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Abstract— District heating networks (DHNs) are recognized as
pivotal infrastructures to reduce the carbon footprint of the heat-
ing sector. However, their large-scale dimension and the involved
nonlinear dynamics lead to significant issues regarding their
modeling and optimal control. Tackling these challenges, two
dynamic DHN modeling frameworks are presented: a detailed
simulation model and a control-oriented one. The simulation
model allows the development of lightweight dynamic DHN
simulators, accurately represents the main system dynamics
in reduced computational time, and is well-suited for testing
online control algorithms. This model is leveraged to develop a
simulation library for DHN systems in the Modelica environment,
named DHN4Control, freely distributed with this article in Nigro
(2023). Then, a methodology for deriving a control-oriented DHN
model is presented, suitable for designing a nonlinear model
predictive control (NMPC) regulator, ensuring computationally
efficient and cost-effective regulation while respecting operative
constraints. The developed modeling and control methods are
tested in simulation considering as benchmark a Test Facility
district heating plant located at Ricerca sul Sistema Energetico -
RSE S.p.A. in Milan (Italy), showing promising results in terms of
modelling accuracy, computational efficiency and energy savings.

Note to Practitioners—The dimension and complexity of
multi-producer district heating networks (DHN) make their mod-
eling, simulation, and online optimization challenging tasks. This
work proposes a solution for district heating networks efficient
simulation and optimal control design. The detailed explana-
tions of the modelling equations and the use of open source
software increase results replicability for practitioners. The
simulation-oriented model comes with a lightweight simulation
library, readily available at Nigro (2023). The control-oriented
model is reusable on generic multi-producer district heating
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networks, for computationally efficient optimization-based con-
trol design. The optimal control is able to manage thermal
generators and storages to minimize DHN operational costs
while respecting operational constraints over the whole thermal
network. The proposed solution is tested in simulation consid-
ering a real-world DHN plant currently under construction at
Ricerca sul Sistema Energetico - RSE S.p.A in Milan (Italy). The
simulation results show the cost saving performances of optimal
controllers developed with the proposed model. Overall, by using
the proposed solution, one can achieve faster simulation times and
ease the burden of optimal control modelling for the development
of an optimal-based control strategy for cost-effective DHN
operation.

Index Terms— District heating network, model predictive con-
trol, control-oriented model, energy efficiency.

I. INTRODUCTION

HEATING and cooling requirements for residential, com-
mercial, and industrial buildings in Europe account for

nearly 50% of their total energy demand, the majority of
which is supplied by fossil fuels [2]. In response to the
European 2050 targets for net zero greenhouse gas emissions
and the global push towards decarbonization, district heating
networks (DHNs) have emerged as a promising solution, given
their environmental and economic benefits to society [3], [4].
Consequently, the European Union intends to cover at least
50% of the heating demand of most European countries with
DHN systems by 2050 [5].

DHNs are plants for the generation, distribution, and con-
sumption of heat which is usable for indoor heating and
domestic hot water. They involve thermal generators (e.g.,
heat pumps, boilers), storages (e.g., insulated tanks), and loads
(e.g., households, buildings). The generated heat transfers to
loads through water flowing in the supply pipeline. Then,
water flows back to the generators via the return pipeline
to reheat. Based on the topology, DHNs’ structure can be
single producer, i.e., where thermal generators lay in a single
heating node, or multi-producer, in the presence of generation
distributed over the network [6]. Nowadays, most DHN plants
are operated by simple rule-based control strategies, which are
unable to exploit networks’ full potential and cause increased
thermal losses and operational costs. The motivation of this
study is to unlock district heating network efficiency through
optimization-based control strategies [7], [8]. Nevertheless,
modeling complex and large-scale DHNs implies two key
challenges: suitable dynamical simulator design, which is a
necessary tool for testing control strategies’ performances and
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proper system management, as well as the networks’ optimal
operation point computation, e.g., leveraging Model Predictive
Control (MPC) strategies. Two models shall be developed to
answer this needs.

A. Related Work

Concerning the simulation of DHN, the mathematical mod-
eling describing single-producer DHN in [9] is accomplished
using partial differential equations, whereas in [10] is done
through a port-Hamiltonian approach. Multi-producer DHN
models stability and passivity properties are analyzed in [11]
and [12]. Nonetheless, some modeling aspects are omit-
ted in the mentioned references, e.g., pipeline metal walls’
thermal inertia, pipe sections’ variation, or thermal storage
dynamics.

A precise DHN model is pivotal to accurately simulate
thermo-hydraulic dynamical behavior [13]. DHN simulators
can be based on detailed modeling libraries for thermo-
hydraulic systems, for example, the ThermoPower library
developed in Modelica [14], [15] or the MATLAB toolbox
Simscape [16], [17]. Nevertheless, these simulation environ-
ments require numerous physical parameters that may be
unavailable. Moreover, they model dynamics that are less
relevant for DHNs (e.g., fluid phase transition, pressure-
varying, or temperature-varying heat coefficients) leading to
additional computational effort and slower simulations, often
without useful information return. Consequently, testing and
tuning optimization-based regulators through the mentioned
simulation environments becomes increasingly intensive and
not practical.

Concerning the design of MPC regulators for DHN sys-
tems, some works have been proposed in the literature. For
instance, a stabilizing MPC approach is proposed in [18],
however not considering the cost-effective DHN manage-
ment and applied to a small-size exemplary benchmark.
In fact, the large-scale dimension and nonlinear dynamics
of highly detailed DHN models affect the optimal con-
trol problem design and lead to computational issues from
the optimization perspective. In this context, [9] describes
an optimization scheme for DHNs; nonetheless, it suffers
from large-scale nonlinearities and is solvable only using a
single-step prediction horizon. On the other hand, in [19],
a particle swarm optimization algorithm is employed to solve
the DHN control problem, however, the authors states that the
resulting computational burden is not admissible for practical
implementation.

Most of the exiting solutions to decrease the computational
complexity of MPC regulators for DHN systems, most of
them rely on simplified models. For instance, in [20], [21],
[22], and [23], the MPC regulator employs models based on
thermal static power balances, i.e., they neglect temperature
dynamics over network pipelines. In fact, temperature dynam-
ics are essential in DHN control design for two main reasons.
First, the water temperature must respect different operative
constraints over the network (e.g., the supply temperature of
all loads must exceed a threshold for proper operation [9],
[11]). Second, the generation costs and heat loss minimization
require temperature dynamics knowledge to account for the

intrinsic water pipelines’ thermal inertia. Thus, temperature
modelling appear in other MPC solutions, leveraging different
simplifying assumptions to reduce complexity. For instance,
in [24], authors assume fixed transport delays and water
flow over the network. In [25], solely the return network
temperature is considered using a linear model, whereas,
in [26], water supply temperature is the same across all loads,
i.e., neglecting network thermal losses. In [27], bi-directional
power flows are also considered, and the complexity is reduced
by neglecting delays, heat losses, and the thermal inertia
of the pipeline network. Nevertheless, none of these solu-
tions enable to properly consider heating network inertia and
constraints.

On the other hand, data-driven models have been also pro-
posed in the literature for DHN systems, as in [8], [28], [29],
[30], and [31]. In this context, Gaussian data-based models
are employed in [32] for modelling thermal dynamics in
DHN systems, whereas data-driven linear models are exploited
in [33]. The drawback of these data-based approaches is
that they neglect any available physical knowledge of the
DHN. This last aspect has been addressed in [34], where
a physics-informed data-based model is proposed for DHN
systems, combining data and the available physical knowledge,
i.e., the network topology. Nevertheless, data-based modelling
methods rely on large operational datasets highly exciting
system dynamics, which are hardly available in real DHN
applications.

B. Main Contribution

The above discussion motivates the necessity of devel-
oping novel control-oriented DHN models, which must be
computationally-efficient and accurate enough to properly
represent network thermal dynamics. This control-oriented
modelling must enable the design of predictive control strate-
gies capable of effectively optimizing DHN operations, and
guaranteeing to respect all required network constraints.
On the other hand, lightweight and DHN-oriented simula-
tion environments are also required, for testing and tuning
the designed optimization-based controllers. These challenges
are solved through the following main contributions of this
work.

• DHN modeling for computationally-efficient and accurate
simulators: As discussed, existing works on detailed
DHN models neglect fundamental elements, e.g., [9],
[10], [11], [12], whereas other frameworks involve
demanding and slow simulations being not focused on
DHN systems, e.g., [14] and [15]. Thus, this paper
formulates a complete multi-producer DHN model, fea-
turing all main elements (e.g, generators, loads, storages,
pipes, pipe fitting, etc.). The model considers the typ-
ical DHN operation to capture its relevant dynamics
and neglects less relevant phenomena in DHN systems
(e.g., fluid phase transition), enabling the design of
a fast and accurate dynamic simulation environment,
suited for testing online optimization-based controllers.
The resulting simulation library, called DHN4Control,
is developed in Modelica and freely distributed with
this work [1]. The DHN4Control library can be used
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for any DHN configuration and it is tested both with
experimental data and against other simulation libraries,
e.g., [15], showing to be accurate and computationally
lighter.

• DHN control-oriented model and nonlinear predictive
control design: Existing control strategies for DHN sys-
tems rely on highly complex models unsuitable for
optimal predictive control, e.g., [9], [10], [11], [12].
Because of this, other control approaches have relied
on oversimplifying assumptions, but these are incapable
of exploiting DHN thermal inertia, e.g., [20], [21],
[22], [23], [24], [25], [26], [27]. Some data-based con-
trollers for DHN also exists, however they necessitate
large amount of exciting operational data, which is
not always feasible in practice, e.g., [28], [29], [30],
[31], [32], [33], [34]. In view of this, another con-
tribution of the work consists in developing a novel
DHN control-oriented modelling with enhanced dynam-
ical accuracy and computational efficiency, recovered
from the detailed simulation one through new model
reduction methods. Among these, we here mention:
the substitution of pressure modeling with equivalent,
but light-way, algebraic relationships enforced at each
network closed path, and the reduced pipe modelling
combining pipe wall and flow thermal dynamics. The
presented control-oriented model achieves enhanced mod-
eling accuracy when compared with the detailed DHN
simulation model, but with a significant lower number
of variables (around 90% reduction), paving the way
for the design of a computationally-efficient Nonlinear
Model Predictive Control (NMPC) regulator, optimizing
large-scale DHN plants in few seconds. The designed
NMPC regulator enables to minimize generation costs
and to increase system efficiency by properly exploiting
DHN thermal inertia, while ensuring constraints respect
over the whole thermal network.

The developed methods are tested through detailed simu-
lators considering a real DHN benchmark, hereafter named:
“Thermal Test Facility”, which is currently under construction
at the research center Ricerca sul Sistema Energetico - RSE
SpA, Milan, Italy. For the sake of completeness, the obtained
performances are also evaluated on a larger benchmark taken
from the literature, i.e., the AROMA district heating net-
work [9]. The solution obtains high modelling accuracy,
reduced computational complexity, and the resulting NMPC
regulators achieve up to 15% of cost reduction compared to
standard rule-based control strategies.

C. Paper Outline

The paper is organized as follows. In Section II, the DHN
modeling is described in detail together with the developed
simulation library. In Section III, the DHN control-oriented
model, the reduction procedure to obtain it, and the NMPC
regulator design are discussed. Additionally, Section IV dis-
plays the numerical results regarding the developed modeling
and control methods applied to the Thermal Test Facility. The
conclusions are in Section V.

D. Notation

Let R denote the set of real numbers, R≥0 the set of positive
or null real numbers including zero, and R>0 the set of strictly
positive real numbers. Moreover, let N denote the set of natural
numbers. Given a matrix A, A ∈ Rn,m indicates that it has
n rows and m columns and all its entries are real numbers.
Given a vector a, a ∈ Rn indicates that it has n rows and one
column, and all its entries are real numbers. Given a matrix
A and a vector a, their transpose are denoted with A′ and a′,
respectively. Given two vectors of variables x, y ∈ Rn , the
inequalities among the two, e.g., x > y, are intended element-
wise. For a vector x ∈ Rn , the vectors of the corresponding
upper and lower bounds are x ∈ Rn and x ∈ Rn , respectively,
with x > x .

II. MODELLING OF DISTRICT HEATING NETWORKS

DHNs are large-scale systems governed by nonlinear Par-
tial Differential Equations (PDE). These PDE describes the
dynamical relationships among water mass flows, pressures,
and temperatures [9]. A typical DHN is composed of the
following main elements, also depicted in Figure 1(a):

• a supply network, where water at high temperature flows
from thermal generators to loads;

• a return network, where water flows back to thermal
generators after having transferred heat to loads;

• thermal generation, which heat the water supplied by the
return network through local units (e.g., boilers) and then
pump it back into the supply distribution network;

• thermal loads, which absorb heat from the water in
the supply distribution network through a local heat
exchanger and then inject it back into the return distribu-
tion network;

• thermal energy storages (TESs), which are insulated
water tanks with constant mass connected to the supply
and return distribution network. TESs typically store
high-temperature water and deliver it when convenient.

In addition to these main elements, a DHN comprises
valves, pumps, and pipes, which will be modeled in the fol-
lowing relying on their physical equations. Before formulating
the DHN model, we state a few assumptions leading to a
physical model with reasonable complexity and accuracy for
the design and test of control systems. Specifically, the stated
assumptions are valid in a typical operating range for high-
temperature DHNs, i.e., with water pressure between 2 and
10 bar and water temperatures between 60 and 90◦C, [35].

Assumption 1: Water is assumed incompressible and with
constant specific heat. The water density and specific heat
values derive from IAPWS-IF97 standard1 and are equal to
their average value in the considered operating range. Specifi-
cally, the following values are considered ρ = 998 kg/m3 and
c = 4185 J/kg K.

Assumption 2: Each pipe is assumed to have rigid metal
walls and a constant circular section. Cross-sectional area
variations among pipes are modeled as lumped in specific
points of the DHN, commonly named pipe fittings.

1http://www.iapws.org/relguide/IF97-Rev.html
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Fig. 1. (a) Schematic of a DHN with supply and return distribution network,
respectively in red and blue, a thermal generator at node i , thermal loads
at nodes l and k, and a thermal storage at node j . (b) Equivalent graph
representation of the DHN.

Assumption 3: Pressure transients are assumed instanta-
neous, as pressure waves travel in the fluid with the speed
of sound, whereas temperature variations travel with the flow
velocity [36]. Hence, inertial and compressibility effects in
momentum balance equations are neglected, reducing pressure
modeling to algebraic nonlinear equations.

Assumption 4: For notational simplicity, the supply and
return distribution networks are assumed to have the same
topology, as typical in DHNs [11], [37].

Consider the DHN reported in Figure 1(a). Given Assump-
tion 4, a DHN can be represented with a single undirected,
connected, and planar graph G = (N , E), as shown in
Figure 1(b), where N is the set of nodes of the DHN and E
the set of edges, representing physical interconnections among
nodes.

Each node i ∈ N represents a significant element in the
DHN, e.g., a thermal generator, a storage, a load, or a junction
among multiple pipes. Specifically, the set of generation nodes
is denoted as G ⊂ N , the set of load nodes as L ⊂ N , the
set of thermal storage nodes as Z ⊂ N . Note that, for the
sake of simplicity, it is here assumed that these sets do not
have common nodes, i.e., G ∩ L ∩ Z = ∅, meaning that if
two elements are connected (e.g., a generator and a storage),
two fictitious connected nodes are defined. Moreover, specific
variables describing the water state are introduced for each
node of the DHN: i) the water mass flow q

[
kg/s

]
, ii) its

pressure p [Pa], and iii) its temperature T [
◦C]. Referring

to Figure 1(a), all nodes i ∈ N interface with the supply
and the return pipelines; hence, they require two sets of
variables defined as: (qs

i , ps
i , T s

i ) describing the net water
flow, pressure, and temperature at the supply distribution
network connection, and (qr

i , pr
i , T r

i ) describing the same

quantities at the return. The superscripts s and r specify if
variables and parameters belong to the supply or the return
respectively; for the sake of compactness, a generic superscript
v with v ∈ {s, r} represents both.

Each edge (i, j) ∈ E interconnecting node i and j phys-
ically represents either a distribution pipe (see Figure 2) or
a pipe fitting, i.e., a lumped-element where the pipe section
changes (see Figure 3). Thus, define as EP the set of edges
representing distribution pipes, and as EF the set of edges
representing pipe fitting, where E = EP ∪ EF . Moreover,
∀(i, j) ∈ E , qv

i j and qv
j i describe the water flow where

qv
i j ≥ 0 and qv

j i ≤ 0 if the water flows from node i to j ,
whereas qv

j i > 0 and qv
i j < 0 if the water flows from node

j to i ; the same holds at the supply (v = s) and the return
(v = r ) network.

Please refer to Table I for the description of the main
variables and parameters used for the DHN model. Note that
the superscript v is used for some parameters, which can be
referred either to the supply (v = s) or the return (v = r )
network. Hereafter, DHN edges modelling is first described,
then DHN nodes are modelled.

A. Distribution Network Model

1) Pipe Model: Pipes are modelled featuring the one-
dimensional finite-volume method [9]. This model consists of
the spatial discretization in mono-dimensional sections with
boundaries orthogonal to the water flow direction, as reported
in Figure 2. The pipe’s sections comprise a lumped dynam-
ical temperature model that expresses energy balances and
exchanges among adjacent sections and their pipe walls.

Supply and return pipes at the edge (i, j) ∈ EP are
characterized by a vertical displacement yv

i j , a total length
Lv

i j , internal radius rv
i j , and external radius rvm

i j , as depicted
in Figure 2. Given the finite volume method, each supply
and return pipe in the edge (i, j) is divided into nv

i j sections
with boundaries orthogonal to the water flow direction, each
one of length lvi j = Lv

i j/nv
i j and volume vv

i j = lvi jπrv
i j

2. The
water temperature of the generic kth pipe section is denoted
with T v

i j,k , whereas the temperature of the pipe wall at that
section is T vm

i j,k , with k ∈ {1, . . . , nv
i j }. Thus, the dynamic

model of the water temperature for the kth pipe section
is

c ρ vv
i j Ṫ v

i j,k(t) = 2πrv
i j lvi j U m

i j ( T v m
i j,k (t) − T v

i j,k(t) )

+c qv
i j (t)

{
T v

i j,k−1(t) − T v
i j,k(t) if qv

i j (t) ≥ 0
T v

i j,k(t) − T v
i j,k+1(t) if qv

i j (t) < 0

(1)

for each k ∈ {1, . . . , nv
i j } and v ∈ {s, r}. Moreover, by impos-

ing T v
i j,0(t) = T v

i (t) and T v
i j,nv

i j +1(t) = T v
j (t), one can express

the interface of each pipe (i, j) to the nodes i and j at its
extremes (see Figure 2). The left-hand side of equation (1)
corresponds to the derivative of the thermal energy in the kth
section, whereas the right-hand side includes the heat transfer
towards the pipe metal wall, depending on the conduction
area and the heat transfer coefficient U m

i j , and the thermal
energy exchanged with the adjacent sections due to transport
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TABLE I
MAIN VARIABLES AND PARAMETERS

phenomena. For compactness, introduce the vectors

T v
i j =

[
T v

i j,1, . . . , T v
i j,nv

i j

]′

, Tvm
i j =

[
T vm

i j,1, . . . , T vm
i j,nv

i j

]′

,

and the matrices 8, 9 ∈ Rnv
i j ,n

v
i j , defined as

8i j =


−1 if i = j
1 if j = i − 1 ∧ i > 1
0 otherwise

, (2a)

9i j =


−1 if i = j
1 if j = i + 1 ∧ i < ni j

0 otherwise
, (2b)

and the vectors δ = [1, 0, . . . , 0]
′ and ω = [0, . . . , 0, 1]

′, with
δ, ω ∈ Rnv

i j . Thus, equation (1) can be rewritten as

c ρ vv
i j Ṫ

v
i j (t) = 2πrv

i j lvi j U m
i j (T

vm
i j (t) − Tv

i j (t))

+ c qv
i j (t)

{
8 Tv

i j (t) + δT v
i (t) if qv

i j (t) ≥ 0
ωT v

j (t) − 9 Tv
i j (t) if qv

i j (t) < 0 ,

(3a)

for each v ∈ {s, r}.
Another crucial factor to consider for DHN analysis is

the pipe’s metal wall thermal dynamic as it can significantly
impact the water temperature dynamical behavior, as discussed
in [13]. Consider the pipe external radius rvm

i j and wall section

Fig. 2. One-dimensional, finite-volume method, and pipe’s parameters and
variables.

Fig. 3. Pipe fitting for changes in pipe’s section.

volume vvm
i j = lvi jπ

(
(rvm

i j )2
− (rv

i j )
2
)
. Then, the pipe metal wall

temperature model is

cm ρm vvm
i j Ṫvm

i j (t) = 2πrv
i j lvi j U m

i j ( Tv
i j (t) − Tvm

i j (t) )

− 2πrvm
i j lvi j U e

i j

(
Tvm

i j (t) − 1 T v,e
i j (t)

)
,

(3b)

for each v ∈ {s, r}. The left-hand side of the equation
expresses the derivative of the pipe wall section thermal
energy; instead, the right-hand side includes the energy
exchange with the flowing water and with the external envi-
ronment, supposed to be at temperature T v,e

i j , which may
correspond to the ground temperature as DHN pipes com-
monly lay underground.

The pressure drop across pipes is modelled through Fan-
ning’s formula [38], which reads as

pv
i (t) − pv

j (t) = ρgyv
i j + ρ


c f

Lv
i j

rv
i j

(
qv

i j (t)

ρπrv
i j

2

)2

, if qv
i j (t) ≥ 0,

−c f
Lv

i j

rv
i j

(
qv

i j (t)

ρπrv
i j

2

)2

, if qv
i j (t) < 0,

(4)

for each v ∈ {s, r}, where c f is the Fanning coefficient, and
g is the gravitational acceleration.

2) Pipe Fitting Model: As previously discussed, assume
lumped cross-section variations and represent them with an
edge (i, j) ∈ EF in the supply and return networks, as shown
in Figure 3. Exploiting Bernoulli’s equation [39], the pressure
drop at each pipe fitting edge (i, j) ∈ EF is

pv
i (t) − pv

j (t) =
qv

i j (t)
2

2ρ


kv

1,i j if qv
i j (t) ≥ 0

−kv
2,i j if qv

i j (t) < 0
, (5)

where v ∈ {s, r}, and kv
1,i j and kv

2,i j are fixed tabulated friction
coefficients depending on the pipe fitting geometry (e.g., cross-
section variation, contraction angles, etc.). More details on
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Fig. 4. (a) Generic load structure. (b) Generator node structure.

pipe fitting coefficients related to their specific geometry are
available in [40]. Moreover, assume no temperature losses
occur across pipe fittings, i.e.,

T v
i = T v

j , (6)

with v ∈ {s, r}, and (i, j) ∈ EF .

B. Node Models

As anticipated, most DHNs’ components belong to one of
three node categories: thermal loads, generators, and storages.
The first two categories involve static models as their time
constants are negligible compared to those of the network
transport dynamics. On the other hand, the thermal stor-
age models are dynamic as they show significant thermal
inertia.

1) Load Model: Each load node i ∈ L connects the supply
and the return distribution network, absorbing a water flow
q l

i ∈ R≥0 from the supply network through a locally regulated
valve, as depicted in Figure 4(a). The absorbed water goes
through the load heat exchanger, which extracts thermal power
P l

i ≥ 0. Thus, it holds that

P l
i (t) = c q l

i (t) (T s
i (t) − T l

i (t)) , (7)

where T l
i (t) is the output water temperature at the load

heat exchanger. As proposed in [41], loads are temperature-
controlled, implying that the water flow q l

i is regulated through
the local valve to track a reference T l,0

i for the output water
temperature. This is modelled as

θ̇ l
i (t) = fc( θ l

i (t), T l,0
i − T l

i (t)) , (8a)

q l
i (t) = θ l

i (t) Al
i

√
ps

i (t) − pr
i (t) , (8b)

where θ l
i ∈ [0, 1] is the load valve opening, and fc(·)

in (8a) represents a generic valve control law. Additionally,
equation (8b) expresses the water flow model dependency
on the pressure drop across the valve, and Al

i is the fully
open valve’s section [39]. Note that the pressure drop across
the load heat exchanger is not modeled as it is negligible

Fig. 5. Schematic of a thermal energy storage.

compared to the pressure drop across pipes and control
valves.

2) Thermal Generation Model: Each node i ∈ G absorbs
a water flow qg

i ∈ R≥0 at temperature T r
i from the return

distribution network and injects it into the supply network at
temperature T g

i , as in Figure 4(b). It holds that

Pg
i (t) = c qg

i (t) (T g
i (t) − T r

i (t)) , ∀i ∈ G , (9)

where Pg
i (t) ≥ 0 is the thermal power transferred by the

generator to the absorbed water.
One of the generation nodes is denoted as “slack”, and

this is indicated with index h ∈ G. The slack generator
accomplishes two tasks: it imposes a reference pressure pr,0

h at
the return network layer, thanks to a local expansion vessel,
and maintains fixed pressure drop 1p0

h between supply and
return, using a differential pressure pump [9], [42]. This
implies that

ps
h(t) = pr,0

h + 1p0
h , pr

h(t) = pr,0
h . (10)

The slack node guarantees a minimum reference pressure
in the water circuit and compensates for head losses [43].
Consequently, the slack node water flow cannot be externally
imposed, as it is regulated locally to keep a constant pres-
sure drop 1p0

h . Differently, the other generation nodes can
directly impose the water flow through local flow-regulated
pumps. In particular, if Assumptions 1-4 hold, then the
slack water flow entirely depends on the net water flow
circulating in the DHN. In turn, the net flow is determined
by the generators’ flow-regulated pumps and by the load
valve regulations. Finally, note that generation nodes can
be either temperature-controlled, i.e., the output temperature
T g

i is externally imposed and tracked by a local controller,
or power-controlled, i.e., a specific power Pg

i is requested
to be delivered by the generator [8]. Thus, the generators’
node set G includes the set of power-controlled nodes GP ,
and the set of temperature-controlled nodes GT , and it holds
G = GP ∪ GT .

3) Storage Model: Thermal energy storage integration con-
siderably increases DHN’s flexibility [44]. TES connects the
supply and return distribution networks and it can absorb/inject
water from/to each network through a local pump, as illus-
trated in Figure 5.
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Consider a generic thermal storage at node i ∈ Z . Its
total height is H z

i , and its base radius is r z
i . Concerning TES

temperature dynamics, a one-dimensional stratified model is
adopted. This modeling approach works similarly to the finite
volume method used for pipes, as shown in Figure 5, [45].
Specifically, the storage tank is divided into nz

i sections; each
section has boundaries orthogonal to the water flow direction,
height hz

i = H z
i /nz

i and volume vz
i = hz

i π r z
i

2.
Given that the thermal storage water flow, i.e., q z

i , is bidi-
rectional, as a convention, it is chosen that q z

i ≥ 0 when
flowing from the return to the supply distribution network,
and q z

i < 0 when flowing in the opposite direction. Thus, for
each storage section k ∈ {1, . . . , nz

i }, the temperature model
is defined as

cρvz
i Ṫ z

i,k(t)= 2 π r z
i hz

i α (T z,e
i (t) − T z

i,k(t))

+ π r z
i

2
κ
(
(T z

i,k+1(t) − T z
i,k(t)) + (T z

i,k−1(t) − T z
i,k(t))

)
+ c q z

i (t)

{
T z

i,k−1(t) − T z
i,k(t) if q z

i (t) ≥ 0
T z

i,k(t) − T z
i,k+1(t) if q z

i (t) < 0
(11)

where T z
i,0(t) = T r

i (t) T z
i,nz

i +1(t) = T s
i (t) to express the

interfacing of the storage tank with the supply and return
network. The left-hand side of the above-equation expresses
the thermal energy dynamics for the kth section, whereas the
right-hand side considers the heat losses towards the external
environment at temperature T z,e

i (t), the energy exchange with
the adjacent sections due to thermal conduction, and the energy
exchange due to mass transport phenomena, depending on the
direction of the water flow.

Aiming to write thermal storage dynamics in a
compact form, let us introduce the vector Tz

i (t) =[
T z

i, 1(t) . . . T z
i, nz

i
(t)
]′

and consider again the matrices
8 and 9, and the vectors δ and ω defined in Section II-A.
Thus, for each thermal storage node i ∈ Z , the following
temperature model holds

c ρ vz
i Ṫz

i (t) = 2 π r z
i hz

i α(1 T z,e
i (t) − Tz

i (t))

+ π r z
i

2
κ (9 + 8) Tz

i (t)

+ c q z
i (t)

{
8Tz

i (t) + δT r
i (t) if q z

i (t) ≥ 0
ωT s

i (t) − 9Tz
i (t) if q z

i (t) < 0
.

(12)

C. Node Coupling Equations

Multiple water flows can converge or split in a single node,
implying that node coupling equations must be introduced.
Given a generic node i ∈ N , we introduce the sets Is

i ⊂ N
and Ir

i ⊂ N . These sets include the nodes delivering water
to node i respectively at the supply and return distribution
network and are defined as

Iv
i (t) = { j ∈ N : ( j, i) ∈ E ∧ qv

j i (t) ≥ 0} ∪

{ j ∈ N : (i, j) ∈ E ∧ qv
i j (t) < 0 } , (13)

for v ∈ {s, r}. Note that the input node sets are time-
varying, depending on the current direction of the water
flow.

Thus, the overall water flow incoming at each node i ∈ N
at the supply network is

qs
i (t) =∑

∀ j∈Is
i (t)

(qs
ji (t) − qs

i j (t)) +

{
qg

i (t) if i ∈ G
q z

i (t) if i ∈ Z ∧ q z
i (t) ≥ 0,

(14a)

whereas the one on the return network is

qr
i (t) =∑

∀ j∈Ir
i (t)

(qr
ji (t) − qr

i j (t)) +

{
q l

i (t) if i ∈ L
−q z

i (t) if i ∈ Z ∧ q z
i (t) < 0.

(14b)

Furthermore, the average temperatures at node i for the supply
and return network are derived from the weighted average of
the incoming water flow temperatures and their model are

qs
i (t)T s

i (t) =

∑
∀ j∈Is

i (t)

(
qs

ji (t) T s
ji,ns

i j
(t) − qs

i j (t) T s
i j,1(t)

)

+

{
q p

i (t) T g
i (t) if i ∈ G

q z
i (t) T z

i,nz
i
(t) if i ∈ Z ∧ q z

i (t) ≥ 0,

(15a)

and

qr
i (t)T r

i (t) =

∑
∀ j∈Ir

i (t)

(
qr

ji (t) T r
ji,nr

i j
(t) − qr

i j (t) T r
i j,1(t)

)

+

{
q l

i (t) T l
i (t) if i ∈ L

−q z
i (t) T z

i,1(t) if i ∈ Z ∧ q z
i (t) < 0,

(15b)

where the water temperature either at the first or last section is
properly selected for pipes and storages based on the direction
of the corresponding water flow.

Finally, considering the mass balance at each node i ∈ N ,
the total incoming water flow is equal to the one outgoing from
the node. Thus, introduce the set of output nodes Os

i ⊂ N
and Or

i ⊂ N for the supply and return distribution network,
respectively, which are defined as

Ov
i (t) = { j ∈ N : (i, j) ∈ E ∧ qv

i j (t) ≥ 0} ∪

{ j ∈ N : ( j, i) ∈ E ∧ qv
j i (t) < 0 } , (16)

for v ∈ {s, r}. Thus, it holds that

qs
i (t) =∑

∀ j∈Os
i (t)

(qs
i j (t) − qs

ji (t)) +

{
q l

i (t) if i ∈ L
−q z

i (t) if i ∈ Z ∧ q z
i (t) < 0,

(17a)

and

qr
i (t) =∑

∀ j∈Or
i (t)

(qr
i j (t) − qr

ji (t)) +

{
qg

i (t) if i ∈ G
q z

i (t) if i ∈ Z ∧ q z
i (t) ≥ 0.

(17b)
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D. Simulation Environment and Library

The presented DHN model in (3)-(17) is exploited to build
a simulation modeling library, named DHN4Control library,
implemented in the Modelica environment, an object-oriented
declarative language suitable for modeling of cyber-physical
systems [46]. The developed DHN4Control library is available
online on GitHub and free to be used [1].

The developed library proves to be flexible and computa-
tionally efficient when simulating large-scale DHN systems
and it is particularly suited for applications where numerous
subsequent simulations are necessary, e.g., during control
tuning and testing. The library already includes various default
parameters derived from tabulated data, which can be changed
based on the user choices. Moreover, the components included
in the DHN4Control library, whose models are described in
previous sections, have been validated against their virtual
counterparts from more complex modeling libraries, e.g., the
ThermoPower library [14]. As discussed later in Section IV,
the formulated DHN models are accurate while enabling
the simulation of DHN systems in a shorter time and with
fewer parameters with respect to standard simulation libraries,
e.g., ThermoPower. The library implementation uses Modelica
4.0.0 on OpenModelica Editor 19.0 [47]. Thanks to Modelica
and the OpenModelica environment, it is possible to create
portable simulators using the FMU format. This format allows
a wide range of software to run Modelica simulations. Among
the supported software, but not restricted to, Matlab and
Python. More details on these aspects are available in [1].

III. THE CONTROL PROBLEM

In this section, a nonlinear model predictive control
(NMPC) regulator is designed, capable of optimally coor-
dinating DHN operations by minimizing operational costs
while respecting all necessary constraints. This requires the
development of an accurate dynamical system model effi-
ciently solvable from the optimization perspective. In fact,
despite the model assumptions introduced in Section II, the
simulation-oriented DHN model could be still unpracticable
for control purposes due to its dimension and complexity.
Thus, model reduction procedures are here presented, enabling
to obtain a control-oriented DHN model with enhanced com-
putational efficiency and satisfactory modelling accuracy.

A. Control-Oriented Modelling

The NMPC control-oriented model derives from equa-
tions (3)-(17) by applying the following simplification steps.

1) Fixed Flow Direction in Distribution Pipes: Equa-
tions (3)-(5) have a switching characteristic related to the
direction of the water flow. However, in practice, most supply
and distribution network pipes have a fixed flow direction,
which can be estimated either from operational data or through
preprocessing techniques [9]. Because of this, we here assume
that the flow direction in each pipe does not vary over time
along the NMPC prediction horizon, avoiding implement-
ing (4)-(5) as Mixed-Logic Dynamical (MLD) constraints [48].
This further implies that the input and output nodes
in (14)-(17), i.e., Iv

i and Ov
i with v ∈ {s, r}, do not vary

along the prediction horizon.

2) Storage Model Reformulation: Contrarily to distribution
pipes, thermal storages require reversible flow for their oper-
ation as it is related to the charging/discharging modes (see
equation (12)). Preserving the aim of mixed-integer variables
avoidance in the NMPC problem, we reformulate the storage
model similarly to typical battery models [49]. Hence, a charg-
ing water flow is introduced, i.e., q z,s

i ∈ R≥0, identifying
the water flow injected into the i th thermal storage from the
supply distribution network (i.e., hot water), and a discharging
water flow is introduced, i.e., q z,r

i ∈ R≥0, identifying the
one delivered to the supply network. Given that one single
operating mode can be activated at each time instant, it must
hold that

q z,s
i (t) · q z,r

i (t) = 0. (18)

Thus, the storage temperature model (12) is rewritten as

c ρ vz
i Ṫz

i (t) = 2 π r z
i hz

i α(1T z,e
i (t) − Tz

i (t))

+ π r z
i

2
κ (9 + 8) Tz

i (t)

+ c q z,s
i (t) (8 Tz

i (t) + δT r
i (t))

− c q z,r
i (t) (ωT s

i (t) − 9 Tz
i (t)) , (19)

avoiding the explicit use of integer variables to activate the
two different models. It is worth noting that one can adopt a
similar reformulation for the models of distribution pipes in
case the flow direction cannot assumed to be fixed along the
prediction horizon.

3) Load Model Reduction and Pressure Modeling Removal:
At the NMPC level, it is possible to assume that the load
local control tracks the output load temperature reference,
as discussed in [41], implying that

T l
i (t) = T l,0

i , ∀i ∈ L. (20)

Moreover, pressures are not directly related to the economic
management of the DHN; consequently, we may exclude
pressure equations from the NMPC problem formulation to
reduce its dimension. Nevertheless, even though we neglect
pressure equations, the water flows in distribution pipes must
respect Kirchhoff’s node and loop laws applied to hydraulics
networks [50]. The former states that the ingoing and outgoing
water flows at each node of G = (N , E) are balanced, which
is guaranteed by (14) and (17). The latter states that the net
pressure drop in each closed path of G = (N , E) must be null,
both for the supply and the return distribution network. This
property can be imposed without using pressure variables as
described in the following.

Consider the DHN graph G = (N , E), and denote with
m the number of its bounded faces, where a bounded face
is a closed region of the plane fully delimited by edges and
nodes [51]. Each kth graph face, with k ∈ {1, . . . , m}, denotes
an essential mesh of the graph, i.e., a mesh not containing any
other mesh. Thus, denote with Mk ⊆ N the set of nodes of
each kth mesh and with γk ⊂ Mk ×Mk a sequence of edges
identifying a closed path visiting all nodes in Mk . Moreover,
for the sake of clarity, introduce ζ v

i j = sign(qv
i j (t)), for each

(i, j) ∈ γk and v ∈ {s, r}, which is a fixed parameter being the
water flow direction in pipes assumed to be constant. Hence,
to impose that the net pressure drop is null for each closed
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path, the following equations can be introduced for each kth
mesh, with k ∈ {1, . . . , m},∑

∀(i, j)∈γk

ζ v
i j

(
as

i j (q
v
i j (t))

2
+ bv

i j

)
= 0 (21)

with v ∈ {s, r}, where av
i j , bv

i j are defined as

av
i j =
ρc f

Lv
i j

rv
i j

1
(ρπrv

i j
2)2

if (i, j) ∨ ( j, i) ∈ EP ,

kv
1,i j max(ζ v

i j , 0) + kv
2,i j min(ζ v

i j , 0)

2ρ
if (i, j) ∨ ( j, i) ∈ EF ,

(22)

bv
i j = gyv

i j if (i, j) ∨ ( j, i) ∈ EP ,

0 if (i, j) ∨ ( j, i) ∈ EF ,
(23)

for each (i, j) ∈ γk . As evident, (21) exploits (4) and (5) to
impose an overall null pressure drop at each kth mesh, without
using pressure variables and with a lower number of equations
(two equations for each mesh, one for the supply and one for
the return network, instead of two equations for each edge).

Now, consider the original DHN model (3)-(17) and
note that pressure variables ps

i , pr
i and the load valve

opening θ l
i appear solely in (4), (5), (8), (10). If these

variables and equations are excluded from the NMPC control-
oriented model, whereas (20) and (21) are added, the
number of removed equations from the original DHN model
is nre = 2|E | + 2 + |L| − 2m, whereas the net number of
removed variables is nrv = 2|N | + |L|. To ensure that the
remaining DHN model is still properly formulated, the number
of removed equations and variables must match. This is proved
to be true due to Euler’s formula in graph theory [51], stating
that the number of bounded graph faces is always

m = |E | − |N | + 1 , (24)

which, in turns, implies that nre = nrv . Note that in case a
radial DHN graph is considered, i.e., m = 0, equations (21)
are not introduced, and the variables ps

i , pr
i , and θ l

i and
equations (4), (5), (8), (10) can be removed from the overall
model by simply adding (20).

4) Distribution Pipes Temperature Model Reduction: Dis-
tribution pipe modeling involves separate models for the water
and pipe wall temperature dynamics (3). Nevertheless, at the
NMPC level, a reasonable modeling reduction is adopted,
describing the overall energy exchange in each finite-volume
section of distribution pipes.

First of all, consider the pipe wall temperature model (3b)
which can be rewritten as

Ṫvm
i j (t) =

2πlvi jU
m
i j

cmρmvvm
i j

(
rv

i j

(
Tv

i j (t) − Tvm
i j (t)

)
−

U e
i j

U m
i j

rvm
i j

(
Tvm

i j (t) − 1T v,e
i j (t)

))
, (25)

for v ∈ {s, r}. Considering that pipes are usually insulated and
that the heat transfer coefficient between water and the pipe

wall is typically high, it follows that
U e

i j

U m
i j

≪ 1 (for the case

study in Section IV,
U e

i j

U m
i j

≃ 10−5
∀ (i, j) ∈ E). Hence, the pipe

wall temperature model can be approximated as

Ṫvm
i j (t) =

2πrv
i j l

v
i j U m

i j

cmρmvvm
i j

(
Tv

i j (t) − Tvm
i j (t)

)
, (26)

for v ∈ {s, r}. Now, note that the pipe wall thermal dynamic
time constant τ vm

i j = (cmρmvvm
i j )/(2πrv

i j l
v
i j U m

i j ) is usually rel-
atively small compared to the DHN thermal dynamics (for
the case-study in Section IV, τ vm

i j ≃ 10s). Therefore, as the
usual NMPC sampling time is τs ≫ τ vm

i j , we can assume that
the pipe wall and the water are always at thermal equilibrium,
i.e., Tv

i j (t) = Tvm
i j (t), at least at the NMPC level. For notational

simplicity, the variable Tv
i j (t) will describe the overall temper-

ature of the corresponding distribution pipe, with v ∈ {s, r}.
Thus, in the NMPC problem formulation, we substitute the

distribution pipe temperature model (3) with the following

(cρvv
i j + cmρmvvm

i j )Ṫv
i j (t)=c qv

i j (t)
(
8Tv

i j(t) + δT v
i (t)

)
− 2πrvm

i j lvi jUe
(
Tv

i j (t) − 1T v,e
i j (t)

)
,

(27)

for v ∈ {s, r}, where the left-hand side describes the stored
thermal energy in each pipe section, comprising the pipe wall
and water; whereas the right-hand side includes the energy
exchanged due to transport phenomena and the heat losses
towards the ambient. Note that (27) can be directly obtained
by summing (3a) and (3b), assuming the water and pipe wall
temperature at equilibrium as described.

It is worth noting that the proposed simplification allows to
remove the following number of variables and equations

nr =

∑
∀(i, j)∈EP

(ns
i j + nr

i j ), (28)

from the original DHN model (3)-(17), significantly contribut-
ing to the reduction of the NMPC problem complexity.

Remark 1: The number of sections in pipes and thermal
storages is also a tunable parameter, as they can be reduced
in the NMPC model based on the desired computational
complexity and modeling accuracy.

In conclusion, the reduced DHN control-oriented model
for the NMPC design is constituted by (6), (7), (9), (14)-
(27). Collecting the states variables in the vector x , the input
variables in the vector u, the exogenous signals in d , i.e.,

x = [ (Ts ′

i j , Tr ′

i j )i j∈EP , Tz ′

i∈Z ]
′, (29a)

u = [ T g
i∈GT

, Pg
i∈GP

, qg
i∈G\h, (q z,s

i , q z,r
i )i∈Z ]

′, (29b)

d = [ (P l
i , T l,0

i )i∈L, T z,e
i∈Z , T s,e

i j∈E , T r,e
i j∈E ]

′, (29c)

and the remaining auxiliary variables of the model in the vector
w, i.e.,

w = [ (T s
i , T r

i )i∈N , (q l
i , T l

i )i∈L, (qs
i j , qr

i j )i j∈E , (29d)

T g
i∈GP

, Pg
i∈GT

, qg
h ]

′.

It follows that (19) and (27) can be rewritten compactly

ẋ(t) = f (x(t), u(t), d(t), w(t)) , (29e)
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whereas (6), (7), (9), (14)-(18), (20)-(21) as

g(x(t), u(t), d(t), w(t)) = 0 , (29f)

where f (·) and g(·) are suitable defined nonlinear functions.

B. NMPC Optimization Problem

The DHN control-oriented model (29) formulation uses
discrete time with a sampling time τs for the design of the
NMPC regulator. We introduce the discrete time index ks ∈ N
that defines the time instant t = τsks when the NMPC is
executed. Therefore, denoting with k ∈ {ks, . . . , ks + Ns − 1}

the generic time index along the prediction horizon, with Ns

indicating the number of prediction steps, the DHN control-
oriented model (29) is formulated in discrete-time as

x(k + 1) = f̃ (x(k), u(k), d(k), w(k)) , (30a)
g(x(k), u(k), d(k), w(k)) = 0 . (30b)

In (30a), f̃ (·) derives from f (·) applying a suitable integration
method. The control variables are constrained within their
physical limits as

u ≤ u(k) ≤ ū , (31)

whereas state and auxiliary variables are bounded using soft
constraints, i.e.,

x − σx (k) ≤ x(k) ≤ x̄ + σx (k) , (32)

w − σw(k) ≤ w(k) ≤ w̄ + σw(k) , (33)

where σx and σw are slack variables such that

σx (k) ≥ 0, σw(k) ≥ 0 . (34)

At this stage, an additional auxiliary variable is intro-
duced, defined as a function of the state variables, i.e.,
e = ξ(x(ks)) ∈ R≥0. This variable expresses the total thermal
energy stored in the DHN plant when the NMPC is executed
and is defined as

e(ks) = ξ(x(ks)) =

∑
(i, j)∈EP

(cρvs
i j + cmρmvsm

i j )1′ Ts
i j (ks)

+

∑
(i, j)∈EP

(cρvr
i j + cmρmvrm

i j )1′ Tr
i j (ks)

+

∑
i∈Z

c ρ vz
i 1

′ Tz
i (ks) , (35)

where the total thermal energy contained in each water pipe
and storage is included. Considering that the NMPC regulator
is executed with a prediction horizon of Ns steps, the stored
thermal energy of the following constraint is stated

e0
− σe ≤ e(ks + Ns) ≤ e0

+ σe , (36)

with e0 is a nominal thermal energy reference, and σe a slack
variable such that

σe ≥ 0 . (37)

The idea of (36) is to act as a terminal constraint, imposed as
soft for the sake of feasibility so that the NMPC manages
the DHN at minimum cost without fully discharging the
thermal energy in storages and pipes [52]. The nominal energy

reference can be computed using the nominal state values x0,
e.g., e0

= ξ(x0). Hence, denoting the vector of slack variables
as σ = [σ ′

x , σ
′
w, σe]

′, the designed NMPC cost function is

J (k) =

∑
i∈G

(
cg

i (k)
Pg

i (k)

η
g
i

+ η
q
i cq

i (k)qg
i (k)

)
+

∑
i∈Z

ηz
i cz

i (k)
(
q z,s

i (k) + q z,r
i (k)

)
+ c′

σσ(k) . (38)

In (38), the main goal is to minimize production costs in
generators, considering the efficiency from primary to thermal
energy η

g
i and the primary energy cost cg

i (e.g., in the case
of a heat pump, η

g
i would be the pump’s coefficient of

performance and cg
i the electrical energy price). The electric

consumption of generation pumps is also minimized, modeling
it as proportional to the water flow qg

i through a constant
efficiency η

q
i [8]. The same idea applies to thermal storage

pumps, recalling that q z,s
i and q z,r

i are not simultaneously
different from zero. Finally, slack variables are penalized
in (38) through the vector cost cσ , commonly selected as much
higher than the other costs to ensure constraints satisfaction.

Thus, the NMPC problem, solved at each t = τsks , is

min
u(·), σ (·)

ks+Ns−1∑
k=ks

J (k) (39a)

subject to (30) − (37), ∀k ∈ {ks, . . . , ks + Ns − 1}, (39b)

x(ks) = x̃0 , (39c)

where x̃0 corresponds to the current system state.
Remark 2: It is worth noting that, by adding suitable

constraints and cost terms, more advanced energy manage-
ment strategies can be included in (39), e.g., considering
the energy trading with the electrical grid or minimizing the
C O2 emissions in case fossil and renewable primary sources
are exploited to generate thermal power [8], [23].

1) State Estimation: It is paramount to consider the avail-
ability of state variables, given (39c), as not all of them
could be measurable in a typical DHN plant. An example of
non-measurable state variables is the temperatures of internal
sections of pipes, where sensors are typically not placed. Thus,
the use of state observers may be necessary. In this context,
one effective solution is to employ an Extended Kalman
Filter as this is capable of estimating the overall state x by
exploiting the knowledge of the input u in (29b), of the DHN
model (29), and of an output vector y = [ (T s

i , T r
i )∀i∈N ] ,

which can be assumed measurable, since each node i ∈ N
is a significant DHN component (e.g., a generator, a load,
or a thermal storage). The formulation of the implemented
Extended Kalman Filter is not reported as this is standard,
and the reader can refer to [53] for further details.

IV. CASE STUDIES

In this section, we first describe the Thermal Test Facility.
It is a district heating network currently under construc-
tion at the research center Ricerca sul Sistema Energetico
- RSE S.p.A., Milan. Thanks to the Thermal Test Facility,
the simulation model, presented in Section II, as well as the
control-oriented model, introduced in Section III, can benefit
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Fig. 6. Schematic of the DHN Thermal Test Facility located at Ricerca sul
Sistema Energetico - RSE S.p.A.

from real-world data to guarantee meaningful outputs. Sec-
ondly, the dynamic simulation library and the control-oriented
model are validated using experimental data and other simula-
tion libraries. After successful validation, the two models are
implemented to test and derive the NMPC regulator, presented
in Section III, considering 24h of DHN operations. All test
scenarios run on a laptop with processor Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60GHz, RAM 16.0 GB.

A. Case Study 1: The Thermal Test Facility

The Thermal Test Facility of RSE, when finished, will be
an experimental benchmark emulating a real DHN plant and
its joint operation with other forms of energy, i.e., hydrogen,
natural gas, and electricity. The DHN system, reported in
Figure 6, consists of 13 nodes and 2 parallel branches. The
main parameters of the Thermal Test Facility are reported in
Table II. Being a multi-producer DHN, it comprises 3 thermal
generators, i.e., a gas boiler (node 1), a heat pump (node
2), and an electric boiler (node 4). Moreover, the DHN case
study features a thermal energy storage unit (node 3) and
four thermal loads (nodes 5, 6, 7, 8). Pipes connecting loads
to the DHN main pipeline are thinner, implying that pipe
fittings are introduced in the edges (10, 11) and (12, 13).
The gas boiler at node 1 is temperature-controlled, and it
operates as a slack generation node (i.e., h = 1), imposing
a pressure reference pr,0

1 = 2.5 bar at the return network and
a pressure increase at the supply network equal to 1p0

1 =

2.5 bar through the local pump, as discussed in Section II-B2.
On the other hand, the heat pump at node 2 and the electric
boiler at node 4 are power-controlled and equipped with
local pumps regulated to deliver a fixed water flowrate of
0.5 and 0.8 [kg/s] for the electric boiler and the heat-pump
respectively.

In the same way, the thermal energy storage pump is
flow-controlled and has a maximum water mass flow of
0.5 kg/s, whereas the TES total volume of 11.35 m3.

Finally, loads satisfy their thermal demand by absorbing a
water flow from the DHN supply network. The flow absorption
is regulated to track a return temperature of T l,0

i = 65◦C
through a PI controller. This control acts on an electric valve
with a maximum opening area of 67 cm2. Finally, the supply
temperature must be higher than 75◦C to ensure the proper
functioning of the load heat exchangers.

TABLE II
MAIN PARAMETERS OF THE THERMAL TEST FACILITY AT RICERCA

SUL SISTEMA ENERGETICO - RSE S.P.A

1) Model Validation: The simulation and the control-
oriented models, respectively introduced in Section II and III,
are hereafter validated before, being exploited for testing the
designed control strategy.

a) Simulator model validation: The DHN4Control
library, exploiting the DHN simulation model, is validated
against an existing library, i.e., ThermoPower [14]. Ther-
moPower is a suitable choice as it includes one-dimensional
finite-volume pipes with metal wall inertia models similar to
those proposed in this paper. We compare the two libraries
using real-world experimental data of a 39 m water pipe [54].
The simulated pipes use n = 25 sections. The validation test
compares the water temperature at the pipe outlets given the
same initial conditions, as shown in Figure 7 having on y
axis the temperature and on the x axis the time. In particular,
the DHN4Control library seems accurate, as it matches the
experimental data and ThermoPower’s output. We employ
the root mean square error (RMSE) as the performance
index and observe that ThermoPower achieves an RMSE
of 0.74, whereas the DHN4Control reaches 0.82. On the
other hand, the main difference between the two simulation
libraries is computational time. Considering the discussed test,
ThermoPower simulation required 3.47 s; in comparison, the
DHN4Control library required only 0.03 s. In fact, given the
different involved pipe models, the simulator implemented
with DHN4Control has 179 variables and equations, whereas
the ThermoPower simulator has up to 1255 variables and
equations. The difference is because the ThermoPower model
is considerably more complex compared to the one described
in Section II, as it accounts for other physical phenomena
that are not of interest for DHNs and, especially, for their
control testing, e.g., fluid phase-changing or compressibility.
Note that the described results are satisfactory even though
the experimental data used to validate the models are in
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Fig. 7. Validation of the pipe model in [54]. Temperature of the water fed
to the pipe (solid blue line). Water temperatures measured at the end of the
pipe: (i) experimental (dashed red line), (ii) ThermoPower simulation (solid
purple line), (iii) DHN4Control simulation (yellow dotted line).

the temperature range 18-55 ◦C, which is outside the one
considered in the DHN4Control library, where the values of
ρ, c reported in Assumption 1 are computed.

b) Control-oriented model validation: The control-
oriented model derived in Section III is validated against
the DHN4Control library. Specifically, a 24-hour scenario is
considered for both the simulation (3)-(17) and the control-
oriented (30) models, the latter using a sampling time of τs =

1800 s. The control-oriented model considers two sections for
each pipe, whereas, in the simulation model, the pipes’ section
number vary between 2 to 10 depending on the pipe’s length.
Regarding the TES, given its reduced dimension, 2 sections are
used both for the simulation and the control-oriented model.
The control-oriented model has 50 optimization variables for
each time step; whereas, the simulation model has 471 vari-
ables. To evaluate models performance, the DHN simulation
and the control-oriented models are fed with the same known
inputs, which are reported in Figure 8. These are: the gas boiler
temperature reference (Figure 8(a)), the loads thermal demand
(Figure 8(b)), the electric boiler power reference (Figure 8(c)),
and the TES mass flow (Figure 8(d)). Figure 9 shows the
obtained results for the DHN simulation and the control-
oriented model. As shown in Figure 9(a), the thermal energy
storage layers’ temperature transients almost coincide with the
simulated ones. The same holds for the supply temperature at
the furthest thermal load, which profile is almost equivalent
for the simulation and control-oriented model, as shown in
Figure 9(b). To conclude, although pressure variables do not
appear in the control-oriented model, the DHN water flow
almost coincides for the simulated and control-oriented model,
as reported in Figure 9(c).

2) Optimal Control Results: In this section, we present
the NMPC design. The NMPC optimization problem uses
the environment CasADi in MATLAB for the implementation
of the optimization problem [55] and Ipopt as solver [56].
The NMPC is designed with a prediction horizon of 12h
and a sample time of τs = 1800s for a total of Ns =

12/τs = 24 steps. Since the MPC requires state measure-
ments, an Extended Kalman Filter is implemented as described
in Section III-B1. To test the designed NMPC regulator,
it runs for 24 hours, employing the thermal demand profile
depicted in Figure 8(a) for each thermal load. Moreover,
time-varying costs for the primary energy sources are con-
sidered, i.e., for gas and electricity, and these are depicted in
Figure 10(a).

Fig. 8. Inputs and disturbances used for the simulation and control-oriented
model comparison: (a) Gas boiler output temperature. (b) Thermal demand
of each load. (c) Electric boiler power input. (d) Thermal storage water flow.

Fig. 9. DHN simulation (solid lines) and control-oriented model (dashed
lines) comparison: (a) TES temperatures at layer 2, i.e., the top layer, (solid
purple and dashed blue) and at layer 1, i.e., the bottom one, (solid yellow and
dashed orange); (b) Load 3 supply temperature; (c) Water flow at the slack
generator.

Figures 10(b)-(h) report the results of the NMPC regulation
applied to a 24 hours scenario. Hereafter, we analyze the
results. Given the high cost of gas compared to electricity,
the NMPC never uses the gas boiler (node 1) at its maximum
power, i.e., P̄1 = 120 kW, as depicted in Figure 10(b). Instead,
the heat pump (node 2) runs at max capacity due to its high
efficiency, except at night when thermal loads require less
power, see Figure 10(c). Additionally, the electric boiler (node
4) turns on only when convenient, e.g., its power generation
significantly decreases when the electricity cost reaches peak
prices, i.e., at 8:00 and 20:00, as shown in Figure 10(d).

Furthermore, the NMPC exploits the thermal storage to
reduce operational costs. As the heat pump is the most
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Fig. 10. Case study results: (a) Energy costs: gas (solid line) and electricity
(dashed line). (b) Gas boiler power. (c) Heat pump power. (d) Electric boiler
power. (e) TES Layers’ temperature (solid line - hot layer, dashed line - cold
layer). (f) TES Mass flow. (g) Load supply temperature at nodes 7, 8. (h) Load
supply temperature at nodes 5, 6.

convenient component of the network and is saturated almost
all day, the TES is precharged during the night, also consider-
ing that the electrical price is lower. Then, when thermal load
demand peaks (i.e., around 6:00, as depicted in Figure 8(d)),
the TES delivers hot water to the supply network. Another
shorter cycle of charge/discharge happens in the afternoon,
14:00 - 21:00. Please refer to Figure 10(e) to visualize the
temperatures of the TES sections, and to Figure 10(f) for the
TES water flow.

Altogether, the joint effects of the generators and TES can
be appreciated from 14:00 to 18:00. In this time frame, the
electricity energy cost and the thermal demand are lower.
Therefore, the TES absorbs hot water from the supply, thus
charging. However, the heat pump can divert little energy into
the storage, as it already runs at max power output. Therefore,

TABLE III
TOTAL VALUES OF THERMAL POWER GENERATION AND COSTS FOR THE

RULE-BASED SIMULATION AGAINST THE NMPC CONTROL

the NMPC, to redirect more energy from the heat pump to the
storage, turns the electric boiler on to supply loads 5 and 6,
being the closest generator.

Moreover, because of the inclusion of DHN thermal dynam-
ics, the NMPC can pre-charge pipes with hot water when
convenient or before load peaks, a strategy known as packing
and depicted in Figure 10(g) and (h). The pipe packing starts
at 5:00, while the peak of consumption happens at around
6:00. Another effect of including DHN thermal dynamics in
the NMPC formulation is the ability to operate the system
at the lower supply temperature when the energy costs are
higher without violating the constraints on the minimum
supply temperature for loads, i.e. 75◦C, as illustrated in
Figure 10(g)-(h).

The NMPC performances are compared with a rule-based
control strategy, similar to the ones applied in real DHNs [8].
The rule-based strategy is simple: (i) the gas boiler reference
temperature is constant during the day, and between 22:00 and
5:00, it turns off, given lower thermal demand; (ii) the electric
boiler runs at a fixed power production all day, while the heat
pump runs at max power during the day and less during the
night, between 22:00 to 5:00; (iii) the TES is operated with
the same profile of the NMPC optimal management.

For a 24h simulation, the obtained results are shown in
Table III where it is evident that the management cost of the
rule-based strategy is higher than the NMPC one, achieving a
net saving of roughly 15%. The total thermal energy produced
by the NMPC is also lower because of the optimizer’s ability
to operate the DHN more efficiently, satisfying network con-
straints with lower temperatures. Finally, it is worth noting
that despite a prediction horizon of 12 hours and consid-
ered a nonlinear model, the average NMPC computational
time is 5s, mainly due to the control-oriented modeling
approach presented in Section III. To better assess the compu-
tational performances achieved by the control-oriented model,
a NMPC regulator including the DHN simulation model, i.e.,
the one described in Section II, has been also developed for the
RSE Test Facility, maintaining the same cost function, predic-
tion horizon and constraints. It resulted that the computational
time becomes on average 1000s, which is much higher with
respect to the one achieved with the control-oriented model,
witnessing the benefits of the proposed approach. It is worth
noting that the computational time of a controller introduces
a delay in the control loop, which, if large, can significantly
affect control performances and stability.

B. Case Study 2: AROMA Network

The proposed methods are tested in a second case-study,
i.e., the AROMA district heating network [9]. The AROMA
DHN is a meshed network comprising more than 7 km of
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Fig. 11. NMPC results for case-study 2: (a) Electrical Energy prices.
(b) Thermal load profile. (c) Generator supply temperature. (d) loads’ supply
temperatures (dashed line indicating lower bound).

pipelines (roughly 20 times larger than the RSE Test Facility),
a total of 24 nodes (considering also pipe fitting nodes),
a temperature-controlled generator, and five thermal loads.
The AROMA network simulation model, defined according to
Section II, involves 882 variables for each time step. After
the implementation of the model reduction steps described
in Section III-A, the control-oriented model consists of just
86 variables per time step. The NMPC regulator is designed
considering a sampling time of 30 minutes and a prediction
horizon of 48 steps, i.e., 24h. Also in this case study, the
supply temperature of loads is constrained to exceed a lower
bound of 75◦C. Moreover, the energy prices and the thermal
load profiles are reported in Figure 11(a) and (b), respectively.
The obtained control results are reported in Figure 11(c)
and (d). In particular, during low-price time periods (22:00-
6:00, 12:00-16:00), the NMPC increases the temperature in the
supply pipelines, acting on the thermal generator. On the oppo-
site, during price peaks the generator temperature is reduced,
as evident from Figure 11(c), and the stored thermal energy in
pipelines is exploited to satisfy the thermal demand. Moreover,
the supply temperature at loads is always maintained higher
than 75◦C , as required by operational constraints. Given the
computational-efficiency of the control-oriented model, the
designed NMPC regulator requires on average 30 seconds to
compute its optimal control action. Finally, the performances
of the designed NMPC regulator is compared against a rule
base-strategy, operating the thermal generator at a constant
supply temperature, as done in Section IV-A. The results are
reported in Table III, showing that the achieved cost savings
are approximately 10%. Note that, differently from the RSE
Test Facility described in Section IV-A, here a thermal storage
is not available, meaning that just the network thermal inertia
is exploited to decrease the costs.

V. CONCLUSION

In this article, we presented the development of a simulation
and a control-oriented district heating network (DHN) model,

together with the design of a nonlinear predictive control
(NMPC) regulator able to achieve significant energy savings
with respect to a rule based strategy. The simulation model
performed accurately and efficiently because of carefully cho-
sen assumptions; its implementation led to the development
of the DHN4Control library, freely available online [1]. Addi-
tionally, we proposed a control-oriented optimization model,
particularly efficient due to a model reduction procedure.
Finally, these two models were validated against experimental
and virtual data, showing high accuracy performances despite
their reduced complexity. Moreover, the designed NMPC
regulator achieves a significant cost reduction (up to 18%)
with respect to a benchmark rule-based control strategy, with
reduced computational times. The reduction is possible thanks
to the control-oriented model capable of leveraging the DHN
thermal inertia, i.e., in storages and pipes, minimizing costs,
energy production, and satisfying operative constraints over
the whole network. The proposed methodology can be also
exploited for thermo-hydraulic applications other than DHN
systems, e.g., for cooling systems for industrial processes
or for building heating systems. In fact, also in these case,
a reduced control-oriented model can be crucial for the design
of cost-effective and computationally-efficient NMPC regula-
tors maximizing energy efficiency. Future work will consider
introducing new components for the DHN, which would lead
to the investigation of innovative energy management control
strategies. Moreover, more structured DHN frameworks can
be taken into account, considering the presence of independent
energy hubs and prosumers optimally regulating their thermal
power exchange with the DHN system. In this context, future
research directions may focus on the design of distributed
NMPC architectures, each one regulating a sub-network or
an aggregation of thermal prosumers, so as to optimize their
internal operation and thermal power exchanges over the
DHN. Finally, a further future development will consist in
the implementation of the proposed control solution to the
real Thermal Test Facility in RSE - Ricerca sul Sistema
Energetico S.p.A., as it will be soon available for testing, so as
to experimentally assess the achievable performances.
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