult to show that, for some constant C; depending on the a priori data only,
we have

(4.20) |Ay(d)| < CLE(d).

We now call, for any d € [0, dy),

(4.21) -



Since K'(d) H'(d) E'(d)

K(d)  H(d) E(d)’
by [@I4) and (£21]) we infer that, for almost every d € (0, dp),

K'(d) -
3 S IN@ - K@)+ C.

(4.22) 2N(d) — K(d) —C < —

=

Analogously, since
Ki(d) H'(d) 1E'(d)

Ki(d)  H(d) 2E()’
we obtain that, for almost every d € (0, dy),

(4.23) 2N (d) — @ -C< —ﬁg) <

~—

=

—~

N
i

AN
[\
2
&
|
4
Q

We are now in the position to conclude the proof of Theorem

Proor oF THEOREM .2l In the sequel, we adopt the following normalisation, that is, we
assume that

(4.24) B(0) = 1.

It is immediate to show, with this assumption, that for any d € [0,dy) we have E(d) <1
and, consequently,

(4.25) Ki1(d) < K(d).

We now apply a similar technique we used before to estimate D to the function H.
Namely, with C' as in (£I4]), let us define, for any d € [0, dp),

H(d) = e H(d).
Then, by (£25]),

H'(d) K(d)\ , Ki(d)
i > IN(d) > <2N(d)— > >+ .

The main difference with respect to the argument for D is that, whereas it is immediate to
show that F' > N, it is not that evident that 2N > K /2. The other difference with respect

to the previous argument is that we need to use K7 instead of K itself. However, for any
d € [0,dp/2), using (£19) and calling As(d) = Aa(d)/2,

K(d) S(d) As(d)  D(d) S(d)  As(d)

N === =N - 5a B = 5@+ @ B@ )
_ 5 DdE([) ~ S%(d) = S(d)Ay(d)  Ap(d) NGO S%(d)  S(d)Az(d) Ay(d)
a H(d)E(d) B(d) H(d)E(d) H(d)E(d) E(d)’

It is easy to see that the first term




is positive, therefore, using (4.I9) and ([4.20), we obtain that

(4.26) 2N(d) — %d) _ M(d) — As(d) [1 B }A2(d)}

E(d) 2 H(d)
_ A3(d) As(d) As(d)
=M+ e Ez(d) = Mi(d) - E2(d)
where
(4.27) Mi(d) = M(d) + % >0 for any d € (0,dy/2).

We note that, by (£.20]), for any d with 0 < d < dp/2

(4.28) My(d) — Cy < 2N(d) — %d) < My(d) +Ch,

consequently, by ([423]) and calling Cy = C + C, we have, for almost any d € (0,dy/2),

(4.29) M (d) —Cy < —

For any d with 0 < d < dy/2, we have

d d
log(F(0)) — log(F(d)) > / M)t + / Ki(t) dt — Chd.
0 0
We call , , .,
Jo(d)=e 200N and J(d)=e JoM and Jy(d) =e JoFKi/?

and we obtain that

H(d) < Jo(d)H(0) < 1 (d).J1 (d) F (0),

therefore,

(4.30) H(d) < %o (d)H (0) < €207 (d).Jy (d)H (0).
For any d with 0 < d < do/2, by [@29) and since K;(0) = K (0),

(4.31) Ki(d) > e~ %20 1(d) K (0).

We note that J(0) = 1 and, since My > 0, J is positive and decreasing with respect

to d. We estimate J;(d) by using (431]) and the fact that J(s) > J(d) for any 0 < s < d,
obtaining that _

Ji(d) < e~ (E©@/2I(@ [§fem22ds _ —bd)K(0)J(d)

)

where

b(d) = 2—(112 (1-e4).
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Arguing as in the proof of Theorem Bl we conclude that, setting C3 = Cs, for any d
with 0 < d < dy/2 we have

(4.32) H(d) < “*H(0)h(b(d) K (0)).

In order to conclude the proof it is enough to show that, for some positive constant cs
depending on the a priori data only, we have for any d with 0 < d < dy/2

This is an immediate consequence of Proposition 217l O
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