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OPTIMAL 3D ORBIT CORRECTIONS IN CURVILINEAR
COORDINATES

Juan L. Gonzalo∗, and Claudio Bombardelli†

The minimum-time, constant-thrust orbit correction between two close non-coplanar
circular orbits is studied using a relative motion formulation in curvilinear coor-
dinates. The associated optimal control problem in the thrust orientation is tack-
led using the direct method to numerically solve a diverse set of problems for
varying orbital radius and inclination. Additionally, an analytical estimate for the
minimum-time inclination change maneuver is obtained. Fundamental changes
in the structure of the solution and objective function are highlighted depending
on the relation between the required radial displacement, inclination change and
available thrust.

INTRODUCTION

The increasing concern about space debris accumulation has led to the proposal of a wide variety
of Active Debris Removal missions. While substantial differences appear in the physical principles
used to manipulate the target debris (contactless manipulation using ion beams or gravity tractors,
mechanical coupling with robotic arms, nets or harpoons, etc), most of them share the need to
perform a precise rendezvous or docking maneuver with the non-cooperative and normally not
completely characterized target debris. A particular example of such a mission is provided by
LEOSWEEP (improving LEO Security With Enhanced Electric Propulsion),1 an EU-funded project
aiming at the contactless manipulation of non-cooperative targets using modified electric thrusters.
The base LEOSWEEP mission would not only require to transfer form the original orbit, be it the
injection one or the final state from a previous debris removal, but also to continuously correct
the relative position between debris and satellite. Other key missions also require precise orbit
corrections, such as cooperative rendezvous and docking maneuvers, fundamental for the operation
of the ISS, and those involving formation flying of satellites.

The practical interest of this family of maneuvers is reflected in the attention they have received
in the last decades. A detailed analytical study on the subject, including closed form solutions for
some particular conditions, can be found in the book by Marec.2 A classification of the differ-
ent regimes for the phasing problem was performed by Hall and Collazo-Perez3 using numerical
techniques. More recently, the authors of the present work have considered both analytical and
numerical techniques to analyze the planar phasing4 and radius change5 maneuvers using relative
motion formulations. The combination of analytical and numerical approaches has proven to be
synergistic: while it is not possible to fully solve the problem using the former, it provides the
physical insight to fully characterize the different regimes observed with the latter. Furthermore,
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it also serves as a means to construct approximate solutions useful for estimation or initial guess
generation.

This work deals with the minimum-time orbit correction between two close, non-coplanar,circular
orbits, assuming continuous thrust and using a non-linear relative motion formulation for the dy-
namics.6 It can be seen as the finalization of the previous works on the phasing and radius change
problems,4, 5 and as such it has a special focus on the out-of-plane component of the motion. The
formulation used to describe the dynamics yields a very compact set of equations using as variables
the radial separation, the phasing and the out-of-plane distance, and proves to be very convenient for
both the numerical and analytical analysis. Compared to the well-known Clohessy-Wiltshire equa-
tions,7 it has the advantages of better describing the orbit curvature and providing a more accurate
solution through the inclusion of non-linear terms.

The optimal control problem in the thrust orientation is treated numerically but starting from
key analytical relations to support the generation of a suitable initial guess. The first analytical
relation is concerned with the minimum-time change of inclination with unaltered orbit radius. An
exact optimal solution in closed analytical form is obtained starting from the linearized equations
of motion and therefore is valid for small inclination changes. The solution is employed to generate
the initial guess for a sequence of optimization problems in which a gradual change in orbit radius is
imposed together with the fixed inclination change. The second analytical relation is concerned with
the minimum-time change of orbital radius and was obtained in a previous work by the authors.5

The structure of the solution when going from an inclination-only problem towards an increasingly
radial-change-characterized problem is studied with an emphasis on the evolution of the minimum
maneuver time. The relation between the latter and the sum of the maneuver times required for the
inclination-only and radial-only subproblems is investigated.

PROBLEM STATEMENT AND EQUATIONS OF MOTION

The objective is to study the minimum-time orbit corrections between two close, non-coplanar
orbits. In the more general case, this implies modifying the radius, the inclination and the phasing of
the orbit. To model the problem, let us consider two objects, a leader L and a chaser C, describing
two close circular orbits of radii R and RC around a primary O with gravitational constant µ. The
chaser is the controllable spacecraft whose orbit will be modified, and the leader may represent
a real object (e.g. another spacecraft, a space debris) or a virtual one (such as the nominal final
position of the spacecraft). All the equations and variables will be expressed in non-dimensional
form, taking the following characteristic magnitudes for length, time and mass:

R , Ω−1 =

√
R3

µ
, mC ,

where mC is the mass of the chaser. Since we are studying small orbit modifications the required
propellant mass mprop can be assumed to be negligible compared to mC , and the latter is taken as
constant.

Dynamics will be described using the non-linear relative motion formulation in curvilinear coor-
dinates recently proposed by Bombardelli et al.6 Let us begin by introducing a Local Vertical-Local
Horizontal (LVLH) reference frame centered at the leader F = {L; i′, j′,k′}. The cartesian position
and velocity of the follower take the form:

r = xi′ + yj′ + zk′ , v = ẋi′ + ẏj′ + żk′ .
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The in-plane coordinates x and y can be replaced by two curvilinear coodinates θ, the angle formed
by the position vectors of chaser and leader, and ρ, the radial separation of the chaser from the orbit
of the leader. These coordinates are related as follows:

ρ = −1 +

√
(x+ 1)2 + y2 , θ = atan2 (y, 1 + x) ,

x = −1 + (1 + ρ) cos θ , y = (1 + ρ) sin θ .

Projecting the equations of motion along the radial, transversal and normal unity vectors

uρ = cos θi′ + sin θj′ , uθ = − sin θi′ + cos θj′ , uz = k′ ,

one finally reaches:

ρ̈− 2θ̇ − 3ρ = aiρ + agρ + aTρ

θ̈ + 2ρ̇ = aiθ + aTθ (1)

z̈ + z = agz + aTz

where aiρ, agρ, aiθ and agz account for the non-linear perturbation terms

aiρ = θ̇2 (1 + ρ) + 2θ̇ρ , aiθ =
2ρ̇
(
ρ− θ̇

)
1 + ρ

,

agρ = −2ρ+ 1− 1 + ρ[
(1 + ρ)2 + z2

]3/2 , agz = z − z[
(1 + ρ)2 + z2

]3/2 ,
while aTρ , aTθ and aTz correspond to the actions of the continuous-thrust engine. The thruster’s
acceleration can also be expressed through the total magnitude of the acceleration aT and a unitary
vector uT :

aT =

√(
aTρ
)2

+
(
aTθ
)2

+ (aTz )2 , uT =
[
uTρ uTθ uTz

]>
, ||uT || = 1 ,

aTρ = aTuTρ , aTρ = aTuTθ , aTz = aTuTz .

Although this representation of control is redundant, introducing one additional variable and an
algebraic restriction, it will be preferred for the numerical treatment of the problem due to its better
behavior for small values of aT .

Introducing the state vector

S =
[
ρ̇ θ̇ ż ρ θ z

]>
,

and the control vector
U =

[
uTρ uTθ uTz aT

]>
,

Eqs. (1) can be reduced to the first order system:

dS

dτ
= F (τ,S;U) , with F (τ,S;U) =



2θ̇ + 3ρ+ aiρ + agρ + aTuTρ
−2ρ̇+ aiθ + aTuTθ
−z + agz + aTuTz

ρ̇

θ̇
ż


, (2)
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where τ is the non-dimensional time. An additional equation must be imposed to the components
of the control vector to reflect the physical limit of the maximum available thrust, depending on the
representation used for control either

0 < aT < ε, (3)

or (
aTρ
)2

+
(
aTθ
)2

+
(
aTz
)2 ≤ ε2 ,

where ε is the non-dimensional nominal thruster acceleration

ε =
T

mCRΩ2

being T the nominal thrust. The linearized formulation, used in some parts of the study, is similar
to the well-known Clohessy-Wilshire equations:

dS

dτ
= F∗ (τ,S;U) , with F∗ (τ,S;U) =



2θ̇ + 3ρ+ aTuTρ
−2ρ̇+ aTuTθ
−z + aTuTz

ρ̇

θ̇
ż


. (4)

It is important to note that the only coupling between the in-plane and out-of-plane linearized equa-
tions comes from the thrust restriction expressed through Eq. (3).

The final state of the chaser is determined from the state of the leader. In general, one can consider
any arbitrary phasing ∆θ between leader and chaser in the final state, but the values of ρ, z and all
the derivatives should be zero so that the orbits of chaser and leader coincide:

S (τf ) =
[
ρ̇f θ̇f żf ρf θf zf

]>
=
[

0 0 0 0 ∆θ 0
]>

. (5)

The initial state corresponds to the original orbit of the chaser. Said orbit can be characterized by
three parameters: its inclination with respect to the leader orbit ∆i, the difference in radius with
respect to the leader orbit ∆r = (R−RC)/R, and the time since the chaser crossed the orbit plane
of the leader at the ascending node τ0. Note that the sign of ∆r indicates whether the initial orbit
is above the reference orbit, negative ∆r, or below it, positive ∆r. An additional simplification has
been made in the equations by imposing that the leader is placed along the line of nodes at τ0; this
can be done without loss of generality by defining a new virtual leader and including its phasing
with respect to the real one as part of θf . From these parameters, the initial state can be computed
as:

S (τ0) =
[
ρ̇0 θ̇0 ż0 ρ0 θ0 z0

]>
, (6)

with:

ρ̇0 =
κ sin (2n0τ0)

2
√

(1−∆ρ)
[
1− κ sin2 (n0τ0)

] ,
θ̇0 = −1 +

n0
√

1− κ
(1− κ) sin2(n0τ0) + cos2(n0τ0)

,
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ż0 =

√
κ cos(n0τ0)√

1−∆r
,

ρ0 = −1 + (1−∆r)

√
1− κ sin2(n0τ0) ,

θ0 = −τ0 + atan2
(√

1− κ sin(n0τ0), cos(n0τ0)
)
,

z0 = (1−∆r)
√
κ sin(n0τ0) ,

where:
κ = sin2 ∆i , n0 =

1√
(1−∆r)3

.

INCLINATION CHANGE SUBPROBLEM

When ∆r = 0 and no phasing is imposed the only orbit correction to be performed is an inclina-
tion change. However, the coupling between Eqs. (2) and the dependence of ρ̇0, θ̇0, ρ0 and θ0 with
∆i implies that some degree of in-plane control will be needed even in this simplified maneuver. In
cases where ∆i is small the linearized model given by Eqs. (4) can be used, uncoupling the in-plane
and out-of-plane equations; the only coupling then comes from the maximum thrust restriction. Re-
laxing this condition (i.e. neglecting the in-plane thrust requirements), the out-of-plane dynamics in
the linear approximation is described as:

z̈ + z = aTz , (7)∣∣aTz ∣∣ ≤ ε ,
with initial conditions at 0 < τ0 < 2π:

z(τ0) = z0 =
√
κ sin τ0 ,

ż(τ0) = ż0 =
√
κ cos τ0 .

Note that Eq. (7) corresponds to a forced linear oscillator. The minimum-time strategy to drive the
out-of-plane velocity to zero is to have:

aTz = −εsign (ż) ,

but in general this does not assure that z will also reach zero along with ż. Nevertheless, it is
possible to force this condition by choosing an adequate time τ0 to start the maneuver.

The solution of Eq. (7) for the proposed control between the initial time τ0 and the first control
switch (zero velocity) time τ1 is:

z (τ0 < τ < τ1) = ż0 sin (τ − τ0) + (z0 − ε) cos (τ − τ0)− ε ,
ż (τ0 < τ < τ1) = ż0 cos (τ − τ0)− (z0 − ε) sin (τ − τ0) ,

where the switching time τ1 obeys:

τ1 − τ0 =


τ∗ for ż0 (z0 − ε) > 0
π/2 for z0 = ε
τ∗ + π for ż0 (z0 − ε) < 0
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τ∗ = atan

(
ż0

z0 − ε

)
,

and the coordinate at the switching point reads:

z1 = z (τ1) = ε±
√
ż20 + (z0 − ε)2 ,

where the positive sign corresponds to the case ż0 (z0 − ε) > 0.

For the successive sections between consecutive switching points (n = 2, . . . , N) the solution is:

zn (τn−1 < τ < τn) =

=− ε±
[ż0 sin (τ − τ0) + (z0 − ε) cos (τ − τ0)]

[
±
√
ż20 + (z0 − ε)2 + (−1)n (2n− 1) ε

]
√
ż20 + (z0 − ε)2

,

with:
τn = τ1 + (n− 1)π ,

and:

zn = z (τn) = (−1)n
[
− (2n− 1) ε∓

√
ż20 + (z0 − ε)2

]
.

By imposing zn = 0 one can now derive the optimum maneuver start time τ0 to have the forced
oscillator arrive at z = 0 with zero velocity:

sin τ0 = −
[

2N (N − 1)

Θ
− Θ

2

]
, cos τ0 = −

√
1− sin2 τ0 , (8)

where

Θ =
sin ∆i

ε
> 0 , (9)

is a non-dimensional parameter quantifying the duration of the inclination change maneuver. The
total number of required cycles is:

N = 1 +

⌊
Θ

2

⌋
,

where b·c represents the floor operator, and the total maneuver time finally yields:

∆τ = π (N − 1) + τ1 − τ0 = π

⌊
Θ

2

⌋
+ τ1 − τ0 . (10)

From the definition of τ1 − τ0 it is straightforward to check that its value is bounded and always
lies between 0 and π. Consequently, for Θ < 2 the required maneuver time equals τ1 − τ0, while
for Θ � 1 it mainly depends on Θ. It is key to highlight that Θ represents the ratio between the
desired displacement and the available thrust. For a small inclination variation ∆i it is possible to
write Eq. (10) as:

∆τ ' π
⌊

∆i

2ε

⌋
+ τ1 − τ0 .
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This behavior shows important qualitative similarities with the same-orbit rephasing and the planar
radius change orbit corrections already studied by these authors.4, 5 In both cases, simple expres-
sions for the time of flight as a function of the ratio between the desired displacement and the
available thrust parameter were found, using the linearized equations of relative motion and the
Euler-Lagrange first order optimality conditions. For the phasing problem, two different regimes
where found:

∆τ '
√

4

3

|∆θ|
ε

for |∆θ| � ε ,

∆τ ' 2

√
|∆θ|
ε

for |∆θ| � ε ,

and also for the radius change maneuver:

∆τ ' |∆r|
2ε

for |∆r| � ε ,

∆τ ' 2

√
|∆r|
ε

for |∆r| � ε .

The key difference between both regimes was whether the maneuver could be completed within one
orbit or not. Furthermore, the corresponding structures of the control law and the evolution of the
state also showed fundamental qualitative differences between regimes. In the inclination change
subproblem there is no qualitative change in the control profile between both regimes, but the main
contribution to the maneuver time switches from τ1 − τ0 in the less-than-one-orbit case to πbΘ/2c
in the multiple-revolutions scenario.

These approximate solutions for the radius-only, phasing-only and inclination-only problems can
be used to generate reasonably accurate initial estimations of a maneuver. For any given case, the
profile corresponding to the most time-demanding individual subproblem should be used as a base.
Since ε is the same for all the expressions, this provides a decision criterion based on the relative
values of ∆i, ∆r and ∆θ. Furthermore, a fast estimate for the time of flight can be obtained by
adding the ∆τ estimates for each individual maneuver; the results in the following section will
show that this estimate is conservative.

NUMERICAL SOLUTION WITH DIRECT METHODS

The proposed minimum-time orbit correction between two close, non-coplanar, circular orbits is
now solved numerically for the continuous, limited thrust case, using a direct transcription method.8, 9

While the control is not restricted to constant thrust, the results show that it will naturally tend to
use all the available thrust as it is common with minimum-time problems. Furthermore, since the
mass of the maneuvering spacecraft has been assumed to be constant this problem is equivalent to
minimizing the total impulse for the transfer.

The optimal control problem (OCP) will be solved for several values of inclination and radial
displacement. While the algorithm also allows for a fixed value of θ, in order to better study the
interaction between radius and inclination change the final phasing will be set free:

−∞ < θf <∞ .

For simplicity the initial time τ0 will be fixed, taking the value which optimizes the inclination-only
linearized subproblem, Eqs. (8).

7



In order to transcribe the original, continuous problem into a discrete Non-Linear Programming
(NLP) one the trapezoidal discretization and a uniformly spaced grid of M nodes are used. The
optimization variable x is then formed by the values of state S and control U at each node of
the grid, together with the free final time τf . The grid is constructed using a normalized ‘time’
variable t defined in the range [0, 1], so the physical non-dimensional time can be expressed as
τ = τ0 + t (τf − τ0). This allows for the node positions in t to be constant while τf varies as part
of the optimization variable. Furthermore, the objective function J simply takes the form:

J = τf − τ0 ,

where τ0 is constant.

The equations of motion, Eqs. (2), are expressed as a set of non-linear equality constraints called
defect constraints using the Trapezoidal Method, a 2-stages, 3rd order Implicit Runge-Kutta scheme.
The selection of an IRK algorithm is based on their good performance for this kind of applica-
tions.8, 10 This yields a total of 6 (M − 1) defect constraints, each one involving only two adjacent
nodes. An additional set of non-linear equality constraints results from imposing the thrust orienta-
tion vector uT to be unitary, producing M extra equations each one involving the three components
of uT at the corresponding node. The Jacobian for these defect and control constraints is constructed
analytically, exploiting its strong sparsity. Since each defect constraint only depends on τf and two
neighboring nodes, and each control constraint only on one, an adequate ordering of the constraints
and the optimization variable allows to place all the non-zero elements of the Jacobian either in the
first column or in a narrow band along the main diagonal. The constraints for the OCP are finally
completed with the simple bound constraints coming from the known values of he state at τ0 and τf ,
Eqs. (6) and (5) respectively, and the maximum nominal value for the thrust acceleration, Eq. (3).

The NLP subproblem is solved numerically using Ipopt (Interior Point OPTimizer), a third-party
software package for large-scale nonlinear optimization.11 It is distributed as open source code
under the Eclipse Public License (EPL), and available from the COIN-OR initiative∗. The analytical
expressions for the objective function, the non-linear constraints and their corresponding derivatives
are fed to the algorithm as required inputs, while a choice is made for the Hessian. For small
grids (M < 300) a user-supplied Hessian is calculated numerically using finite differences of the
gradients,12 while the build-in L-BFGS update is preferred for larger grids. This decision is based
on computational cost considerations: although the former way of computing the Hessian is more
precise, requiring a smaller number of iterations to converge, the approximation given by the latter
is faster to compute and factorize. From a computational cost point of view the advantages of
the L-BFGS update outweigh those of the finite differences approximation as the number of nodes
increases, justifying a change in strategy.

The proposed transcription is probably one of the simplest that can be considered for numerically
solving an OCP using direct methods. Although this could be seen as a drawback at first, it is
actually an advantage for this study. On the one hand, the focus is in the use of a new formulation
for dynamics and the characterization of the maneuver, not the transcription itself. On the other
hand, the good results obtained using a simple method seem to indicate that further advantages
could be obtained in the future by considering more elaborated transcriptions.

The minimum-time transfer is now computed for several values of the inclination ∆i, the radial

∗http://www.coin-or.org/
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Figure 1. Time of flight as a function of the radial displacement and the inclination
change for a non-dimensional thrust parameter of 0.01.
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Figure 2. Time of flight as a function of the inclination change for several radial
displacements and a non-dimensional thrust parameter of 0.01.

displacement ∆r and the thrust parameter ε. In all cases the final, or reference, orbit is defined as

R = 7000 km , Torb = 97.142 min , Ω = 1.078 10−3 rad/s ,

where Torb is the orbital period of said orbit. Several inclinations between 0 and 2 degrees are
considered, while the radial displacement varies in the 0 to 100000 meters range (corresponding to
0 ≤ ∆r ≤ 1.429 10−2 ). The NLP problem is solved iteratively, starting with a fast approximation
computed for a coarse grid (50 to 300 nodes) and an initial guess constructed from the analytical
results previously presented. This first approximation is then used as initial guess for a finer grid,
and the process continues until an accurate enough optimum is obtained.

Figures 1-4 show the results obtained for a thrust parameter of ε = 10−2, which corresponds
to a thrust acceleration of one hundred of the local gravity at the final orbit (for a 1 kg spacecraft,
this amounts to 81.35 mN). While this value is high from a physical point of view, so are the
required displacements in inclination and radius. In all cases, this allows to perform the maneuver
within one orbital revolution. The time of flight as a function of the radial displacement and the
inclination change is represented in Figures 1-3. Considering the evolution of ∆τ with ∆r first,
Figure 3, it is observed that the slope with ∆r decreases as ∆i increases. Likewise, Figure 2 reveals
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Figure 6. Radial, angular and out-of-plane curvilinear coordinates and their deriva-
tives for two optimal orbit corrections with ε = 0.01 and ∆R = 29.7 km; left figure
corresponds to ∆i = 2 deg and right figure to ∆i = 0 deg.
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Figure 7. Thrust control law and state evolution for an orbit correction with ε = 0.01,
∆R = 29.7 km and ∆i = 0.7 deg.
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that the curves of ∆τ as a function of ∆i for different values of ∆r get closer as the inclination
change increases. This supports the intuitive idea that the simultaneous change of orbital radius and
inclination presents some synergy, with the available thrust being distributed according to which
are the more efficient parts of the orbit to modify each element. To quantify this effect, a synergy
coefficient σ is proposed as follows:

∆τ =
∆τr + ∆τi

1 + σ
⇒ σ =

∆τr + ∆τi
∆τ

− 1 , (11)

where ∆τr is the time needed for the radius-only (∆i = 0) maneuver and ∆τi is the time for the
inclination-only (∆r = 0) maneuver. Logic dictates that σ should lie between 0 and 1. Nega-
tive values of σ would indicate that the combined maneuver take more time than performing two
dedicated maneuvers for ∆r and ∆i, while values of σ greater than 1 would lead to the combined
maneuver being shorter than the dedicated maneuvers. Figure 4 shows the evolution of σ with ∆i
and ∆r for the considered value of ε. It is straightforward to check that σ goes to zero for the
inclination-only and radius only maneuvers, while it presents its maximum value for a ridge along
the cases where ∆τi and ∆τr are equal (marked with a black line in the figures). In other words,
as the relative weights of the radius and the inclination changes in the total maneuver become more
similar, the synergy factor increases.

The maximum σ ridge in the previous plots also serves to separate the radius-dominated cases
from the inclination-dominated ones. Figures 5-6 illustrate the differences in the trajectory and
control laws for two transfers situated at different sides of said ridge. Both cases correspond to a
radial displacement of 29.7 km, but while the first one is coplanar the second includes a 2 degrees
inclination change. The out-of-plane thrust profiles, Figure 5, show that the zero-inclination ma-
neuver devotes only a small fraction of the available thrust to inclination modifications, while the
high-inclination maneuver clearly resembles the bang-bang structure predicted by the inclination-
only analytical solution. The behavior is reversed for the in-plane thrust components aTρ and aTθ ,
also in Figure 5, with aTρ being dominant compared to the other two for the zero-inclination maneu-
ver. Similar trends are observed in the evolutions of the state, represented in Figure 6. Finally, it
is also interesting to consider a case in the maximum σ region. Figures 7 show the minimum-time
transfer for ∆R = 29.7 km and ∆i = 0.7 deg. Contrary to the previous examples, the available
thrust is more evenly distributed between its in-plane and out-of-plane components, although their
qualitative behaviors loosely resemble their dominant-case profiles. The variations of the different
elements of the state also show comparable orders of magnitude along the transfer.

Moving towards smaller, and more typical, values of the thrust parameter, Figures 9-12 show the
times of flight for ε = 0.001 and ε = 0.0001 respectively. The same ranges of radial displacement
and inclination change studied so far are used for the former, while smaller values of the inclination
are considered for the latter. The overall behavior is similar to the ε = 0.01 case, although the evo-
lution of time with ∆i is smoother, without the steep increase shown by that family of maneuvers
around ∆i = 1.1 deg. Furthermore, most of the transfers now take more than one orbit to complete.
The synergy coefficient, Figures 11-12, also behaves similarly, with the minimum σ rift displaced
towards higher values of the radial displacement. Finally, Figures 8 depict a multi-revolution trans-
fer for ε = 0.001, ∆R = 100 km and ∆i = 1.0 deg. Clearly repetitive patterns are observed
for the state and control, which show the same structures previously discussed. It is interesting
to highlight that the maximum values of the in-plane components of thrust concentrate around the
zero-crossings of the nearly-bang-bang out-of-plane thrust profile, illustrating the thrust-distribution
strategies which lead to good synergy coefficients (in this case σ = 0.2609).
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Figure 8. Thrust control law and state evolution for an orbit correction with ε =
0.001, ∆R = 100.0 km and ∆i = 1.0 deg.
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Figure 10. Time of flight as a function of the radial displacement and the inclination
change for a non-dimensional thrust parameter of 0.0001.
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nation change for a non-dimensional thrust parameter of 0.001.
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Figure 12. Synergy factor as a function of the radial displacement and the inclination
change for a non-dimensional thrust parameter of 0.0001.

CONCLUSION

The minimum-time continuous-thrust orbit correction between two close, non-coplanar, circular
orbits has been studied, using a non-linear relative motion formulation in curvilinear coordinates and
the direct method. An analytical solution for the minimum-time change of inclination with unaltered
orbit radius has been obtained in closed form for the linearized problem, providing an expression
of the required maneuver time and qualitative insight about the optimal thrust profile. The ratio of
the required inclination change and the available thrust has been identified as the main driver of
the maneuver time, and the thrust profile shows a bang-bang structure. These results complement
the similar studies already performed by the authors for the phasing and radius change problems.
The complete optimal control problem has been numerically solved for several values of inclination
and radial displacement, validating the previous time estimates and showing their suitability as
initial guesses generators. A synergistic behavior between inclination and radius change has been
observed and quantified by comparing the total maneuver time with the sum of the times required
for the inclination-only and radius-only maneuvers, showing that this synergy reaches its maximum
when the times for the individual maneuvers are equal.
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