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Abstract
We propose an efficient, accurate, and robust implicit solver for the incompress-
ible Navier–Stokes equations, based on a DG spatial discretization and on the
TR-BDF2 method for time discretization. The effectiveness of the method is
demonstrated in a number of classical benchmarks, which highlight its superior
efficiency with respect to other widely used implicit approaches. The parallel
implementation of the proposed method in the framework of the deal.II soft-
ware package allows for accurate and efficient adaptive simulations in complex
geometries, which makes the proposed solver attractive for large scale industrial
applications.
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1 INTRODUCTION

The efficient numerical solution of the incompressible Navier–Stokes equations is one of the most relevant goals of com-
putational fluid dynamics. A great number of methods have been proposed in the literature, see for example, among many
others, the reviews in References 1,2. Since the seminal proposals,3,4 projection methods5 have become very popular for
the time discretization of this problem. Several spatial discretization approaches have been proposed and finite volume
techniques using unstructured meshes6 have become the state of the art for industrial applications, in particular when
implemented in parallel software packages like OpenFoam.7-9 Indeed, in previous work by one of the authors,10 a wide
range of projection methods was implemented in OpenFoam and their performance was compared, as a preliminary step
towards the development of a computational fluid dynamics tool for combustion simulations of industrial interest. On the
other hand, high order finite elements, both in their continuous and discontinuous versions,11,12 have gained increasing
popularity in the academic community and also in many applications, but are still far from being the reference tool for
industrial use. More specifically, Discontinuous Galerkin methods for the Navier–Stokes equations have been proposed
by many authors, we refer for example to References 13-18.

In this work, we seek to combine, on the one hand, accurate and flexible discontinuous finite element spatial dis-
cretizations, and on the other hand, efficient and unconditionally stable time discretizations, following an approach that
has been shown to be quite successful for applications to numerical weather prediction in References 19,20. Building
on the experience of Reference 10, we propose an accurate, efficient and robust projection method, based on the second
order TR-BDF2 method.19,21,22 This solver is implemented using discontinuous finite elements, in the framework of the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons, Ltd.

1484 wileyonlinelibrary.com/journal/fld Int J Numer Meth Fluids. 2022;94:1484–1516.

https://orcid.org/0000-0002-7119-4231
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ffld.5098&domain=pdf&date_stamp=2022-05-19


ORLANDO et al. 1485

numerical library deal.II,23 in order to provide a reliable and easily accessible tool for large scale industrial applications.
It is important to remark that time discretizations of the Navier–Stokes equations based on accurate implicit solvers have
been proposed in a number of papers, see among many others.24-28 The specific combination of techniques presented in
this work does not entail major conceptual novelties with respect to any of the above references, but we claim that it con-
stitutes an optimal combination for the development of a second order h-adaptive flow solver that can be competitive
for industrial applications with more conventional finite volume techniques. Furthermore, while the TR-BDF2 method
is only second order in time, the wide range of simulations presented in Reference 19 show that this method still allows
to achieve quite accurate results even when coupled to higher order discretizations in space. The article is organized as
follows: the time discretization approach is outlined and discussed in Section 2. The spatial discretization is presented
in Section 3. Some implementation issues, the validation of the proposed method and its application to a number of sig-
nificant CFD benchmarks are reported in Section 4. Some conclusions and perspectives for future work are described in
Section 5.

2 THE NAVIER–STOKES EQUATIONS AND THE TIME DISCRETIZATION
STRATEGY

Let Ω ⊂ Rd
, 2 ≤ d ≤ 3 be a connected open bounded set with a sufficiently smooth boundary 𝜕Ω and denote by x the

spatial coordinates and by t the temporal coordinate. We consider the classical unsteady incompressible Navier–Stokes
equations, written in non-dimensional form as:

𝜕u
𝜕t
+ ∇ ⋅ (u⊗ u) + ∇p = 1

Re
Δu + f,

∇ ⋅ u = 0, (1)

for x ∈ Ω, t ∈ (0,T], supplied with suitable initial and boundary conditions. Here T is the final time, u is the fluid velocity,
p is the pressure divided by density and Re is the Reynolds number, which is usually defined as Re = UL∕𝜈, where U
denotes a reference value of the velocity magnitude, L a reference length scale and 𝜈 the fluid kinematic viscosity. The
velocity u and the pressure p are coupled together by the incompressibility constraint in (1), which leads, after space
discretization, to a system of differential and algebraic equations whose numerical solution presents several difficulties
widely discussed in the literature. Furthermore, in the specific case of projection methods, difficulties arise in choosing
the boundary conditions to be imposed for the Poisson equation which is to be solved at each time step to compute the
pressure, see for example, the discussion in Reference 5.

An alternative that allows to avoid or reduce some of these problems is the so-called artificial compressibility formula-
tion, originally introduced in Reference 29 and employed in References 30,31 among many others. In this formulation, the
incompressibility constraint is relaxed and a time evolution equation for the pressure is introduced, which is characterized
by an artificial sound speed c, so as to obtain

𝜕u
𝜕t
+ ∇ ⋅ (u⊗ u) + ∇p = 1

Re
Δu + f

1
c2
𝜕p
𝜕t
+ ∇ ⋅ u = 0. (2)

For the sake of simplicity, we shall only consider f = 0 and Dirichlet boundary conditions for the velocity, that is,
u|𝜕Ω = uD(t), while we consider homogeneous Neumann boundary conditions for the pressure. While most commonly
discretized by explicit methods, see for example, References 32,33 among many others, implicit methods have also been
applied to this formulation, see for example, References 34-36.

Our goal here is to extend the projection method based on the TR-BDF2 scheme introduced in Reference 10 for the
formulation (1) to the time discretization of system (2). This allows to avoid the introduction of stabilization parameters
and to exploit the special properties of the TR-BDF2 method, which will be reviewed here briefly. Our development is also
inspired by the first order semi-implicit methods,37,38 which were proposed originally for the compressible Navier–Stokes
equations but which could also be applied in the pseudo-incompressible case. Introducing a discrete time stepΔt = T∕N
and discrete time levels tn = nΔt, n = 0, … ,N, for a generic time dependent problem u′ = (u) the incremental form
of the TR-BDF2 method can be described in terms of two stages, the first from tn to tn+𝛾 = tn + 𝛾Δt and the second from
tn+𝛾 to tn+1, which can be written as:
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1486 ORLANDO et al.

un+𝛾 − un

𝛾Δt
= 1

2


(
un+𝛾) + 1

2


(
un) (3)

un+1 − un+𝛾

(1 − 𝛾) Δt
= 1

2 − 𝛾


(
un+1) + 1 − 𝛾

2 (2 − 𝛾)


(
un+𝛾) + 1 − 𝛾

2 (2 − 𝛾)


(
un)

.

Here, un denotes the approximation at time n = 0, ...,N. Notice that, in order to guarantee L-stability, one has to
choose 𝛾 = 2 −

√
2. This second order implicit method, originally introduced in Reference 21 as a combination of the

Trapezoidal Rule (or Crank–Nicolson) method and of the backward differentiation formula method of order 2, has been
fully analyzed in Reference 22. While we will use here its original formulation, the method was shown in Reference 22 to
be an L-stable Explicit first step, Diagonally Implicit Runge Kutta method (ESDIRK). Explicit methods that complement
TR-BDF2 as second order IMEX pairs have been introduced in Reference 39 and successfully employed in References
40,41. Unconditionally strong stability preserving extensions of TR-BDF2 have been derived in Reference 42. While the
third order method that constitutes an embedded pair with TR-BDF2 is only conditionally stable, see the discussion
in Reference 22, a first order embedded method is derived in Reference 43, thus allowing for efficient time adaptation
strategies. Finally, the analysis presented in Reference 44 shows that the method is optimal among second order methods
for typical structural mechanics equations, thus making it an excellent candidate also for applications to fluid-structure
interaction problems. While we do not pursue these developments in the present work, we would like to highlight these
features as strong motivations for our specific choice of the time discretization method.

Following then the projection approach described in Reference 10 and applying method (3) to system (2), the
momentum predictor equation for the first stage reads:

un+𝛾,∗ − un

𝛾Δt
− 1

2Re
Δun+𝛾,∗ + 1

2
∇ ⋅

(

un+𝛾,∗
⊗ un+ 𝛾

2

)

=

1
2Re

Δun − 1
2
∇ ⋅

(

un
⊗ un+ 𝛾

2

)

− ∇pn (4)

un+𝛾,∗|𝜕Ω = un+𝛾
D .

Notice that, in order to avoid solving a nonlinear system at each time step, an approximation is introduced in the
nonlinear momentum advection term, so that un+ 𝛾

2 is defined by extrapolation as

un+ 𝛾

2 =
(

1 + 𝛾

2 (1 − 𝛾)

)

un − 𝛾

2 (1 − 𝛾)
un−1

.

Alternatively, un+ 𝛾

2 can be replaced by un+𝛾,∗ in the left hand side and by un in the right hand side of (4), respectively, and
un+𝛾,∗ can be determined by fixed point iteration. Numerical experiments show that this fully nonlinear formulation is
necessary to achieve accurate results for larger Courant number values, see the discussion in Section 4. Following,45 we
set then 𝛿pn+𝛾 = pn+𝛾 − pn and impose

un+𝛾 − un+𝛾,∗

𝛾Δt
= −∇𝛿pn+𝛾

1
c2
𝛿pn+𝛾

𝛾Δt
+ ∇ ⋅ un+𝛾 = 0. (5)

Substituting the first equation into the second in (5), one obtains the Helmholtz equation

1
c2𝛾2Δt2 𝛿pn+𝛾 − Δ𝛿pn+𝛾 = − 1

𝛾Δt
∇ ⋅ un+𝛾,∗

, (6)

which is solved with the boundary condition∇𝛿pn+𝛾 ⋅ n|𝜕Ω = 0.Once this equation is solved, the final velocity update for
the first stage un+𝛾 = un+𝛾,∗ − 𝛾Δt∇𝛿pn+𝛾 can be computed. Notice that the previous procedure is equivalent to introducing
the intermediate update un+𝛾,∗∗ = un+𝛾,∗ + 𝛾Δt∇pn, solving

1
c2

pn+𝛾

𝛾2Δt2 − Δpn+𝛾 = − 1
𝛾Δt

∇ ⋅ un+𝛾,∗∗ + 1
c2

pn

𝛾2Δt2 , (7)
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ORLANDO et al. 1487

and then setting un+𝛾 = un+𝛾,∗∗ − 𝛾Δt∇pn+𝛾 . The second TR-BDF2 stage is performed in a similar manner. We first define
the second momentum predictor:

un+1,∗ − un+𝛾

(1 − 𝛾) Δt
− a33

Re
Δun+1,∗ + a33∇ ⋅

(

un+1,∗
⊗ un+ 3

2
𝛾

)

= (8)

a32

Re
Δun+𝛾 − a32∇ ⋅

(
un+𝛾

⊗ un+𝛾) + a31

Re
Δun − a31∇ ⋅

(
un
⊗ un) − ∇pn+𝛾

un+1,∗|
𝜕ΩD = un+1

D ,

where one has

a31 =
1 − 𝛾

2 (2 − 𝛾)
a32 =

1 − 𝛾
2 (2 − 𝛾)

a33 =
1

2 − 𝛾
.

Again, in order to avoid solving a nonlinear system at each time step, an approximation is introduced in the nonlinear
momentum advection term, so that un+ 3

2
𝛾 is defined by extrapolation as

un+ 3
2
𝛾 =

(

1 + 1 + 𝛾
𝛾

)

un+𝛾 − 1 − 𝛾
𝛾

un
.

Alternatively, un+ 3
2
𝛾 can be replaced by un+1,∗

,which can then be determined by fixed point iteration. We set then 𝛿pn+1 =
pn+1 − pn+𝛾 and impose

un+1 − un+1,∗

(1 − 𝛾)Δt
= −∇𝛿pn+1

1
c2

𝛿pn+1

(1 − 𝛾)Δt
+ ∇ ⋅ un+1 = 0. (9)

Substituting the first equation into the second in (9), one obtains the Helmholtz equation

1
c2(1 − 𝛾)2Δt2 𝛿pn+1 − Δ𝛿pn+1 = − 1

(1 − 𝛾)Δt
∇ ⋅ un+1,∗

, (10)

which is solved with the boundary condition ∇𝛿pn+1 ⋅ n|𝜕Ω = 0. Once this equation is solved, the final velocity
update

un+1 = un+1,∗ − (1 − 𝛾)Δt∇𝛿pn+1
,

can be computed. Also for this second stage, notice that the procedure is equivalent to setting un+1,∗∗ = un+1,∗ + (1 −
𝛾)Δt∇pn+𝛾 , solving

1
c2

pn+1

(1 − 𝛾)2Δt2 − Δpn+1 = − 1
(1 − 𝛾)Δt

∇ ⋅ un+1,∗∗ + 1
c2

pn+𝛾

(1 − 𝛾)2Δt2 , (11)

and then setting un+1 = un+1,∗∗ − (1 − 𝛾)Δt∇pn+1.
For the purposes of the comparisons that will be reported in Section 4, we also present two alternative

and very popular second order projection methods, proposed respectively in References 45 and 46, which are
based on the parent methods of TR-BDF2, that is, the Crank–Nicolson (or Trapezoidal Rule) method and the
BDF2 method, respectively. We briefly recall the formulation of these schemes in the framework of the artifi-
cial compressibility formulation. The momentum predictor for the Bell-Colella-Glaz45 projection method reads as
follows
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1488 ORLANDO et al.

un+1,∗ − un

Δt
− 1

2Re
Δun+1,∗ + [(u ⋅ ∇)u]n+

1
2
,∗ =

1
2Re

Δun − ∇pn (12)

un+1,∗|𝜕Ω = un+1
D .

Notice that here we have set un+ 1
2
,∗ = 1

2

(
un+1,∗ + un)

, so that the scheme is fully nonlinear. On the other hand, setting
𝛿pn+1 = pn+1 − pn, we obtain the following Helmholtz equation for the projection stage

1
c2Δt2 𝛿pn+1 − Δ𝛿pn+1 = − 1

Δt
∇ ⋅ un+1,∗ (13)

∇𝛿pn+1 ⋅ n|𝜕Ω = 0.

Eventually, the velocity has to be updated with the gradient of the pressure increment:

un+1 = un+1,∗ − Δt∇𝛿pn+1
. (14)

It is apparent that this method is essentially based on the Crank–Nicolson time discretization approach. A method
based on the BDF2 scheme has been presented instead by Guermond and Quartapelle in Reference 46. The momentum
predictor reads as follows

3un+1,∗ − 4un + un−1

Δt
− 1

Re
Δun+1,∗ +

(
un,∗ ⋅ ∇

)
un+1,∗

+ 1
2
(
∇ ⋅ un,∗)un+1,∗ = −∇pn (15)

un+1,∗|𝜕Ω = un+1
D .

The Helmholtz equation for the projection stage is

1
c2Δt2 pn+1 − Δpn+1 = − 1

Δt
∇ ⋅ un+1,∗∗ + 1

c2Δt2 pn (16)

∇𝛿pn+1 ⋅ n|𝜕Ω = 0,

where un+1,∗∗ = un+1,∗ + 2
3
Δt∇pn. Eventually, the velocity is updated with the gradient of the computed pressure:

un+1 = un+1,∗∗ − 2
3
Δt∇pn+1

. (17)

3 THE SPATIAL DISCRETIZATION

For the spatial discretization, we consider discontinuous finite element approximations, due to their great flexibility in
performing mesh adaptation. We consider a decomposition of the domainΩ into a family of hexahedra h (quadrilaterals
in the two-dimensional case) and denote each element by K. The skeleton  denotes the set of all element faces and
 =  I ∪ B, where  I is the subset of interior faces and B is the subset of boundary faces. We also introduce the following
finite element spaces

Qk =
{

v ∈ L2(Ω) ∶ v|K ∈ Qk ∀K ∈ h
}
,

and

Qk = [Qk]d,
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ORLANDO et al. 1489

where Qk is the space of polynomials of degree k in each coordinate direction. Considering the well-posedness analyses
in References 18,47, the finite element spaces that will be used for the discretization of velocity and pressure are Vh = Qk
and Qh = Qk−1 ∩ L2

0(Ω), respectively, where k ≥ 2 and L2
0(Ω) =

{
v ∈ L2(Ω) ∶ ∫Ω vdΩ = 0

}
. Notice that, while for the sake

of coherence with the time discretization and of comparison with second order finite volume methods we will mostly
consider the case k = 2 in the following, the formulation we present is completely general and also the implementation
validated in Section 4 supports arbitrary values of k. Furthermore, notice that the above choice for the finite element
spaces corresponds to that implemented in the deal.II library, which will be employed for the numerical computation.
The proposed approach can in principle also be applied to tetrahedral meshes and P-spaces. Suitable jump and average
operators can then be defined as customary for finite element discretizations, see for example, Reference 48. A face Γ ∈  I

shares two elements that we denote by K+ with outward unit normal n+ and K− with outward unit normal n−, whereas
for a face Γ ∈ B we denote by n the outward unit normal. For a scalar function 𝜑 the jump is defined as

[[𝜑]] = 𝜑+n+ + 𝜑−n− if Γ ∈  I [[𝜑]] = 𝜑n if Γ ∈ B
.

The average is defined as

{{𝜑}} = 1
2
(
𝜑
+ + 𝜑−

)
if Γ ∈  I {{𝜑}} = 𝜑 if Γ ∈ B

.

Similar definitions apply for a vector function 𝝋:

[[𝝋]] = 𝝋+ ⋅ n+ + 𝝋− ⋅ n− if Γ ∈  I [[𝝋]] = 𝝋 ⋅ n if Γ ∈ B

{{𝝋}} = 1
2
(
𝝋
+ + 𝝋−

)
if Γ ∈  I {{𝝋}} = 𝝋 if Γ ∈ B

.

For vector functions, it is also useful to define a tensor jump as:

⟨⟨𝝋⟩⟩ = 𝝋+ ⊗ n+ + 𝝋− ⊗ n− if Γ ∈  I ⟨⟨𝝋⟩⟩ = 𝝋⊗ n if Γ ∈ B
.

Given these definitions, the weak formulation of the momentum predictor equation for the first stage is obtained mul-
tiplying Equation (4) by a test function v ∈ Vh, integrating over K ∈ h and applying Green’s theorem. To impose the
boundary conditions, we set

(
un+𝛾,∗)− = −

(
un+𝛾,∗)+ + 2un+𝛾

D with
[

∇
(
un+𝛾,∗)+

]

⋅ n =
[
∇
(
un+𝛾,∗)−] ⋅ n.

We now treat separately the discretization of the diffusion and advection contributions, respectively. The approxi-
mation of the diffusion term is based on the symmetric interior penalty method (SIP).49 We denote the scalar product
between two second-order tensors by

A ∶ B =
∑

i,j
AijBij.

Following,14 we set for each face Γ of a cell K

𝜎
u
Γ,K = (k + 1)2 diam(Γ)

diam(K)
, (18)

and we define the penalization constant for the SIP method as

Cu =
1
2

(

𝜎
u
Γ,K+ + 𝜎u

Γ,K−

)

,

if Γ ∈  I and Cu = 𝜎u
Γ,K otherwise. Taking into account boundary conditions as previously discussed and summing over

all K ∈ h, we can define the following bilinear form:

a(1)u (u, v) =
1

2Re
∑

K∈h
∫K
∇u ∶ ∇vdΩ − 1

2Re
∑

Γ∈ I
∫Γ
{{∇u}} ∶ ⟨⟨v⟩⟩dΣ
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1490 ORLANDO et al.

− 1
2Re

∑

Γ∈B
∫Γ
(∇u)n ⋅ vdΣ − 1

2Re
∑

Γ∈ I
∫Γ
⟨⟨u⟩⟩ ∶ {{∇v}} dΣ

− 1
2Re

∑

Γ∈B
∫Γ
(u⊗ n) ∶ ∇vdΣ + 1

2Re
∑

Γ∈ I
∫Γ

Cu⟨⟨u⟩⟩ ∶ ⟨⟨v⟩⟩dΣ

+ 1
2Re

∑

Γ∈B
∫Γ

2Cu (u ⋅ v) dΣ. (19)

The approximation of the advection term employs the widely used local Lax–Friedrichs (LF) flux, see for example,
Reference 11. Setting

𝜆 = max
(
|
|
|
|

(

un+ 𝛾

2

)+
⋅ n

|
|
|
|
,

|
|
|
|

(

un+ 𝛾

2

)−
⋅ n

|
|
|
|

)

with n = n± and taking into account boundary conditions, we define the trilinear form

c(1)(un+ 𝛾

2 ,u, v) = −1
2
∑

K∈h
∫K

(

u⊗ un+ 𝛾

2

)

∶ ∇vdΩ + 1
2
∑

Γ∈ I
∫Γ

({{

u⊗ un+ 𝛾

2

}})

∶ ⟨⟨v⟩⟩dΣ

+ 1
2
∑

Γ∈ I
∫Γ

𝜆

2
⟨⟨u⟩⟩ ∶ ⟨⟨v⟩⟩dΣ + 1

2
∑

Γ∈B
∫Γ
𝜆 (u ⋅ v) dΣ. (20)

Finally, we also define the functional

F(1)u (v)n+𝛾 = − 1
2Re

∑

K∈h
∫K
∇un ∶ ∇vdΩ + 1

2Re
∑

Γ∈
∫Γ

{{
∇un}} ∶ ⟨⟨v⟩⟩dΣ

+ 1
2
∑

K∈h
∫K

(

un
⊗ un+ 𝛾

2

)

∶ ∇vdΩ − 1
2
∑

Γ∈
∫Γ

({{

un
⊗ un+ 𝛾

2

}})

∶ ⟨⟨v⟩⟩dΣ

+
∑

K∈h
∫K

pn∇ ⋅ vdΩ −
∑

Γ∈
∫Γ

{{
pn}} [[v]] dΣ − 1

2Re
∑

Γ∈B
∫Γ

(
un+𝛾

D ⊗ n
)
∶ ∇vdΣ

+ 1
2Re

∑

Γ∈B
∫Γ

2Cu
(
un+𝛾

D ⋅ v
)

dΣ − 1
2
∑

Γ∈B
∫Γ

(

un+𝛾
D ⊗ un+ 𝛾

2

)

n ⋅ vdΣ

+ 1
2
∑

Γ∈B
∫Γ
𝜆

(
un+𝛾

D ⋅ v
)

dΣ, (21)

which also includes the terms representing the weak form of Dirichlet boundary conditions. It is worth to
point out that in the right-hand side no penalization terms have been introduced for the variables computed
at previous time-steps. Moreover, for the sake of clarity, the face integrals related to the quantities at previ-
ous time-steps are reported on the whole skeleton  , without distinguishing between interior and boundary
faces.

The complete weak formulation of the first stage velocity update reads then as follows: given un+ 𝛾

2 ,un ∈ Vh and pn ∈
Qh, find un+𝛾,∗ ∈ Vh such that:

∑

K∈h
∫K

1
𝛾Δt

un+𝛾,∗ ⋅ vdΩ + a(1)u (un+𝛾,∗
, v) + c(1)(un+ 𝛾

2 ,un+𝛾,∗
, v)

=
∑

K∈h
∫K

1
𝛾Δt

un ⋅ vdΩ + F(1)u (v)n+𝛾 ∀v ∈ Vh. (22)

For the projection steps defined by Equation (7) we apply again the SIP method. In order to impose homogeneous Neu-
mann boundary conditions we prescribe

[
∇
(

pn+𝛾)−]n = −
[

∇
(

pn+𝛾)+
]

n: for this reason, no contribution from boundary
faces arises. We then multiply by a test function q ∈ Qh, we apply Green’s theorem and we define:
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ORLANDO et al. 1491

ap(p, q) =
∑

K∈h
∫K
∇p ⋅ ∇qdΩ −

∑

Γ∈ I
∫Γ

{{
∇pn+𝛾}} ⋅

[[
q
]]

dΣ

−
∑

Γ∈ I
∫Γ

[[
p
]]
⋅ {{∇q}} dΣ +

∑

Γ∈ I
∫Γ

Cp
[[

p
]]
⋅
[[

q
]]

dΣ, (23)

F(1)p (q)n+𝛾 =
∑

K∈h
∫K

1
𝛾Δt

un+𝛾,∗∗ ⋅ ∇qdΩ −
∑

Γ∈
∫Γ

1
𝛾Δt

{{
un+𝛾,∗∗}} ⋅

[[
q
]]

dΣ, (24)

and again we set

𝜎
p
Γ,K = k2 diam(Γ)

diam(K)
, (25)

while, if Γ ∈  I , we set Cp = 1
2

(

𝜎
p
Γ,K+ + 𝜎

p
Γ,K−

)

, otherwise Cp = 𝜎p
Γ,K . The weak formulation of Equation (7) reads then:

given pn ∈ Qh, find pn+𝛾 ∈ Qh such that

∑

K∈h
∫K

1
c2𝛾2Δt2 pn+𝛾qdΩ + ap(pn+𝛾

, q) =
∑

K∈h
∫K

1
c2𝛾2Δt2 pnqdΩ + F(1)p (q)n+𝛾 ∀q ∈ Qh. (26)

The second stage can be described in a similar manner. We start defining the bilinear forms for the second momentum
predictor as

a(2)u (u, v) =
a33

Re
∑

K∈h
∫K
∇u ∶ ∇vdΩ − a33

Re
∑

Γ∈ I
∫Γ
{{∇u}} ∶ ⟨⟨v⟩⟩dΣ

− a33

Re
∑

Γ∈B
∫Γ
(∇u)n ⋅ vdΣ − a33

Re
∑

Γ∈ I
∫Γ
⟨⟨u⟩⟩ ∶ {{∇v}} dΣ

− a33

Re
∑

Γ∈B
∫Γ
(u⊗ n) ∶ ∇vdΣ + a33

Re
∑

Γ∈ I
∫Γ

Cu⟨⟨u⟩⟩ ∶ ⟨⟨v⟩⟩dΣ

+ a33

Re
∑

Γ∈B
∫Γ

2Cu (u ⋅ v) dΣ, (27)

c(2)(un+ 3
2
𝛾
,u, v) = − a33

∑

K∈h
∫K

(

u⊗ un+ 3
2
𝛾

)

∶ ∇vdΩ + a33
∑

Γ∈ I
∫Γ

({{

u⊗ un+ 3
2
𝛾

}})

∶ ⟨⟨v⟩⟩dΣ

+ a33
∑

Γ∈ I
∫Γ

𝜆

2
⟨⟨u⟩⟩ ∶ ⟨⟨v⟩⟩dΣ + a33

∑

Γ∈B
∫Γ
𝜆 (u ⋅ v) dΣ, (28)

where 𝜆 = max
(
|
|
|
|

(

un+ 3
2
𝛾

)+
⋅ n

|
|
|
|
,

|
|
|
|

(

un+ 3
2
𝛾

)−
⋅ n

|
|
|
|

)

with n = n±.

We also define the linear functional:

F(2)u (v)n+1 = − a32

Re
∑

K∈h
∫K
∇un+𝛾 ∶ ∇vdΩ + a32

Re
∑

Γ∈
∫Γ

{{
∇un+𝛾}} ∶ ⟨⟨v⟩⟩dΣ

− a31

Re
∑

K∈h
∫K
∇un ∶ ∇vdΩ + a31

Re
∑

Γ∈
∫Γ

{{
∇un}} ∶ ⟨⟨v⟩⟩dΣ

+ a32
∑

K∈h
∫K

(
un+𝛾

⊗ un+𝛾) ∶ ∇vdΩ − a32
∑

Γ∈
∫Γ

({{
un+𝛾

⊗ un+𝛾}}) ∶ ⟨⟨v⟩⟩dΣ

+ a31
∑

K∈h
∫K

(
un
⊗ un) ∶ ∇vdΩ − a31

∑

Γ∈
∫Γ

({{
un
⊗ un}}) ∶ ⟨⟨v⟩⟩dΣ

+
∑

K∈h
∫K

pn+𝛾∇ ⋅ vdΩ −
∑

Γ∈
∫Γ

{{
pn+𝛾}} [[v]] dΣ
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1492 ORLANDO et al.

− a33

Re
∑

Γ∈B
∫Γ

(
un+1

D ⊗ n
)
∶ ∇vdΣ + a33

Re
∑

Γ∈B
∫Γ

2Cu
(
un+1

D ⋅ v
)

dΣ

− a33
∑

Γ∈B
∫Γ

(

un+1
D ⊗ un+ 3

2
𝛾

)

n ⋅ vdΣ + a33
∑

Γ∈B
∫Γ
𝜆

(
un+1

D ⋅ v
)

dΣ. (29)

Finally, the weak formulation for the Equation (8) reads as follows: given un+ 3
2
𝛾
,un+𝛾 ∈ Vh and pn+𝛾 ∈ Qh, find un+𝛾,∗ ∈

Vh such that:

∑

K∈h
∫K

1
(1 − 𝛾) Δt

un+1,∗ ⋅ vdΩ + a(2)u (un+1,∗
, v) + c(2)(un+ 3

2
𝛾
,un+1,∗

, v)

=
∑

K∈h
∫K

1
(1 − 𝛾) Δt

un+𝛾 ⋅ vdΩ + F(2)u (v)n+1 ∀v ∈ Vh. (30)

We can then immediately define the functional associated to the second projection step as

F(2)p (q)n+1 =
∑

K∈h
∫K

1
(1 − 𝛾) Δt

un+1,∗∗ ⋅ ∇qdΩ −
∑

Γ∈
∫Γ

1
(1 − 𝛾) Δt

{{
un+1,∗∗}} ⋅

[[
q
]]

dΣ. (31)

Therefore, the weak formulation for (11) reads as follows: given pn ∈ Qh, find pn+1 ∈ Qh such that:

∑

K∈h
∫K

1
c2(1 − 𝛾)2Δt2 pn+1qdΩ + a(pn+1

, q)n+1 =
∑

K∈h
∫K

1
c2(1 − 𝛾)2Δt2 pn+𝛾qdΩ + F(2)p (q)n+1 ∀q ∈ Qh. (32)

We now derive the fully discrete algebraic expressions corresponding to each of the two stages. We denote by 𝝋i(x)
the basis functions for the space Vh and by 𝜓i(x) the basis functions for the space Qh, respectively, so that the discrete
approximations of u and p read as follows

u ≈ uh =
dim(Vh)∑

j=1
uj(t)𝝋j(x) p ≈ ph =

dim(Qh)∑

j=1
pj(t)𝜓j(x).

For the first stage, we take v = 𝝋i, i = 1, … , dim(Vh) and we exploit the representation introduced above to obtain the
matrices

Mij =
∑

K∈h
∫K
𝝋j ⋅ 𝝋idΩ, (33)

An+𝛾
ij = a(1)u

(
𝝋j,𝝋j

)
, (34)

Cij

(

un+ 𝛾

2

)

= c(1)
(

un+ 𝛾

2 ,𝝋j,𝝋i

)

. (35)

After computing the integrals in the previous formulae by appropriate quadrature rules, one obtains the algebraic
system

(
1
𝛾Δt

M +An+𝛾 + C
(

un+ 𝛾

2

))

Un+𝛾,∗
h = 1

𝛾Δt
MUn

h + Fn+𝛾
u , (36)

where Uh denotes the vector of the discrete degrees of freedom associated to the velocity field and Fn+𝛾
u is the vector

obtained evaluating F(1)u (𝝋i)n+𝛾 , i = 1, … , dim(Vh). The same procedure can be applied for the projection step, obtaining
the matrices

 10970363, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5098 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [04/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ORLANDO et al. 1493

Mp
ij =

∑

K∈h
∫K
𝜓j𝜓idΩ, (37)

Kij = ap(𝜓j, 𝜓i). (38)

After computing the integrals in the previous formulae by appropriate quadrature rules, one obtains the algebraic
counterpart of (26)

(
1

c2𝛾2Δt2 Mp +K
)

Pn+𝛾
h = 1

c2𝛾2Δt2 MpPn
h + Fn+𝛾

p , (39)

where again Ph denotes the vector of the discrete degrees of freedom associated to pressure and Fn+𝛾
p is the vector obtained

evaluating F(1)p (𝝍 i)n+𝛾 , i = 1, … , dim(Qh). For the second stage, we proceed in a similar manner; for the momentum
predictor (30) we obtain

(
1

(1 − 𝛾) Δt
M +An+1 + C

(

un+ 3
2
𝛾

))

Un+1,∗
h = 1

(1 − 𝛾) Δt
MUn+𝛾

h + Fn+1
u , (40)

where we set

An+1
ij = a(2)u

(
𝝋j,𝝋i

)
Cij

(

un+ 3
2
𝛾

)

= c(2)
(

un+ 3
2
𝛾
,𝝋j,𝝋i

)

, (41)

and Fn+1
u is the vector obtained evaluating F(2)u (𝝋i)n+1

, i = 1… dim(Vh). Eventually, as algebraic counterpart of (32) we
obtain

(
1

c2(1 − 𝛾)2Δt2
Mp +K

)

Pn+1
h = 1

c2(1 − 𝛾)2Δt2
MpPn+𝛾

h + Fn+1
p , (42)

where again Fn+1
p is the vector obtained evaluating F(2)p (𝝍 i)n+1

, i = 1... dim(Qh). Notice that, in the evaluation of Fn+𝛾
p and

Fn+1
p , there is also a preliminary stage which is the projection of ∇pn and ∇pn+𝛾 into Vh to compute un+𝛾,∗∗ and un+1,∗∗,

respectively. In particular, we define the projection matrix P

Pij =
∑

K∈h
∫K
∇𝜓j ⋅ 𝝋idΩ, (43)

and we solve the linear systems Mũn+𝛾,∗∗ = Ppn for the first stage and Mũn+1,∗∗ = Ppn+𝛾 , where ũn+𝛾,∗∗ and ũn+1,∗∗ denote
the two required projections. The same procedure has to applied also in the final update of the velocity; in particular, for
the first stage we set

un+𝛾 = un+𝛾,∗ − 𝛾Δt
(
ũn+1,∗∗ − ũn+𝛾,∗∗)

, (44)

while for the second stage we solve Mũn+1 = Ppn+1 and then we compute

un+1 = un+1,∗ − (1 − 𝛾) Δt
(
ũn+1 − ũn+1,∗∗)

. (45)

4 NUMERICAL EXPERIMENTS

The numerical method outlined in the previous sections has been validated in a number of relevant benchmarks. Notice
that, following for example, References 19,20, we set = min{diam()| ∈ h} and we define the stability parameters:

C = kUΔt∕, 𝜇 = k2Δt∕(e∈), (46)
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1494 ORLANDO et al.

where U is the magnitude of a characteristic velocity and 𝜇 defines the typical stability parameter in the discretization of
parabolic terms. We also recall here that k is the polynomial degree of the finite element space chosen for the discretiza-
tion of the velocity. As stated before, the proposed method has been implemented using the numerical library deal.II,
which is based on a matrix-free approach.23 The 9.2.0 version of deal.II was employed and most simulations have been
run in parallel with MPI. No global sparse matrix is built and only the action of the linear operators defined in Section 3
on a vector is actually implemented. Another feature of the library employed during the numerical simulations is the
mesh adaptation capability, as we will see in the presentation of the results. In the following tests, unless differently
stated, we take c = 103 m/s, which is the order of magnitude of the speed of sound in water. Moreover, the precondi-
tioned conjugate gradient method implemented in the function SolverCG of the deal.II library was employed to solve the
Helmholtz equations, while the GMRES solver for the momentum equations is implemented in the function SolverGM-
RES of the same library. A Jacobi preconditioner is used for the two momentum predictors, whereas a geometric multigrid
preconditioner is employed for the Helmholtz equations.

4.1 Case tests with analytical solution

In order to verify the correctness of our implementation and to assess the convergence property of the scheme, we first
perform numerical convergence studies in two and three dimensions, respectively. In two dimensions, we consider as a
benchmark the classical Taylor-Green vortex50 in the box Ω = (0, 2𝜋)2, for which an analytical solution is available:

u(x, t) =

(
cos(x1) sin(x2)e−

2t
Re

− sin(x1) cos(x2)e−
2t
Re

)

, (47)

p(x, t) = −1
4
(cos(2x1) + cos(2x2)) e−

4t
Re . (48)

In three dimensions, an analogous study has been carried out for the Arnold–Beltrami–Childress (ABC) flow, see for
example, Reference 51, whose exact solution is

u(x, t) =
⎛
⎜
⎜
⎜
⎝

(sin(x3) + cos(x2)) e−
t

Re

(sin(x1) + cos(x3)) e−
t

Re

(sin(x2) + cos(x1)) e−
t

Re

⎞
⎟
⎟
⎟
⎠

. (49)

p(x, t) = − sin(x1) cos(x3) − sin(x2) cos(x1) − sin(x3) cos(x2). (50)

For the two dimensional case, we performed a convergence test at T = 3.2 for Re = 100 starting with an initial Carte-
sian mesh of 8 × 8 elements and doubling several times the number of elements Nel in each direction. The time step was
chosen so as to keep C = 1.63 constant for all resolutions (hyperbolic scaling), so as to test the accuracy of the method for
values of the time steps beyond the stability limit of explicit schemes but not large enough to affect the second order accu-
racy. The results for the Q2 − Q1 and Q3 − Q2 cases are reported in Tables 1–4, respectively. It can be observed that the

T A B L E 1 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q2 − Q1 elements, relative errors for the
velocity in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.64 8 0.04 1.5 0.38

0.32 16 0.08 0.65 1.22 0.095 2.01

0.16 32 0.17 0.12 2.45 0.016 2.58

0.08 64 0.33 0.023 2.38 0.0031 2.37
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ORLANDO et al. 1495

T A B L E 2 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q2 − Q1 elements, relative errors for
the pressure in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

0.64 8 0.04 0.43

0.32 16 0.08 0.14 1.60

0.16 32 0.17 0.04 1.72

0.08 64 0.33 0.011 1.91

T A B L E 3 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q3 − Q2 elements, relative errors for the
velocity in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.43 8 0.06 0.28 0.062

0.21 16 0.12 0.033 3.12 0.0068 3.18

0.11 32 0.25 0.0044 2.88 0.00044 3.93

0.053 64 0.50 0.00059 2.92 0.000031 3.85

T A B L E 4 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q3 − Q2 elements, relative errors for the
pressure in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

0.43 8 0.06 0.087

0.21 16 0.12 0.011 2.93

0.11 32 0.25 0.00075 3.92

0.053 64 0.50 0.000029 4.72

T A B L E 5 Convergence test for the Green-Taylor vortex benchmark computed on a distorted mesh at C = 1.63 with Q2 − Q1 elements,
relative errors for the velocity in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.52 8 0.05 1.2 0.32

0.22 16 0.12 0.55 1.13 0.081 1.96

0.11 32 0.25 0.12 2.16 0.012 2.77

0.052 64 0.50 0.021 2.51 0.0023 2.41

expected convergence rates are recovered, without the necessity of employing fixed point iterations to determine the veloc-
ity in the two stages. Analogous results are obtained, see Tables 5 and 6 if distorted meshes with analogous characteristics
are employed.

The same test was repeated, for the case of Q2 − Q1 elements, using the alternative methods45,46 summarized in
Section 2. It can be observed from the results reported in Tables 7–10 that, while the convergence rates are analogous, the
relative errors in the L2 norm are about 50% smaller for the TR-BDF2 solver.

As mentioned in Section 2, when we increase the Courant number, also the TR-BDF2 scheme requires fixed point
iterations in the momentum predictor stages in order to preserve its accuracy. As it can be noticed in Tables 11 and 12
that the second order convergence rate is still maintained.

For the three dimensional case, an analogous convergence test was performed again at T = 3.2 but using Re = 1, due
to the stability characteristics of the ABC flow, see for example, the discussion in Reference 51. We have considered an
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1496 ORLANDO et al.

T A B L E 6 Convergence test for the Green-Taylor vortex benchmark computed on a distorted mesh at C = 1.63 with Q2 − Q1 elements,
relative errors for the pressure in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

0.52 8 0.05 0.43

0.22 16 0.12 0.077 2.02

0.11 32 0.25 0.024 1.68

0.052 64 0.50 0.0064 1.91

T A B L E 7 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q2 − Q1 elements and the projection
method of Reference 45, relative errors for the velocity in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.64 8 0.04 1.49 0.48

0.32 16 0.08 0.73 1.04 0.13 1.84

0.16 32 0.17 0.14 2.34 0.0311 2.11

0.08 64 0.33 0.03 2.25 0.0070 2.16

T A B L E 8 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q2 − Q1 elements and the projection
method of Reference 45, relative errors for the pressure in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

0.64 8 0.04 0.41

0.32 16 0.08 0.12 1.75

0.16 32 0.17 0.037 1.75

0.08 64 0.33 0.0087 2.08

T A B L E 9 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q2 − Q1 elements and the projection
method of Reference 46, relative errors for the velocity in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.64 8 0.04 0.89 0.28

0.32 16 0.08 0.40 1.15 0.09 1.69

0.16 32 0.17 0.085 2.24 0.023 1.92

0.08 64 0.33 0.029 1.57 0.0077 1.60

T A B L E 10 Convergence test for the Green-Taylor vortex benchmark computed at C = 1.63 with Q2 − Q1 elements and the projection
method of Reference 46, relative errors for the pressure in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

0.64 8 0.04 0.41

0.32 16 0.08 0.10 2.06

0.16 32 0.17 0.026 1.91

0.08 64 0.33 0.0067 1.97
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ORLANDO et al. 1497

T A B L E 11 Convergence test for the Green-Taylor vortex benchmark computed at C = 3 with Q2 − Q1 elements, relative errors for the
velocity in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

1.18 8 0.08 1.33 0.39

0.59 16 0.15 0.63 1.07 0.11 1.79

0.29 32 0.31 0.12 2.35 0.028 2.02

0.15 64 0.61 0.028 2.17 0.0059 2.23

T A B L E 12 Convergence test for the Green-Taylor vortex benchmark computed at C = 3 with Q2 − Q1 elements, relative errors for the
pressure in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

1.18 8 0.08 0.49

0.59 16 0.15 0.13 1.87

0.29 32 0.31 0.04 1.60

0.15 64 0.61 0.013 1.75

T A B L E 13 Convergence test for the ABC flow benchmark computed at C = 1.63 with Q2 − Q1 elements, relative errors for the velocity
in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.32 8 2.08 0.019 0.0078

0.16 16 4.15 0.0054 1.85 0.0022 1.86

0.08 32 8.30 0.0014 1.98 0.00056 1.99

0.04 64 16.60 0.00036 1.91 0.00017 1.75

T A B L E 14 Convergence test for the ABC flow benchmark computed at C = 1.63 with Q2 − Q1 elements, relative errors for the pressure
in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

0.32 8 2.08 1.0

0.16 16 4.15 0.13 2.93

0.08 32 8.30 0.039 1.74

0.04 64 16.60 0.011 1.79

initial Cartesian mesh of 8 × 8 × 8 elements and we have refined the mesh by doubling each time the number of elements
Nel in each direction, while keeping C = 1.63 constant (hyperbolic scaling). The results for the Q2 − Q1 and Q3 − Q2 cases
are reported in Tables 13–16, respectively. It can be observed that the expected convergence rates are recovered for the
lower degree case, also in this case without the necessity of fixed point iterations, while less accurate results are obtained
in the higher degree case. Since in this case the problem is diffusion dominated, rather than advection dominated, the
loss of accuracy can be readily explained by the very large values obtained in this test for the parabolic stability parameter
𝜇. Repeating the test at constant 𝜇 (parabolic scaling), one obtains the results displayed in Tables 17–20, which show a
clear improvement both in errors and convergence rates.

We have also used the two dimensional Taylor Green benchmark at Re = 100 to compare our results with analogous
simulations carried out using the classical PISO method52 as implemented in the OpenFoam package. In both cases,
the computation was carried out at a very small value of the Courant number, so that the spatial discretization error is
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1498 ORLANDO et al.

T A B L E 15 Convergence test for the ABC flow benchmark computed at C = 1.63 with Q3 − Q2 elements, relative errors for the velocity
in H1 and L2 norms.

𝚫t Nel 𝝁 H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.21 8 3.11 0.0036 0.0019

0.11 16 6.23 0.0010 1.80 0.0068 2.05

0.053 32 12.45 0.00037 1.5 0.00014 1.68

T A B L E 16 Convergence test for the ABC flow benchmark computed at C = 1.63 with Q3 − Q2 elements, relative errors for the pressure
in L2 norm.

𝚫t Nel 𝝁 L2 rel. error p L2 rate p

0.21 8 3.11 0.25

0.11 16 6.23 0.033 2.93

0.053 32 12.45 0.0097 1.72

T A B L E 17 Convergence test for the ABC flow benchmark computed at 𝜇 = 2 with Q2 − Q1 elements, relative errors for the velocity in
H1 and L2 norms.

𝚫t Nel C H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.32 8 1.57 0.019 0.0071

0.08 16 0.79 0.0045 2.05 0.0013 2.5

0.02 32 0.39 0.0012 1.97 0.00031 2.02

0.005 64 0.20 0.00029 1.98 0.000053 2.54

T A B L E 18 Convergence test for the ABC flow benchmark computed at 𝜇 = 2 with Q2 − Q1 elements, relative errors for the pressure in
L2 norm.

𝚫t Nel C L2 rel. error p L2 rate p

0.32 8 1.57 1.0

0.08 16 0.79 0.16 2.66

0.02 32 0.39 0.042 1.93

0.005 64 0.20 0.011 1.94

T A B L E 19 Convergence test for the ABC flow benchmark computed at 𝜇 = 2 with Q3 − Q2 elements, relative errors for the velocity in
H1 and L2 norms.

𝚫t Nel C H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.14 8 1.05 0.0025 0.00089

0.034 16 0.52 0.00024 2.70 0.00011 3.08

0.0086 32 0.26 0.000071 1.78 0.000018 2.51
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ORLANDO et al. 1499

T A B L E 20 Convergence test for the ABC flow benchmark computed at 𝜇 = 2 with Q3 − Q2 elements, relative errors for the pressure in
L2 norm.

𝚫t Nel C L2 rel. error p L2 rate p

0.14 8 1.05 0.20

0.034 16 0.52 0.027 2.89

0.0086 32 0.26 0.0043 2.65

F I G U R E 1 Example of distorted mesh. [Colour figure can be viewed at wileyonlinelibrary.com]

dominant. We are aware of the difficulties of comparing different discretizations schemes both in space and time imple-
mented in different frameworks and, therefore, the following analysis has to be interpreted merely as first stress test to
highlight the superior flexibility of the proposed DG implementation. We have performed a test using both Q2 − Q1 and
Q3 − Q2 elements on regular and distorted meshes. An example of the coarsest distorted mesh is shown in Figure 1,
while the results of the convergence test for both L2 and L∞ norms are reported in Figure 2. While the OpenFoam dis-
cretization appears to outperform the Q2 − Q1 DG approximation at lower resolutions, it can be seen that it is much
more sensitive to the mesh distortion than DG approximations, especially with respect to L∞ errors. Furthermore, as
expected from polynomial approximation theory, the Q3 − Q2 DG approximation clearly shows its faster convergence
properties, which are achieved within the same mathematical and implementation framework. Instead, higher order
accuracy for finite volume formulations entails the use of complex and often ad hoc reconstruction procedures with large
stencils.

4.2 Two-dimensional lid driven cavity

The lid driven cavity flow is a classical benchmark for the two-dimensional incompressible Navier–Stokes equations.
Reference solutions obtained with high order techniques are reported, among many others, in References 51-55. For this
two-dimensional problem, is it customary to represent the flow also in terms of the streamfunction Ψ, which is defined
as the solution of the Laplace problem

− ΔΨ = ∇ × u = 𝜔 in Ω (51)
Ψ|𝜕Ω = 0,
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1500 ORLANDO et al.

(A) (B)

(C) (D)

F I G U R E 2 Taylor-Green vortex at Re = 100 and t = 3.2, absolute errors as function of the number of degrees of freedom, (A) L2 errors
for the velocity, (B) L2 errors for the pressure, (C) L∞ errors for the velocity, (D) L∞ errors for the pressure. The black line denotes the solution
with Q2 − Q1 on regular grids, the blue line represents the results with Q2 − Q1 on distort grids, the red line reports the results with Q3 − Q2 on
regular grids, the green line denotes the solution with Q3 − Q2 on distort grids, the yellow line represents the results with OpenFoam on regular
grids and the magenta line represents the results with OpenFoam on distort grids. [Colour figure can be viewed at wileyonlinelibrary.com]

where the symbol ∇× denotes the curl operator and the vorticity is the scalar field defined as

𝜔 = 𝜕v
𝜕x1

− 𝜕u
𝜕x2

.

We consider the case Re = 1000 computed with Q2 − Q1 elements on a Cartesian mesh composed of Ne = 128 square
elements in each coordinate direction, with a time step chosen so that the Courant number is approximately 1.3. The
computation is performed until the steady state is reached up to a tolerance of 10−7, which occurs around T = 70. The
streamfunction contours at steady state are shown in Figure 3 using the same isoline values as in Reference 55. It can be
observed that all the main flow structures are correctly reproduced.

For a more quantitative comparison, we report in Figure 4 the u component of the velocity and the vorticity 𝜔 along
the middle of the cavity, together with the reference results of Reference 54. Good agreement with the reference solution is
achieved. The maximum horizontal velocity along the centerline was computed as umax = 0.3732 which implies a relative
error with respect to the reference solution of the order of 10−2. The vorticity value at the center of the cavity was computed
as 𝜔cen = 1.9594, which implies again a relative error with respect to the reference solution of the order of 10−2. For
comparison, the same test was repeated also using for the time discretization the parent methods described in References
45,46. The results are plotted in Figure 5, highlighting the better performance of the proposed method based on TR-BDF2.

Moreover, we have compared the computational time required by the three methods for  = 1
32
,

1
64
,

1
128

, keeping the
Courant number fixed. This assessment is important to show potential drawbacks of the two stage of the TR-BDF2 method
with respect to the single stage methods employed in References 45,46. As shown in Figure 6, the TR-BDF2 method
shows superior efficiency with respect to the Bell-Colella-Glaz method, while it behaves similarly to the BDF2 method of
Reference 46. Multistep methods, however, entail a memory overhead that is not appealing for large scale applications.

We have also repeated this test using the adaptive tools present in the deal.II library, as mentioned at the beginning of
the Section. In each element K we define the quantity
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ORLANDO et al. 1501

(A) (B)

F I G U R E 3 Lid driven cavity benchmark at Re = 1000: (A) flow field, (B) streamfunction contours. Contour values are chosen as in
Reference 55.

(A) (B)

F I G U R E 4 Lid driven cavity benchmark at Re = 1000: (A) u velocity component values along the middle of the cavity, (B) 𝜔 values
along the middle of the cavity. The continuous line denotes the numerical solution and the dots the reference solution values from Reference
54. [Colour figure can be viewed at wileyonlinelibrary.com]

𝜂K = diam(K)2‖𝝎‖2
K , (52)

that acts as local refinement indicator. We then started from a uniform Cartesian mesh with Ne = 8 in each coordinate
direction and we allowed refinement or coarsening based on the distribution of the values of 𝜂K , refining 10% of the ele-
ments with largest indicator values and coarsening 30% of the elements with the smallest indicator values. This remeshing
procedure was carried out every 1000 time steps. However, in order to avoid using a too coarse mesh for too long in the
initial stages of the simulation, every 50 time steps the maximum difference between the velocities at two consecutive
time steps was checked and the remeshing was performed whenever this quantity was greater than 10−2. The minimum
element diameter allowed was = 1

128
, so as to obtain again C ≈ 1.3. A maximum element diameter equal to 1

32
was also

required, in order to avoid an excessive reduction of the spatial resolution. The final adapted mesh and the streamline
contours are reported in Figure 7. It can be observed that the refinement indicator allows to enhance automatically the
resolution along the top boundary of the domain and in other regions of large vorticity values.

For a more quantitative point of view, we compare again in Figure 8 the u component of the velocity and the vorticity
𝜔 along the middle of the cavity with the reference results in Reference 54. The maximum horizontal velocity along the
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1502 ORLANDO et al.

(A)

(C)

(B)

F I G U R E 5 Lid driven cavity benchmark at Re = 1000: (A) u velocity component values along the middle of the cavity, (B) 𝜔 values
along the middle of the cavity. The continuous lines denote the numerical solutions with the methods45,46 and with the present method, the
circles the reference solution values from Reference 54, (C) absolute error on u velocity component with respect to reference solution of
Reference 54 interpolated along the middle of the cavity. The continuous black line denotes the result with the proposed method, the red one
the results of Reference 46 and the blue dots the results of Reference 45. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Lid driven cavity benchmark at Re = 1000, l2 relative errors with respect to the CPU time required by the simulations with 8
MPI processes on Intel(R) Xeon(R) CPU Xeon E5-2640 v4 @ 2.4GHz. The continuous black line denotes the result with the proposed method,
the red one the results of Reference 46 and the blue one the results of Reference 45. [Colour figure can be viewed at wileyonlinelibrary.com]

centerline is now umax = 0.3739 which implies a relative error of the order of 10−2, as in the corresponding non adaptive
simulation. The vorticity value at the center of the cavity is now 𝜔cen = 1.9652, which also implies a relative error with
respect to the reference solution of the order of 10−2. In Figure 9, instead, the absolute difference between the velocities
computed in the fixed mesh and adaptive simulations is plotted over the whole domain, showing that no substantial loss
of accuracy has occurred. This result has been obtained with a reduction of about 25% of the required computational time.
While showing the potential of the adaptivity procedures available in the present implementation, this is still far from
optimal. Experiments with more specific error indicators and less restrictive options for the refinement parameters will
be carried out in future work.
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ORLANDO et al. 1503

(A) (B)

F I G U R E 7 Lid driven cavity benchmark at Re = 1000, adaptive simulation: (A) final mesh after adaptive refinement, (B)
streamfunction contours. Contour values as in Reference 55 [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 8 Lid driven cavity benchmark at Re = 1000, adaptive simulation: (A) u velocity component values along the middle of the
cavity, (B) 𝜔 values along the middle of the cavity. The continuous line denotes the numerical solution and the dots the reference solution
values from Reference 54. [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 Three-dimensional lid driven cavity

We now consider the three-dimensional analog of the previously studied lid driven cavity benchmark. Among several
others, we consider the configuration and reference solutions provided in Reference 56, which we summarize here for
convenience. We consider a rectangular cavity of the size d × h × l in the x, y, and z direction, respectively. The flow is
driven by the wall at x = d∕2, which moves tangentially in the y direction with constant velocity V . The length d is used
to introduce non dimensional space variables, so that the effective computational domain is given by

Ω =
[

−Γ
2
,
Γ
2

]

×
[

−1
2
,

1
2

]

×
[

−Λ
2
,
Λ
2

]

,

where the aspect ratios in the x and z directions are defined as

Γ = h
d
, Λ = l

d
. (53)
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1504 ORLANDO et al.

F I G U R E 9 Lid driven cavity benchmark at Re = 1000, difference for velocity magnitude between the fixed grid simulation and the
adaptive simulation (interpolated to the fixed grid). [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 10 3D lid driven cavity benchmark at Re = 1000, fixed mesh simulation, (A) v velocity component values along the x axis (B)
u velocity component values along the y axis. The continuous line denotes the numerical solution and the dots the reference solution values
from Reference 56. [Colour figure can be viewed at wileyonlinelibrary.com]

We have considered here the Γ = 1,Λ = 1 case, computed with Q2 − Q1 elements on a Cartesian mesh composed of
64 × 64 × 48 square elements, with a time step chosen so that the Courant number is approximately 1. Notice that the
same mesh was employed in Reference 56, which however employed a much more accurate spectral collocation method.
The computation is performed until the steady state is reached up to a tolerance of 10−4, which is achieved around T = 40.
We take as reference results those presented in Tables 5 and 6 in Reference 56. Notice that, in that article, a different non
dimensional scaling is employed, so that their results have been appropriately rescaled in order to compare them with
those obtained here. In Figure 10 we report the results for the v velocity component values along the x axis and the u
component of the velocity along the y axis, respectively. We see that, in spite of the relatively coarse mesh, a reasonable
accuracy is achieved.

In Figures 11 and 12 we show instead the velocity field on the three median plane sections of the cavity, highlighting
the presence of vortices near the centerline of the cavity. The results are in good qualitative agreement with those reported
in Reference 57.
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ORLANDO et al. 1505

(A) (B) (C)

F I G U R E 11 3D lid driven cavity benchmark at Re = 1000, (A) Flow field vectors for the plane x = 0, (B) Flow field vectors for the
plane y = 0, (C) Flow field vectors for the plane z = 0

(A) (B) (C)

F I G U R E 12 3D lid driven cavity benchmark at Re = 1000, (A) Vorticity (𝜔x) contours at x = 0, (B) Vorticity (𝜔y) contours at y = 0, (C)
Vorticity (𝜔z) contours at z = 0

We have also exploited again the mesh adaptivity tool provided by deal.II with the same refinement indicator intro-
duced for the two-dimensional test. In particular, we started from a coarse mesh with Ne = 6 elements along each direction
and again we performed the refinement procedure on at most 10% of the elements with the largest indicator value every
1000 time steps, while coarsening on at most 30% of the elements with the smallest indicator values; moreover we have
checked every 50 time steps if the refinement procedure had to be performed in advance in case the maximum difference
between the velocities at two consecutive time steps was greater than 10−2. The minimum element diameter allowed was
 = 1

48
in order to obtain C ≈ 1. In Figures 13 and 14 we report again the results for the v velocity component values along

the x axis and the u component of the velocity along the y axis, respectively, compared with the results obtained using a
fixed grid with Ne = 48 elements along each direction. One can notice very good agreement between the two simulations,
while the computational time required to perform the adaptive simulation is about half of that required by the fixed grid
simulation. Moreover, we have compared in Figure 15 the errors of the two components for the velocity for the fixed and
adaptive mesh, respectively. It is clear that, in spite of the different computational time, no significant differences arise.

The size of the configuration employed for this test (we have used 15,925,248 dofs for the velocity and 1,572,864 dofs
for the pressure) makes this benchmark a good candidate for a parallel scaling test. More specifically, we have performed
a strong scaling analysis executing the same simulation up to time t = 0.6 using from 16 up to 1024 2× CPU ×86 Intel
Xeon Platinum 8276-8276L @ 2.4Ghz cores of the HPC infrastructure GALILEO100 at the Italian supercomputing center
CINECA. The results, reported in Figure 16, show a very good linear scaling, and even superlinear due to cache effects, up
to 256 cores, while for a higher number of cores parallel performance is less optimal. A degradation of the performance
for higher numbers of cores is observed, which we believe is mainly due to the fact that, given the size of the problem we
were able to run, for these numbers of cores the amount of degrees of freedom owned by each core becomes very small so
that the time needed by each core for computation is dominated by the time needed for communication. Indeed, using
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1506 ORLANDO et al.

(A) (B)

F I G U R E 13 3D lid driven cavity benchmark at Re = 1000, (A) u velocity component values along the y axis for adaptive mesh
simulation, (B) u velocity component values along the y axis for fixed grid simulation. The continuous line denotes the numerical solution
and the dots the reference solution values from Reference 56. [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 14 3D lid driven cavity benchmark at Re = 1000, (A) v velocity component values along the x axis for adaptive mesh
simulation, (B) v velocity component values along the x axis for fixed grid simulation. The continuous line denotes the numerical solution
and the dots the reference solution values from Reference 56. [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 15 3D lid driven cavity benchmark at Re = 1000, (A) u velocity component for the plane x = 0, z = 0 with reference solution
values from Reference 56 interpolated, (B) v velocity component comparison for the plane y = 0, z = 0 with reference solution values from
Reference 56 interpolated. The continuous black line denotes the result with fixed mesh, the blue one denotes the results with adaptive mesh
refinement. [Colour figure can be viewed at wileyonlinelibrary.com]
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ORLANDO et al. 1507

F I G U R E 16 3D lid driven cavity benchmark at Re = 1000, strong scaling for the proposed method. The speedup is computed with
respect to the time required with 16 cores. [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 21 Wallclock times in seconds of the different simulations performed for the strong scaling analysis.

Number of cores
Wallclock time
TR-BDF2

Wallclock time
Bell-Colella-Glaz

Wallclock time
Guermond-Quartapelle BDF2

16 1.86 ⋅ 103 3.80 ⋅ 103 8.09 ⋅ 102

32 7.39 ⋅ 102 1.75 ⋅ 103 3.64 ⋅ 102

64 3.69 ⋅ 102 8.54 ⋅ 102 1.79 ⋅ 102

128 1.81 ⋅ 102 4.29 ⋅ 102 8.96 ⋅ 101

256 1.08 ⋅ 102 2.29 ⋅ 102 5.01 ⋅ 101

512 6.24 ⋅ 101 1.32 ⋅ 102 3.16 ⋅ 101

1024 3.46 ⋅ 101 6.07 ⋅ 101 1.62 ⋅ 101

1024 cores, the number of unknowns per core is only 15,552 for the velocity and 1536 for the pressure. Similar results
are obtained for the Bell-Colella-Glaz and the Guermond-Quartapelle BDF2 methods already discussed in the previous
Section. The apparent better behavior of the Bell-Colella-Glaz projection scheme for a larger number of processors is
probably due to the fact that this method, in view of the presence of nonlinear iterations, is the slowest one as reported
in Table 21 and therefore the least affected by communication costs.

A weak scaling analysis has been performed using 124,416 dofs per core for the velocity and 12,288 dofs per core
for the pressure. Figure 17 shows the results for the three schemes described. One can easily notice that a good par-
allel efficiency is maintained up to 1024 cores. The overperformance of the TR-BDF2 scheme up to 256 cores can be
due to a number of factors, such as the topology of the communication network in the specific architecture employed
or the handling of communications between different groups of cores. This is also confirmed by the behavior of the
Bell-Colella-Glaz method which, since it requires the solution of more linear systems, is less dependent on these
factors.

4.4 Flow past a cylinder

In this section, we consider another classical benchmark for the incompressible Navier–Stokes equations, namely the
flow past a cylinder. We use the configuration described in Reference 58, that we summarize here for the reader’s
convenience. More in detail, the employed geometry and boundary conditions are reported in Figure 18, where H =
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1508 ORLANDO et al.

F I G U R E 17 3D lid driven cavity benchmark at Re = 1000, weak scaling for the proposed method. The efficiency is computed with
respect to the time required with 16 cores. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 18 Flow past a cylinder benchmark, geometry, and boundary conditions (image from Reference 58).

F I G U R E 19 Flow past a cylinder benchmark, contour plot of velocity magnitude at t = T [Colour figure can be viewed at
wileyonlinelibrary.com]

0.41 m makes the domain non-symmetric and allows the vortex shedding in the wake of the cylinder. The inflow
condition is

u(0, y) =

(
4Um

y(H−y)
H2

0

)

,

with Um = 1.5 m s−1. As explained in Reference 58, we consider as reference quantities the inflow velocity mean value
U = 1.0 m s−1, the diameter of the cylinder equal to L = 0.1 m and 𝜈 = 0.001 m2s−1, which yields Re = 100.

We compute the drag and lift coefficients, defined as in Reference 58. Other reference values are the pressure drop
Δp(t) = p(0.15, 0.2, t) − p(0.25, 0.2, t) and the Strouhal number St = Df

U
, where f is the frequency of separation computed
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ORLANDO et al. 1509

(A) (B)

F I G U R E 20 Flow past a cylinder benchmark, (A) drag coefficient, (B) lift coefficient [Colour figure can be viewed at
wileyonlinelibrary.com]

(A)

(B) (C)

F I G U R E 21 Flow past a cylinder benchmark, adaptive simulation, (A) grid at t = T, (B) drag coefficient, (C) lift coefficient [Colour
figure can be viewed at wileyonlinelibrary.com]

as a function of the lift coefficient CL. The final time is T = 400, which corresponds to a dimensional time of 40 s, since the
reference time value is L

U
= 0.1 s, and allows to obtain a fully developed wake. The grid is composed by 23,552 elements

and the time step Δt = 5 ⋅ 10−3 is such that the maximum Courant number is around 1. Figure 19 shows the contour plot
of the velocity magnitude at t = T and one can easily notice the formation of the vortices in the wake of the cylinder.
Figure 20 reports the evolution of the lift and drag coefficients from t = 385 to t = T; it can be observed that the expected
periodic behavior is retrieved. The maximum drag coefficient and the pressure drop are 3.33 and 2.60, respectively, which
are slightly larger values than the intervals [3.22, 3.24] and [2.46, 2.50] proposed in Reference 58, even though they are in
the overall range of the solutions proposed in the literature. The maximum lift coefficient is 1.01, which lies in the interval
[0.99, 1.01] present in Reference 58, while the Strouhal number is equal to 0.3, which is again in the interval [0.295, 0.305]
reported in Reference 58.

The same test has been repeated using adaptive mesh refinement with the same criterion described in Section 4.2. The
initial mesh is composed by 5558 elements and we allowed up to two local refinements, whereas the maximum element
diameter is kept equal to the one of the initial grid. The same remeshing procedure described in Section 4.2 was applied
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1510 ORLANDO et al.

F I G U R E 22 Picture of the considered geometry [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 23 Comparison between deal.II and OpenFOAM from line A (top) to line D (bottom) for u component of the velocity, the one
along x-axis (left), v component of the velocity, the one along y-axis (center) and w component of the velocity, the one along z-axis (right)
[Colour figure can be viewed at wileyonlinelibrary.com]
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ORLANDO et al. 1511

T A B L E 22 Pressure drop along the four midlines of the channels for the different simulations.

OpenFOAM (coarse) OpenFOAM (middle) OpenFOAM (fine) deal.II

line A 18.6801 18.8735 18.9112 18.7687

line B 18.5748 18.7453 18.7973 18.6780

line C 18.2494 18.4158 18.4706 18.3596

line D 17.0799 17.2534 17.3135 17.2452

(A) (B)

(C) (D)

F I G U R E 24 Comparison between deal.II and OpenFOAM on the middle section, (A) OpenFOAM on coarse mesh, (B) OpenFOAM on
middle mesh, (C) OpenFOAM on fine mesh, (D) deal.II [Colour figure can be viewed at wileyonlinelibrary.com]
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1512 ORLANDO et al.

(A) (B)

(C) (D)

F I G U R E 25 Comparison between deal.II and OpenFOAM at three-quarters section, (A) OpenFOAM on coarse mesh, (B) OpenFOAM
on middle mesh, (C) OpenFOAM on fine mesh, (D) deal.II [Colour figure can be viewed at wileyonlinelibrary.com]

every 5000 time steps. Figure 21 reports the final mesh obtained and the values of the drag and lift coefficients. One can
easily notice that more resolution is added in the wake of the cylinder and on its boundary and that the behavior of the
two coefficients is analogous to that in the uniform mesh case. The final mesh consists of 11,630 elements and a reduction
of computational time of about 50% is achieved with respect to the uniform mesh case.

4.5 Complex geometry

The matrix-free approach present in the deal.II library makes the proposed solver attractive also for industrial applications
that involve a large number of degrees of freedom. For this purpose we have tested the solver on the complex geometry of
an heat exchanger of industrial interest.59 More specifically, a four channels module of a designed checkerboard pattern
heat exchanger has been considered, with the goal of simulating its pure fluid-dynamic behavior (i.e., in absence of heat
exchanges) between the inlet and the outlet. The channel is long 0.5 m.

We consider Re = 5000, assuming unitary inflow velocity considering the channel length as reference length. We set
c = 300 m/s, which is of the order of magnitude of the speed of sound in air. The mesh consists of 129,696 Q2 − Q1
elements, which yields 10,505, 376 degrees of freedom for the discrete velocity variables and 1,037, 568 for the discrete
pressure variables. In order to verify the results of the simulation at steady state, various simulations with an OpenFoam
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ORLANDO et al. 1513

(A) (B)

(C) (D)

F I G U R E 26 Comparison between deal.II and OpenFOAM on the outlet, (A) OpenFOAM on coarse mesh, (B) OpenFOAM on middle
mesh, (C) OpenFOAM on fine mesh, (D) deal.II [Colour figure can be viewed at wileyonlinelibrary.com]

steady state solver have been performed. More in detail, three meshes with different resolutions have been used with
the OpenFoam solver. The coarsest is the one previously described, an intermediate resolution one consists of 1,382,120
elements while the finest is composed by 2,108,119 elements. A comparison between the results obtained on each mesh is
reported in Figure 23 for the midlines of the four channels depicted in Figure 22. For the sake of simplicity, the channels
are denote by A,B,C, and D from bottom to top, respectively.

It can be observed that a good quantitative agreement between the two solvers has been obtained, taking into
account the different features. Moreover, the solution computed with the DG approach is more similar to the
results obtained with the OpenFoam solver on the finest meshes, as evident especially for the axial component
w. This is further confirmed by the pressure drop computed for the four lines and reported in Table 22. Analo-
gous considerations hold for the sections reported in Figure 22 where we have compared the contour of the veloc-
ity magnitude on the middle of the domain, at three-quarters of the domain and on the outlet in Figures 24–26,
respectively.
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1514 ORLANDO et al.

5 CONCLUSIONS AND FUTURE PERSPECTIVES

Building on the experience of Reference 10, we have proposed an accurate, efficient and robust projection method,
based on the TR-BDF2 method. While time discretizations of the incompressible Navier–Stokes equations based on
accurate implicit solvers have been proposed in many other papers, the specific combination of techniques pre-
sented in this work appears to be optimal under several viewpoints for the development of a second order adaptive
flow solver.

The proposed fully implicit method has been implemented using discontinuous finite elements in the framework of
the numerical library deal.II, with the aim of building a reliable, flexible and easily accessible tool for industrial appli-
cations that can ultimately be competitive with more conventional finite volume techniques. We have shown that the
method has superior accuracy and efficiency with respect to some well known alternative schemes on a number of
classical benchmarks.

In future work, besides application of the proposed approach to significant industrial applications and extensions to
fully compressible and multiphase flow, an interesting development will be represented by the integration of more sophis-
ticated a posteriori error estimation techniques60-62 to obtain optimal adaptive approaches. Furthermore, the multirate
time integration version of the TR-BDF2 method63 could also be integrated in the discretization approach, so as to obtain
a fully space-time adaptive technique based on a robust and unconditionally stable method.
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