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A B S T R A C T   

The increased seasonal demand for water puts pressure on Mediterranean water resources, which are often 
exploited in a non-renewable way. Besides, climate change can alter hydroclimatic patterns and exaggerate 
freshwater stress. Flexible operation of existing water reservoirs is one of the most cost-effective ways to mitigate 
water-related stress by storing water when it is abundant and releasing it when droughts persist. In this context, 
hydroclimatic forecasts can be central in properly informing reservoir operation. Nevertheless, the link between 
forecast skill and forecast value is neither easily predictable nor necessarily positive. Each system requires 
specific forecasts according to its characteristics, and the skill of existing forecast systems does not necessarily 
translate into a significant gain in system performance. In this work, we develop downscaled seasonal forecasts of 
reservoir inflow for the Faneromeni irrigation dam on Crete island. We then quantify the value of these seasonal 
forecasts in informing the reservoir operations. While the current operation of this reservoir is based on the 
available storage at the beginning of the irrigation season, we investigate alternatives by using the Evolutionary 
Multi Objectives Direct Policy Search method, which allows the design of flexible rules to cope with the vari
ability of the hydrologic conditions as well as to include forecast information for conditioning operational de
cisions. Under historical climate conditions, results demonstrate a notable enhancement in performance solely by 
implementing more flexible operating policies. Incorporating perfect forecasts results in an additional 
improvement of 4% on average throughout the period from 1993 to 2019. However, when using actual forecasts, 
this gain diminishes to 1%. These outcomes support the exploration of potential trade-off solutions that effec
tively balance the competing demands within the region.   

Practical implications  

Water availability in the Mediterranean is driven mainly by sea
sonal precipitation patterns, while water use maximizes with an 
opposite seasonal pattern, primarily dominated by agriculture. As 
a result, water management decisions in the region are based 
mainly on the seasonal status of the water resources, which is 
getting progressively crucial as the end of the dry summer period 
is reached. Therefore, the knowledge of a potentially prolonged 
dry or wet onset in advance provides the opportunity to improve 
drought risk management, especially in the context of a changing 
climate. 

Water-control structures, such as water reservoirs, appear to be 
increasingly essential to compensate for the different precipitation 
time distribution and to shift water from wet to dry seasons. In 
addition, more efficient management of existing structures can 
improve the system’s performance and resilience with signifi
cantly lower costs rather than planning new ones. However, 
traditional management practices are challenged by the progres
sive and substantial drying, thus calling for more flexible and 
anticipatory strategies to support the sustainable use and preser
vation of water resources in the Mediterranean region. 

In recent years, seasonal forecasting has progressed, using the 
most recent advancements in weather and climate modelling 
research. Several studies have looked at the additional benefit of 
employing streamflow forecasts for informing reservoir 
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operations. The rising forecast skill is providing new possibilities 
for adopting forecast-informed reservoir operations. 

Our work evaluates the value of seasonal forecasts and flexible 
operating policies in guiding reservoir management of the water- 
stressed Messara valley in south-central Crete, Greece. This 
reservoir is a crucial component of the region’s water infrastruc
ture and a key factor in the growth of the local primary sector’s 
economy. The reservoir provides water to agricultural irrigation 
districts of the area, competing to access the basin’s scarce water 
resources. The reservoir has traditionally been run according to a 
simple rule that suggests releasing a volume equal to a pre-agreed 
demand during the irrigation season (from May to November). 
However, the system is struggling due to the summer droughts and 
extremely high inflow fluctuation, frequently preventing the 
reservoir from fully topping during the wet season. 

We utilized streamflow forecasts with a seven-month lead time to 
inform Faneromeni reservoir operation policies. A “no forecast- 
informed” scenario served as a benchmark to quantify the added 
value of the “forecast-informed”. In order to accomplish this, it 
was necessary first to comprehend the primary water-related dy
namics and the various objectives of the parties involved and 
subsequently to develop a reservoir model for supporting the 
design of improved operating strategies. Then, Pareto-optimal 
operating policies were designed, allowing the exploration of 
the trade-offs across the considered objectives as well as informing 
the operating policies with forecast information. 

Results indicate that introducing flexible rules, even not based on 
forecasts, can significantly boost system performance. Analyzing 
the trade-offs between the considered objectives reveals that 
perfect seasonal forecasts (observations) appear to be a useful 
instrument in the Faneromeni reservoir operation, leading to a 
significant improvement in the system’s performance. When 
considering a real forecast product, we discovered that its skill 
places a cap on how well real forecast-informed policies can 
perform. This could be due to the fact that we used the median of 
the ensemble; however, this means that we lost the inflow vari
ability and missed wet years when there was room to expand the 
water supply. Therefore, it would appear necessary to carefully 
choose the best forecast member to enhance the system’s func
tionality. The interannual inflow variability has a high degree of 
variability, which makes it challenging to identify a fixed 
percentile of the predicted ensemble distribution. 

Our findings are expected to improve the management of water 
resources for sustainable water exploitation, and the framework 
we developed can be used at other study sites with similar 
problems. 

Data availability 

Data will be made available on request.   

Introduction 

Water resources in the Mediterranean are already under pressure 
from the combined impacts of human interventions and anthropogenic 
climate change (Fader et al., 2020; Gudmundsson et al., 2021; Kou
troulis et al., 2019; Pokhrel et al., 2021). Significant streamflow changes 
have been observed in the recent past (Gudmundsson et al., 2017; Kadir 
et al., 2020), and the overexploitation of groundwater resources is 
clearly detectable in large-scale satellite gravity data (Rodell et al., 
2018). As a result, more than 180 million people in the region are 
considered water poor, and an additional 60 million face different levels 
of water stress, according to estimates by the Union for the Mediterra
nean (UfM). 

Water availability in the Mediterranean is driven mainly by seasonal 
precipitation patterns (Burak and Margat, 2016; García-García et al., 

2022; Mariotti et al., 2002), while water use maximises with an opposite 
seasonal pattern, primarily dominated by agriculture (Fader et al., 
2020). The region experiences the majority of its precipitation during 
the winter months, while the summer period is characterized by dry 
conditions; however, it is during this dry season that the demand for 
water reaches its peak. Decisions in the agricultural sector are thus 
closely linked to the temporal availability of the water resources and the 
water demand from distinctive types of irrigated cultivation, which are 
extensively practised during dry periods. Furthermore, the intensity of 
tourism activities in the Mediterranean maximises mostly during the 
water-scarce summer. As a result, water management decisions in the 
region are largely based on the seasonal status of the water resources, 
which is getting progressively crucial as the end of the dry summer 
period is reached. Therefore, the knowledge of a potentially prolonged 
dry or wet onset in advance provides the opportunity to improve 
drought risk management (An-Vo et al., 2021; Hansen, 2002; Sánchez- 
García et al., 2022; Suárez-Almiñana et al., 2022; White et al., 2017), 
especially in the context of changing climate. Most future climate sce
narios denote a progressive and substantial drying of the region (Betts 
et al., 2018; Hertig and Tramblay, 2017; Tramblay et al., 2020), indi
cating a shift for over 40% of Mediterranean land to drier states (Kou
troulis, 2019). This shift will challenge traditional management 
practices thus calling for more flexible and anticipatory strategies to 
support a sustainable use and preservation of water resources in the 
Mediterranean region. 

Water-control structures, such as water reservoirs, appear to be 
increasingly important to compensate for the different precipitation 
time distribution and to shift water from wet to dry seasons. In addition, 
more efficient management of existing structures can improve the sys
tem’s performance and resilience with significantly lower costs rather 
than planning new ones (Gleick, 2002). However, drought hazard is 
substantially modulated by reservoir operation, i.e., Brunner (2021) 
showed that reservoir regulation affects drought hazard locally by 
reducing severity but increasing duration. In this context, careful water 
use planning is needed to ensure sustainable use and protection of water 
resources. Such planning should be based on the comprehensive 
assessment of water balance components, advanced monitoring and 
early warning systems, climate, and socio-economic factors. Among 
these, collaborative governance bottom-up processes are of prime 
importance because it promotes equity amongst users, enhances long- 
term water resource sustainability, provides technical benefits such as 
better estimates of water abstraction and precise understanding of the 
water balance and helps in the implementation of demand and supply 
measures (Huntjens et al., 2011; Margerum and Robinson, 2015; van 
Buuren et al., 2019). The design and implementation of participatory 
and integrated management strategies (e.g., Giuliani et al., 2022; 
Soncini-Sessa, 2007) requires the adoption of a posteriori generation 
technques to discover the full set of Pareto optimal (or approximate) 
solutions prior to eliciting the decision maker’s preferences (Giuliani 
et al., 2014). This approach allows overcoming the limitations of a priori 
multicriteria decision making (Keeney and Raiffa, 1976) or 
monetisation-based hydro-economic approaches including Cost-Benefit 
analysis (Harou et al., 2009), where the relative value of different 
operational objectives is estimated/hypothesised a-priori by making 
strong assumptions that could bias the final decision making problem 
(Haimes and Hall, 1977). 

Seasonal forecasting has advanced in recent years, putting into 
practice the latest weather and climate modelling research improve
ments (Giuliani et al., 2020; Yang et al., 2021, 2020). The increasing 
forecast skill is opening new possibilities for implementing forecast- 
informed reservoir operations, with several research studies that have 
examined the added value of using streamflow forecasts for informing 
reservoir operation around the world (Anghileri et al., 2016; Giuliani 
et al., 2020; Lee et al., 2022; Turner et al., 2017; Yang et al. 2020) as well 
as practical application especially in the Western US (Delaney et al., 
2020; Jasperse et al., 2020). Although some of these studies show 
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different results according to the characteristics of the case study and the 
forecast accuracy (Yang et al., 2021; Lee et al., 2022), the potential 
forecast-induced benefits appear clear and promising (Giuliani et al., 
2021). 

In this study, we investigate the value of seasonal hydrological 
forecasts in informing reservoir operation in the water-stressed Messara 
basin on the island of Crete. The area constitutes Crete’s most important 
agricultural region, thus, freshwater is the critical resource controlling 
the region’s development, and its growing demand is a severe envi
ronmental stressor. Groundwater is the primary source of irrigation, and 
overexploitation of the underlying aquifer has led to a severe dropdown. 
The Faneromeni dam was recently constructed to augment water 
availability during dry periods; however, its management is challenging 
due to the multiple end-users with competing interests and the 
conventional-static operation applied. In light of these challenges and in 
collaboration with end-users, we developed a reservoir model for sup
porting the design of improved operating strategies tailored to the local 
water control system. We developed and provided climate forecast in
formation on water balance components at the seasonal time scale. We 
finally assessed the benefit arising from the potential adaptation of 
flexible policies alone and then from forecast-informed policies. Our 
results show that, under historical climate conditions, the use of flexible 
policies, even if not informed by forecasts, is able to improve the system 
performance substantially. 

Material and methods 

Case study 

The Messara valley in the southcentral part of the island of Crete, 
Greece (Fig. 2) is the most agricultural-intensive region of the island. 
The main land-use activities are olive growing, greenhouse vegetable 
cultivations, cereal growing, grapevine and fruit cultivation, and graz
ing (Koutroulis et al., 2016). Historically, irrigation needs have driven 
an over-exploitation of the groundwater and the salinisation of the 
coastal aquifer (Varouchakis et al., 2022), motivating the construction 
of the Faneromeni. The downstream region of Timpaki is a highly 
exploited area concerning the greenhouse cultivations because of the 
year-round favourable climatic conditions. Therefore, the reservoir’s 
primary purpose is to support the increased irrigation water demand of 
the Messara valley. The reservoir covers an area of about 100 ha with a 
capacity of 17 Mm3. The dam is over-sized with respect to the water 

potential of its drainage area because the original design assumed that it 
would be filled with the excess flow of the nearby Platis river. Instead, 
the main inflow is the Koutsoulidis intermittent stream, a tributary of 
the main Geropotamos river, since the diversion has never been con
structed. It is an earth-filled dam with a concrete spillway. The dam was 
completed in 2005 and filled for the first time in 2010, while the irri
gation networks were completed in 2013. The total construction cost 
was 60 M€, including the cost of the irrigation networks. The average 
annual inflow in the reservoir is 13 Mm3 (minimum 4.7 Mm3 and 
maximum 29.5 Mm3), and the annual renewable quantity is 8.7 Mm3 for 
a return period of 10 years. 

The efficient management of water resources is of great importance, 
particularly during the dry period from May to September, when water 
demand reaches its highest levels (Fig. 1). However, in years with ample 
rainfall during late winter and spring, a water reserve is formed, offering 
flexibility in managing water resources throughout the summer. 
Furthermore, the occurrence of early autumn rainfall provides addi
tional relief to the system through supplementary inflows. To assess the 
potential impact of early autumn supplementary inflows, we examine 
the historical data for the months of October and November. In October, 
there exists a probability exceeding 20% for an additional 0.2 Mm3 of 
water to flow into the system. Similarly, in November, the average 
inflow is approximately 0.6 Mm3, with a probability exceeding 28% of 
receiving an extra 0.5 Mm3 of inflow above the average. Predicting the 
onset of an early wet autumn period would further enhance the utili
zation of water reserves during the dry summer period. The successful 
exploitation of water reserves during the dry summer period can have 
significant implications for resource allocation. These additional water 
resources can be diverted towards crops under deficit irrigation or can 
reduce the reliance on groundwater pumping, leading to substantial 
energy savings and lower irrigation water prices. Based on the afore
mentioned seasonal hydroclimatic and demand patterns, our analysis 
specifically focuses on the highlighted period above to identify strategies 
for maximizing water resource utilization while also considering the 
potential benefits year-round. 

The reservoir is primarily operated to irrigate 4,700 ha in the valley 
of Messara. In particular, two macro-regions are distinguished: the first 
is composed of Skourvoula, Galia, Faneromeni, Voroi, Tympaki, and its 
water demand must be satisfied at 100% (we called this macro-region 
the Priority zone (P)), as the reservoir is the only source of irrigation. 
The other is composed of large agricultural zones (consisting of 60% 
olive trees, 30% vegetables, and 10% of other cultivation), named A, B, 

Fig. 1. Seasonal patterns of water demand and reservoir inflow. Green line indicates the average historical inflow [Mm3] in the dam while gray lines are the in
dividual years. Dotted line indicates the demand seasonality [Mm3]. Shaded area correspond to +/- 1 standard deviation of inflows over the 1974–2019 period. 
exceptionally high inflows of 2015 and 1998 are highlighted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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and C, and their aggregated demand has to be satisfied at 42.9% on an 
average hydrological year. We called the latter zone ABC for simplicity. 
The reservoir contributes to the irrigation of the zone ABC in combi
nation with groundwater withdrawals during the irrigation period 
(May-Oct). In Table 1, the details of regional annual water demand are 
reported. 

The reservoir is operated by a management committee consisting of 
the three main agricultural water management authorities, the region’s 
municipal authority, and the water authority of the Region of Crete. The 
current rule suggests releasing a volume equal to the demand during the 
irrigation season with no releases in the winter period. In normal con
ditions at the beginning of the irrigation season, the water availability 
guaranteed by the reservoir is 8.5 Mm3, which is expected to cover the 
demand in the following months. If at the beginning of the irrigation 
season the reservoir storage is not sufficient to provide 8.5 Mm3, then 
the release is reduced by a constant factor equal to the ratio between the 
observed storage over 8.5 Mm3. It is noticeable that this deficit is 
entirely burdened on ABC, while P demand has to be totally satisfied 
anyway (if physically possible). 

Today, the Faneromeni reservoir constitutes an indispensable water 
resource for the region and a major driver for the local economic 
development of the Messara’s primary sector. Nevertheless, the system 
is suffering due to very dry conditions during the summer and sub
stantial inflow variability, which is often unable to completely fill the 
reservoir during the winter season. Seasonal precipitation variability of 
the East Mediterranean is primarily driven by atmospheric and oceanic 
circulation. An important factor is the North Atlantic Oscillation (NAO), 
which influences the strength and location of the atmospheric circula
tion in the wider eastern Mediterranean region (Seager et. al., 2020). 
During a positive phase of the NAO, the westerly winds are stronger, and 
the East Mediterranean receives more precipitation. In contrast, a 
negative phase of the NAO weakens the westerly winds and reduces 
precipitation. Additionally, the Mediterranean Sea plays a role in the 
precipitation variability as it can either enhance or suppress precipita
tion depending on sea surface temperatures and atmospheric pressure 
patterns. Warm sea surface temperatures in the eastern Mediterranean 
have been found to also correlate to precipitation (Pasrtor et. al., 2019). 
However, the annual reservoir inflow exceeds the target irrigation de
mand almost 50% of the time during 1973–2019 based on measured and 
reconstructed data, indicating the possibility and room for further 
improving the current Faneromeni operation. Furthermore, the large 
inflows variability gives, in principle, the opportunity to increase the 
water supply in wet years, and this could allow either to improve the 
irrigation supply for the ABC zone or to provide irrigation also during 
the winter season. 

Modeling the system 

The model of the system reproduces the dynamics of Faneromeni 
reservoir by using a mass-balance equation (Equation (1) with a monthly 
time-step. In Equation (1), st is the reservoir storage (m3), and at+1, Et+1 
and rt+1 represent the inflow, the evaporation and the reservoir release 
volume in the time interval [t, t + 1), respectively. In the adopted no
tation, the time subscript of a variable indicates the instant when its 
value is deterministically known. Inflow (at+1), evaporation (Et+1), and 
release (rt+1) have a t + 1 subscript because their actual value could be 
known only at the end of the time-step due to their uncertain nature. 

st+1 = st + at+1 − Et+1 − rt+1 (1) 

The volume of water released in one month is given by a non-linear 
function (Soncini-Sessa, 2007) that depends on the reservoir storage at 
the beginning of the month st, the release decision ut, and the net inflow 
(i.e., inflow minus evaporation losses). This function allows the effect of 
the uncertain net inflows between the time t (at which the decision is 
taken) and the time t + 1 (at which the release is completed) to be 
represented. The actual release might not be equal to the decision due to 
existing legal and physical constraints on the reservoir level and release, 
including spills when the reservoir level exceeds the maximum capacity. 
When we consider the adoption of flexible operating policies, the release 
decision ut is determined at each time step t by a closed-loop policy p as a 
function of the month of the year mt, the reservoir storage st, and, for 
forecast-informed policies, the inflow forecast q̂t+τ over the lead time τ. 

The main users served by the Faneromeni reservoir are the farmers in 
the Messara Valley. Given the importance of the agricultural activities in 
the region, the farmers would like to have more surface water to reduce 
irrigation costs and to reduce pressure on the groundwater, which is 
threatened by the high pumping rate for agricultural irrigation needs 
that is causing a gradual depletion of it as well as its contamination with 
salted seawater. 

We model their interest by computing the monthly average irrigation 
reliability (Ji, see Equation (2) over the evaluation horizon H (expressed 
in terms of number of months), defined as the ratio between the monthly 
irrigation supply (Yt+1) and the corresponding demand (Wt), i.e. 

Ji =
1
H

∑H

t=1

(
Yi

t+1

/
Wi

t

)
(2)  

where Yt+1 (m3) is the monthly irrigation supply and Wt (m3) the cor
responding demand of the i-th agricultural zone (i = P, ABC). 

To capture the spatial and temporal dynamics of the system intro
duced in the previous section, we compute four different indicators of 
reliability, with the first two representing the ability to satisfy the total 
annual demand in P (PT) and ABC zone (ABCT), while the others 

Table 1 
Faneromeni agricultural districts water demand (Mm3/year).   

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Annual 

Skourvoula  0.013  0.013  0.018  0.047  0.112  0.123  0.118  0.090  0.090  0.017  0.011  0.013  0.667 
Galia  0.014  0.014  0.019  0.050  0.118  0.130  0.124  0.095  0.095  0.018  0.012  0.014  0.702 
Faneromeni-Vori  0.047  0.047  0.063  0.165  0.215  0.237  0.226  0.172  0.172  0.032  0.022  0.047  1.446 
Vori - new irrig. network  0.012  0.012  0.016  0.041  0.106  0.117  0.111  0.085  0.085  0.016  0.011  0.012  0.622 
Ksirikos anadasmos  0.015  0.015  0.020  0.053  0.138  0.152  0.145  0.111  0.111  0.021  0.014  0.015  0.810 
Total P zone  0.101  0.101  0.136  0.356  0.690  0.759  0.724  0.552  0.552  0.103  0.069  0.101  4.246 
Zone A (100%)  0.126  0.126  0.168  0.441  0.602  0.660  0.516  0.344  0.430  0.172  0.115  0.126  3.825 
Zone B (100%)  0.010  0.010  0.035  0.233  0.443  0.480  0.369  0.277  0.240  0.018  0.000  0.040  2.154 
Zone C (100%)  0.037  0.037  0.135  0.890  1.692  1.832  1.410  1.057  0.916  0.070  0.000  0.154  8.231 
Zone A (42.9%)  0.054  0.054  0.072  0.189  0.258  0.283  0.221  0.148  0.185  0.074  0.049  0.054  1.641 
Zone B (42.9%)  0.004  0.004  0.015  0.100  0.190  0.206  0.158  0.119  0.103  0.008  0.000  0.017  0.924 
Zone C (42.9%)  0.016  0.016  0.058  0.382  0.726  0.786  0.605  0.454  0.393  0.030  0.000  0.066  3.531 
Total ABC zone (100%)  0.172  0.172  0.338  1.563  2.736  2.972  2.295  1.678  1.586  0.261  0.115  0.321  14.210 
Total ABC zone (42.9%)  0.074  0.074  0.145  0.671  1.174  1.275  0.984  0.720  0.680  0.112  0.049  0.138  6.096 
P zone þ ABC zone(100%)  0.274  0.274  0.474  1.919  3.426  3.731  3.019  2.230  2.138  0.364  0.184  0.422  18.456 
P zone þ ABC zone(42.9%)  0.175  0.175  0.281  1.027  1.864  2.034  1.709  1.272  1.232  0.215  0.118  0.239  10.342  
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represent the ability to satisfy only the seasonal demand (May- 
November) in P zone (PS) and ABC zone (ABCS). 

Seasonal forecast 

Past seasonal forecast (hindcast) data for precipitation and temper
ature, for the European Centre for Medium-Range Weather Forecasts 
ECMWF SEAS5 model (IFS Cycle 43r1, (Johnson et al., 2019)) were 
obtained from the Copernicus Climate Data Store (CDS). These data span 
between 1993 and 2019 and comprise 25 ensemble member simulations 
that are initialised at equivalent intervals (monthly), at the starting 
point of the 214 days long-range simulation (~7 calendar months). In 
their work, (Grillakis et al., 2018) show that seasonal forecast data 
exhibit a lead time-dependent bias compared to the historical observa
tions, especially in the precipitation parameter. Hence, a data recon
struction was performed to adjust for biases, with the forecast data being 
rearranged to create seven seamless lagged ensemble time series with 
similar lead time characteristics (MacLachlan et al., 2015). Then, each 
time series was adjusted for biases using (Grillakis et al., 2017, Grillakis 
et al., 2013) methods, which have been found to perform best with 
seasonal forecast data (Grillakis et al., 2018) for the region of Crete. The 
adjusted data were used to drive the HYPE hydrological model 
(Lindström et al., 2010) to estimate the dam inflow. The model was 
calibrated and validated using the same precipitation and temperature 
data used for the aforementioned bias adjustment of the seasonal fore
casts. Since the observed flow data span between 1973 and 1993, the 
calibration period was set to 1973–1982, while the validation to 
1983–1993. The model exhibited good performance with the seven-day 
aggregated flows to obtain Kling-Gupta Efficiency (Gupta et al., 2009) of 
0.851 and 0.79 for the calibration and validation periods, respectively, 
as well as 0.903 and 0.736 according to the Nash – Sutcliffe metric (Nash 
and Sutcliffe, 1970). Furthermore, the overall flow bias was estimated 
at − 4.4% and 1.8% for the calibration and validation periods, respec
tively. The calibrated model was then used to extend the simulated 
discharge to 2019. This time series served as a perfect forecast flow 
estimation. More details about the calibration can be found in (Grillakis 
et al., 2018). For each ensemble member simulation, the HYPE model 
was initialised on the first day of the simulation, using the soil water 
state provided by the perfect forecast simulation for the same date. 

Operating policy design and assessment of forecast value 

The optimal operating policies p* of the Faneromeni reservoir with 
respect to the four indicators introduced in the previous section can be 
designed by solving a multi-objective optimal control problem formu
lated as follows: 

p* = argminpJ(p) =
⃒
⃒PT ,ABCT ,PS,ABCS

⃒
⃒ (3) 

The operating policies are optimised using the Evolutionary Multi- 
Objective Direct Policy Search (EMODPS) method (Giuliani et al., 
2015a) a Reinforcement Learning approach that combines direct policy 
search, non-linear approximating networks, and multi-objective evolu
tionary algorithms. This method has been demonstrated to be effective 
in solving these types of multi-objective policy design problems 
featuring the possibility of enlarging the information used for condi
tioning operational decisions (Giuliani et al., 2020; Giuliani et al., 
2015b; Zatarain Salazar et al., 2016). The assessment of the forecast 
value was performed over the period 1994–2019, when both forecasts 
and inflow series were available. Practically, we firstly designed a set of 
Basic Operating Policies (BOPs) without considering any forecast in
formation to generate a benchmark useful to assess the forecast value. 
Secondly, we designed a set of Perfect Operating Policies (POPs) using 
the observed value of the inflow forecasts to quantify potential 
improvement generated by an ideal forecasts product, namely the EVPI 
(Expected Value of Perfect Information). Lastly, we used a real forecasts 
product (see the previous Section) to design the Informed Operating 
Policies (IOPs) to investigate the actually achievable improvement 
associated with this kind of forecasts. 

Results and discussion 

Seasonal forecast skill 

The forecast skill of the HYPE simulated dam inflow, forced with the 
seasonal forecast meteorological variables was assessed. Fig. 3 shows the 
level of agreement between the most likely (the median of the 25 
ensemble members) tercile category forecasted, and the respective ter
cile category of the perfect forecast. The terciles were defined from the 
respective 33rd and the 66th percentile of the perfect forecast and the 
seasonal forecast climatological flow data. Note that October’s 33rd and 

Fig. 2. Study site location. Koutsoulidis watershed is filling the Faneromeni dam, which supports the irrigation of the agricultural areas P throughout the year and 
the Agricultural zones A, B and C of the wider Messara plain during the irrigation period (May-Oct). 
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66th percentile are almost identical and near zero since there is no 
inflow in the reservoir during this month. To that end, the “normal” flow 
category is almost not present in the results of Fig. 3 for October’s 
inflow. The overall results show that in 25 years of seasonal forecast 
evaluation, October’s below normal tercile is successfully forecasted 17, 
13 and 17 times, since July, August and September forecasts, respec
tively. The respective results for November are 10, 12 and 16 times. We 
further estimated the probability of a false positive prediction for a wet 
October and November. This estimation shows the probability of false 
forecast in case stakeholders decide to utilise a prediction of a wet up
coming October or November, by exploiting resources over the pre
defined annual allocation (8.5 Mm3). This failure probability was 
estimated at 40%, 66% and 36% for October, from three two and one 
months ahead, and 33%, 42% and 33% for November, respectively. It is 
worth noting that, in the case of a false positive wet prediction, the 
probability of an actually dry October (November) was estimated be
tween 20% and 33% for October and 8% to 20% for November. 

Trade-off analysis 

This section illustrates the results of the trade-off analysis by 
exploring the 4-dimensional Pareto front obtained from the operating 
policies design. In particular, the Faneromeni operation performance of 
policies without forecast information (BOPs) are compared against those 
of current operating rule (described in Section 2.1). 

In Fig. 4, the objectives referring to total covered-demand are rep
resented by x- and y-axis, while the seasonal covered-demand ones are 
represented with the colour (ABCS) and the size (PS) of the points, 
respectively. The ideal solution would be a large yellow point in the 
figure’s upper right corner. This bi-dimensional projection clearly shows 
a strong trade-off between the covered demand ratios in the two regions 
(PT and ABCT): increasing PT values implies decreasing the performance 
in terms of ABCT, and this generally holds also for the seasonal objec
tives. It can also be noticed that the solution of the current operating rule 
is largely dominated by the Pareto optimal policies designed via 
EMODPS, at least in terms of PT and ABCT. 

In general, it is possible to recognise a positive correlation between 
PT and PS, and between ABCT and ABCS (see Supplementary Fig. S1). 

Fig. 3. Most likely tercile category prediction match for dam inflow of October and November months, from one, two and three months ahead, for 25 hydrological 
years. In colour boxes, the seasonal forecast state and, with a dot, the actual state according to the perfect forecast drought state. At the right is the fraction of 
successfully forecasted months. The terciles were defined from the respective 33rd and 66th percentile of perfect forecast and seasonal forecast climatological 
flow data. 
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Since most of the water demand occurs during the irrigation season, 
maximising the total covered demand ratio can increase the seasonal 
objective values. However, the same performance in PT can be achieved 
with different values of PS depending on the temporal allocation of the 
water supply. This also holds true for ABCT and ABCS. In fact, total ob
jectives ignore the distribution of the deficit within the year, whereas 
seasonal objectives only consider the water supply during the irrigation 
season. 

Forecast value 

In this section, we build on the results reported in Fig. 4 to quantify 
the forecast value as the gain in performance attained by informing the 
operating policy with forecast information. 

Fig. 5 contrasts the performance of the Basic Operating Policies not 
informed by any forecast information (i.e., the same solutions reported 
in Fig. 4) against the Informed Operating Policies that use the seasonal 
forecasts described in Section 3.1 and the Perfect Operating Policies that 
use perfect inflow forecast. Results show that the three Pareto fronts 
have a very similar shape, with a large part of the POP set that overlaps 
the BOP one, thus suggesting the space for improvement is relatively 
small. Nevertheless, it is remarkable that the POPs are able to reach 
better performance around the inflexion point of the Pareto front. This is 
a promising result because the negotiation of a compromise solution 
between the competing objectives will probably take place here. The 
real forecast-informed solutions (IOPs) are located between the BOPs 
and the POPs, and this is reasonable since the forecast used by these 
solutions are affected by errors. Notably, IOPs are also largely over
lapped with the BOPs, except for the rightmost region of the PT-ABCT 

space. This result suggests that forecasts can potentially improve the 
system’s performance, but the considered forecast product’s skill is 
insufficient to generate large benefits when operating the system. Beside 
the exploration of the use of seasonal information in the IOPs reported in 
Fig. 5, we tested the use of both forecasts with 1 month and 7 months 
leadtimes. Results (not shown) show that the 1 month leadtime forecasts 
are not able to further improve the performance of the IOPs. 

The forecast value can be quantified by looking at the horizontal 
improvement obtained by IOPs and POPs with respect to the current 

operating rule (the improvement in terms of seasonal objectives is not 
reported here given the priority of the water supply system is assigned to 
the P zone). Table 2 shows the horizontal improvement in total and 
seasonal objectives attained by the new policies, including the Basic 
Operating Policies to distinguish the contribution of the forecast infor
mation from the one generated by the implementation of a more flexible 
operating policy than the current operating rule. As total objectives are 
concerned, it can be seen that most of the improvement with respect to 
the current operating rule is attributable to the use of flexible policies, 
rather than the use of forecasts. Indeed, the best BOP associated with the 
current performance in ABCT allows increasing the performance of PT by 
more than 25%. The IOP leads to an additional small increase, but is only 
the POP that can significantly improve the PT performance. Similarly, 
when considering the seasonal objectives, it can be noted that the im
provements are generally lower than the ones in the total objectives. 
This is due to the fact that the system is currently operated to satisfy the 
seasonal objectives, so there is less room to improve them. Anyway, the 
same considerations of the previous case hold true, except for the fact 
that here the IOP has the same performance as the BOP, thus registering 
a null value of the real forecasts. 

To understand how the forecast information affects the system 
operation, a sub-set of solutions has been selected from Fig. 5 and 
analysed by looking at the corresponding simulated reservoir dynamics. 
In particular, in Fig. 6 we show the trajectories of the reservoir level 
generated by the three solutions discussed in Table 2 (BOP_T, IOP_T and 
POP_T). It can be noted that the BOP_T produces a higher oscillation and 
a lower average reservoir level with respect to the current operating 
rule. This remarks the ability of the BOP_T to fully use the reservoir 
storage, which avoids some winter spillages (the reservoir water level 
ranges from 128 to 156 m a.s.l.). The POP_T solution even exacerbates 
this strategy substantially drawing down the reservoir at the end of the 
irrigation season. This is because the policy knows that the incoming 
inflow during the winter will be able to refill the reservoir, at least 
partially. The trajectory generated by the IOP_T lies between the POP_T 
and the BOP_T ones: when it is more similar to the POP_T trajectories it 
means that the forecasted inflow is similar to the actual realisation 
(perfect forecast), and so the forecast information has been valuable; on 
the contrary, when the IOP_T and BOP_T trajectories are close it means 

Fig. 4. Bi-dimensional projection of the 4-dimensional, not forecast-informed optimisation Pareto front shows a strong trade-off between the two irrigated regions. 
The point size represents the PS objective. The squared green point at PT = 0.75 and ABCT = 0.32 represents the current operating rule performance. The ideal 
solution would be a large yellow point in the figure’s upper right corner. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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that the forecast hasn’t been useful to the reservoir operation. It is worth 
noting that during exceptional multi-year drought events, such as 
2005–2008, the four trajectories overlap: this is because the limited 
reservoir capacity and the seven months lead time of the considered 
forecasts do not allow implementing an inter-annual water transfer to 
compensate the extremely low inflows during this extreme drought 
event. This finding confirms how the forecast value depends on not only 
the forecast skill (actual vs. perfect forecasts) but also the hydrological 
conditions (normal vs extremely dry years). 

Finally, in order to provide some recommendations to the operators 
of the Faneromeni dam, we analyze in more detail the reservoir level- 

release relationship for different policies by visualizing the simulated 
trajectories in a set of monthly scatterplots (Fig. 7). The figure shows 
that the current operating rule implements constant releases in the 
irrigation season that do not vary with the reservoir level, except for 
extremely low levels. On the contrary, the three new policies adjust the 
release according to the level and the month on the year. We can notice 
how the perfect forecasts suggest the POP_T to implement lower releases 
than the BOP_T at the beginning of the irrigation season (May-June), 
with the saved water that allows higher releasees during the next 
months of the irrigation season. The IOP_T is not able to reproduce this 
strategy in May and June, probably because the real forecasts tend to 

Fig. 5. Comparison of the bi-dimensional projections of the BOPs (yellow dots), IOPs (green dots) and POPs (blue dots) Pareto fronts obtained for total (a) and 
seasonal (b) objectives. The red square represents the current operating rule, and the red lines identify the space of the non-dominated solutions. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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overestimate the real inflow in this period of the year. In October and 
November, both the IOP_T and the POP_T tend to generate higher re
leases than the BOP_T by taking advantage of the information about the 
incoming winter inflow. Finally, the current operating rule does not 
release any water outside the irrigation season (i.e., from December to 
April), while the other policies suggest positive releases to satisfy also 
the winter water demand. Interestingly, the IOP_T is the solution 
implementing the smallest release in these months to save water for the 
incoming irrigation season because forecasts tend to underestimate the 
spring inflow. 

Conclusions 

This work focuses on the assessment of the value of seasonal forecasts 
in informing reservoir operations in a water-stressed Mediterranean 
basin. This reservoir is located in the south-central part of Crete, in the 
Messara valley, and constitutes an indispensable water infrastructure for 

the region and a major driver for the local economic development of the 
primary sector. The Faneromeni reservoir provides water to two irri
gation districts competing to access the basin’s scarce water resources. 
Historically, the reservoir is operated with a simple rule that suggests 
releasing a volume equal to the demand during the irrigation season 
(from May to November) with no releases in the winter period and gives 
the priority of the water supply to one of the two irrigation districts. 
However, the system is suffering due to summer drought and very large 
inflow variability, which is often unable to completely fill the reservoir 
during the winter season. Seven-month lead time streamflow forecasts 
are used to inform the operating policies of the Faneromeni reservoir. In 
order to quantify the forecast value, we first design the not forecast- 
informed operating policies representing a benchmark. This required 
first to understand the main water-related dynamics and the different 
stakeholders involved, and subsequently to develop a reservoir model 
for supporting the design of improved operating strategies. Four objec
tives have been defined, representing the percentage of the annual and 

Table 2 
Forecast value of the selected IOPs and POPs.  

Total objectives  
ABCT PT PT improvement with respect to current 

operating rule 
PT improvement with respect to 
BOP_T 

PT improvement with respect to 
IOP_T 

Current operating 
rule 

0.32 0.751 – – – 

BOP_T 0.32 0.942 25.43% – – 
IOP_T 0.321 0.95 26.50% 0.85% – 
POP_T 0.321 0.976 29.96% 3.61% 2.74% 
Sesonal objectives  

ABCS PS PS improvement with respect to current operating 
rule 

PS improvement with respect to 
BOP_S 

PS improvement with respect to 
IOP_S 

Current operating 
rule 

0.364 0.885    

BOP_S 0.366 0.981 10.85% – – 
IOP_S 0.366 0.981 10.85% 0.00% – 
POP_S 0.366 0.995 12.43% 1.54% 1.54%  

Fig. 6. Faneromeni reservoir level trajectories generated by the simulation of BOP_T (orange line), IOP_T (green line), POP_T (blue line), and the current operating 
rule (black line) plotted against the monthly inflow (gray line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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seasonal (May-November) demand covered in the two irrigation dis
tricts. Then, Pareto-optimal operating policies were designed using the 
Evolutionary MultiObjectives Direct Policy Search optimisation 
approach, which allows exploring the trade-offs across the considered 
objectives as well as informing the operating policies with forecast 
information. 

Results show that the use of flexible policies, even if not informed by 
forecasts, is able to substantially improve the system performance. We 
analysed the trade-offs between the considered objectives, pointing out 
the competition between the irrigation districts and the temporal 
component of the water supply problem, that influences the value of the 
seasonal objectives. Seasonal perfect forecasts appear to be a useful in
strument in the Faneromeni reservoir operation, leading to a significant 
improvement in the performance of the system. Considering a real 
forecast product, we found that its skill constitutes a limit for the per
formance of the real forecast-informed policies. We used the median of 
the ensemble to compute the real forecast value, but this implies losing 
the inflow variability and detecting wet years, when there is room to 
increase the water supply. Future research can focus on developing post- 
processing methodologies for sub-sampling the forecast ensemble (e.g., 
Dorbryin et al. 2018) in order to select the best forecast member(s) that 
provide the most valuable information for advancing the reservoir 
operation. 

Our work attempts to give a comprehensive assessment of incorpo
rating seasonal forecasts into reservoir operations while acknowledging 
the limitations of the forecast product. Our results are expected to 
improve the current practices used by local practitioners by showcasing 
the benefits of flexible operating policies and the additional contribution 
that forecast information can bring. Interestingly, the interactions with 
the local authorities suggested these benefits may go beyond the ones 
quantified here in terms of improved irrigation supply as a primary 

concern in the region is related to the high energy cost of pumping 
groundwater. An improved reservoir operation allows reducing the 
volumes to be pumped and, therefore, lower the associated pumping 
costs, making the approach more attractive for the local decision 
makers. 

We recognize the current insufficiency of forecast skill and the 
importance of considering and communicating associated uncertainties. 
The limited experience of local operators with seasonal forecasts con
tributes to their hesitance in trusting and acting upon the forecast in
formation. Despite these limitations, we acknowledge the increasing 
skill of seasonal forecasts due to advancements in forecasting systems 
and postprocessing techniques. While managing expectations and 
addressing skepticism is crucial, exploring the potential benefits of 
sufficiently skilled forecasts allows us to understand future possibilities 
and the value they can provide to water management decisions. 
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