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Optimal Task and Motion Planning and Execution
for Multiagent Systems in Dynamic Environments

Marco Faroni , Alessandro Umbrico , Manuel Beschi , Member, IEEE, Andrea Orlandini ,
Amedeo Cesta, and Nicola Pedrocchi

Abstract—Combining symbolic and geometric reasoning in
multiagent systems is a challenging task that involves plan-
ning, scheduling, and synchronization problems. Existing works
overlooked the variability of task duration and geometric fea-
sibility intrinsic to these systems because of the interaction
between agents and the environment. We propose a combined
task and motion planning approach to optimize the sequencing,
assignment, and execution of tasks under temporal and spatial
variability. The framework relies on decoupling tasks and actions,
where an action is one possible geometric realization of a symbolic
task. At the task level, timeline-based planning deals with tem-
poral constraints, duration variability, and synergic assignment
of tasks. At the action level, online motion planning plans for
the actual movements dealing with environmental changes. We
demonstrate the approach’s effectiveness in a collaborative man-
ufacturing scenario, in which a robotic arm and a human worker
shall assemble a mosaic in the shortest time possible. Compared
with existing works, our approach applies to a broader range of
applications and reduces the execution time of the process.

Index Terms—AI-enabled robotics, autonomous agents, col-
laborative robotics, heterogeneous multiagent systems, planning,
scheduling and coordination, task and motion planning (TAMP).

I. INTRODUCTION

HUMAN–ROBOT collaboration (HRC) boosts the flexi-
bility of manufacturing processes, although the ineffi-

cient coordination between humans and robots often jeopar-
dizes productivity [1]. From a planning perspective, efficiency
in HRC is tied to different intertwined problems. First, the
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system should find a suitable sequence of operations (task
planning), assign them to the agents (task assignment), and
schedule their execution (scheduling). At run time, the exe-
cution of the operations should be adapted to the human and
robot’s state (motion planning and replanning). All these steps
should also consider the variability of the duration and good
(or bad) synergy of simultaneous collaborative operations.
The complexity of the overall planning problem limits the
effectiveness of existing methods in real-world scenarios, and
standardized shared approaches to task and motion planning
(TAMP) are still to come.

This article proposes a tiered approach for multiagent
systems, interleaving task planning, scheduling, assignment,
and action planning. The method addresses the tasks’ tem-
poral and geometric uncertainty by decoupling the abstract
representation of the task from all its possible realizations.
Timeline-based planning reasons on abstract tasks, while
online action planning optimizes their geometric implemen-
tations. Compared with existing methods, our approach deals
with various real-world problems and reduces execution and
idle times.

A. Related Works

This article deals with interleaving task planning and motion
planning and how to consider human behaviors in this pro-
cess. Existing methods address the first aspect by following
the combined TAMP paradigm [2]. Usually, TAMP provides
a task planner able to reason geometrically through calls to a
motion planning algorithm. In such a hierarchical approach, a
task planning algorithm finds a feasible sequence of actions,
and a motion planner checks for geometric feasibility [3],
[4], [5], [6], [7]. Most TAMP methods focus on the feasi-
bility of the plan rather than its optimality (except for a few
exceptions [8], [9]). Few works address temporal planning to
consider task duration [10].

HRC-oriented works usually focus on subproblems, such
as scheduling human and robot actions [11], [12], [13], or
cooperative planning at a symbolic level [14], [15], [16].
Few works address TAMP by explicitly modeling the human
agent [17], [18]. For example, [19] and [20] proposed a hier-
archical agent-based task planner, where complex tasks are
decomposed into simple actions. The method improves the
collaborative experience by considering human preferences as
social costs, but throughput-oriented objectives are not con-
sidered [21], [22]. In manufacturing-oriented methods, [23]
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Fig. 1. Proposed hierarchical framework.

optimizes the ergonomics of the human worker by using
an online workflow scheduler. Darvish et al. [24] and [25]
proposed a TAMP framework for planning and executing tasks
using first-order logic graphs. A contingent-based approach
was proposed in [26] and [27] to deal with uncertainty on the
outcome of actions.

The approaches above focus on finding feasible plans
and do not consider: 1) process throughput; 2) temporal
constraints and uncertainty; and 3) human–robot synergy.
Regarding 1) and 2), timeline-based task planning [28] has
proved to be a powerful approach in many real-world appli-
cations [29], [30]. The value of this approach consists of
integrating planning and scheduling in a unified reasoning
framework, making decisions about what actions to perform
and when. This approach can also model the features’ con-
trollability, that is, the planner knows whether it can control
the task’s beginning or the end [31]. Timelines were applied
to HRC in [32], but the integration with motion planning was
inefficient since it reasoned at a low level of abstraction (point-
to-point movements). Consequently, motion plans were pre-
computed, hindering the flexibility of the approach in dynamic
environments.

B. Contribution

As shown in Fig. 1, we propose a hierarchical planner where
the higher layer reasons over symbolic tasks, optimizing their
order, scheduling, and assignment under temporal constraints
and duration variability. At the same time, the lower level
turns the symbols into robot motions, selecting the optimal
task execution among all the possible alternatives.

Our formulation relies on the definition of ACTIONS as
a set of instances of a TASK (Section II). Such formula-
tion explicitly maps a symbolic TASK to all its possible

geometric realizations. At the task planning level, this formula-
tion considers the duration uncertainty of the tasks, temporal
constraints, and the possible synergy of simultaneous tasks
performed by the different agents. At the action level, instead,
the robot plans and executes its motions based on the current
context.

Then, we propose algorithms to solve the proposed task
and action planning problems (Section III). On the one
hand, we convert the optimal task planning problem into
a multiobjective problem—which constitutes a novelty in
timeline-based planning—and use the notion of Pareto opti-
mality to optimize the coupling of simultaneous tasks. On
the other hand, we make the optimal action planning problem
tractable online by converting it into a multigoal motion plan-
ning problem that can be solved with efficient off-the-shelf
algorithms.

Compared to previous works, our formulation is robust to
temporal and spatial uncertainty typical of hybrid multiagent
systems (e.g., HRC). We assess the broad applicability of
the approach and its superiority to existing works qualita-
tively and experimentally (Sections IV and V), showing that
our approach applies to a broader range of applications and
reduces execution and idle times of the process. A video of
the experiments is attached to this article.

II. TASK AND ACTION PLANNING FORMALIZATION

A. Definitions and Approach at Glance

Our approach builds on the following definitions:
Definition 1 (Worker): It is an agent that performs a job

assigned by the system. It can be a human worker or a robot.
Definition 2 (Task): It is a step of the production process

performed by a worker. TASKS do not provide geometrical
information on their execution, as they model an operation at
a higher level of abstraction. Each TASK might be performed
in several ways, making its duration a random variable rather
than a scalar variable.

Definition 3 (Robot Configuration): It is a vector collecting
the joint positions and the auxiliaries’ state.1

Definition 4 (Robot Movement): It is a discrete change of
the ROBOTCONFIGURATION. Each ROBOTMOVEMENT might
be realized by an infinite number of possible trajectories that
satisfy the physical constraints of the robot.

Definition 5 (Action): An ACTION is a sequence of
ROBOTMOVEMENTS. It is a feasible implementation of a
TASK. Each ROBOTMOVEMENT is defined by the ACTION

parameters.2

The proposed hierarchical approach is shown in Fig. 1. The
task planner uses a planning model of the process to search for
a feasible, possibly optimal sequence of TASKS. The planning

1Example: consider a 2-axes mechanism with a gripper. The ROBOT

CONFIGURATION is a vector of length equal to three, where the first two
components are the joint positions, and the third one is the gripper state.

2Example: TASK “screw bolt A” corresponds to different ACTIONS, each
composed by the same sequence of ROBOTMOVEMENTS: “open the gripper,”
“move to grasp point X” (where X is the position of a particular screwdriver),
“close the gripper,” “move to Y” (where Y is the screwing position for bolt A),
“screw bolt A.” Each ACTION differs in the value of X, Y , A. For example,
multiple suitable screwdrivers might be available in different locations.
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model specifies the TASKS to be performed with temporal
and allocation constraints. The Task Plan Execution mod-
ule dispatches the target TASK to the workers. The Action
Planner converts each TASK into a set of feasible ACTIONS.
Then, it chooses the best ACTION among the feasible ones
and sends the motion plan to the robot controller. If the
Action Planner fails at planning or executing (e.g., no tra-
jectory could be computed, or task execution fails at runtime),
the Task Planner replans according to the Sense-Plan-Act
paradigm [33].

B. Model Formalization

The following elements describe a collaborative process:
W {H, R} is the set of workers, that is, a human and

a robot;
P {pi} is the set of production targets;
T {tpi

j } is the set of TASKS necessary to carry out a
production target pi;

A {aj} is the set of ACTIONS;
D T → R

2 is the duration function that associates a
TASK with an interval [dmin, dmax];

T T → T is the transition function that defines valid
transitions among TASKS;

γ T → {c, pc, uc} is the controllability tag. The tag
is “controllable,” “partially controllable” or “uncon-
trollable” if the system can decide the execution
start and end, only the start or neither of the TASK

a worker performs.
F T → {{H}, {R}, {H, R}} is a function that defines

for each TASK which worker can execute it;
S A → T is a function that maps each ACTION to

its corresponding TASK.
SV (V, T, D, γ ) is a “state variable” that describes the

behaviors of a domain feature that is represented by
the set of tasks V = {vi} ∈ T . Such a set gathers
all the valid TASKS that can be executed over time
for that specific feature. T , D, and γ are defined as
above.

x (v, [e, e′], [d, d′], γ (v)) is a “token” where v ∈ V ,
[e, e′] is end-time interval, and [d, d′] = D(v) is the
duration interval for task v.

FTLSV {xj} is a flexible timeline of a state variable SV
representing a temporal sequence of tokens xj.

Solving a collaborative TAMP problem consists of iden-
tifying a task plan, a temporal schedule, and an assignment
of the tasks considering that each task can be realized by a
set of actions and each movement composing an action can
be executed by an infinite set of trajectories. Each task plan is
modeled through flexible timelines of tokens of state variables.

C. Task Planning Model for Human–Robot Cooperation

Given the notation in Section II-B, we define the production
goals, each worker’s possible behaviors, and the synchroniza-
tion rules to model a human–robot scenario. Refer to [34]
and [35] for a description of the formalization approach.

First, consider a set of high-level production targets
Vp = {pi}, where pi ∈ P . Each pi can be further associated
with a set Vpi = {tpi

j } that gathers TASKS to carry out pi, where

tpi
j ∈ T .3 Second, we consider a generic worker wk ∈W that

may implement some of the needed tasks in Vpi , and denote
by Vwk = {tpi,wk

m } ⊂ Vpi the subset of tasks tpi
j that a worker

wk can do according to F.
In addition to the set of tasks, we must define tasks’

precedence constraints, task duration, and controllability.
To gather all this information, we denote by SVp =

(Vp, TP, Dp, γ p) the production state variable associated with
the high-level production targets Vp = {pi} and by SVpi =
(Vpi , Tpi , Dpi , γ pi) the production state variables associated
with the production tasks Vpi = {tpi

j } necessary for a particular
production target pi. The transitions Tp and Tpi are usually an
input of the model, while duration and controllability come
from the worker modeling and selection (see below). Then,
we denote by SVwk = (Vwk , Twk , Dwk , γ wk) as the behavior
state variables for the kth worker (often one robot and one
human). Transitions Twk , duration Dwk , and controllability γ wk

are usually input of the model. The duration is an interval
Dwk(tpi,wk

m ) = [dwk
m − δ

wk
m , dwk

m + δ
wk
m ] that describes the

duration uncertainty when worker wk performs tpi,wk
m ∈ Vwk .

Controllability γ wk(tpi,wk
m ) depends on the nature of the worker.

Task tpi,wk
m is uncontrollable if performed by humans since they

may refuse to do a task or quit halfway through. Conversely,
it is partially controllable if performed by a robot, as they may
be unable to finish a task because humans obstruct all possible
way outs.

As mentioned above, much information about the complete
model is intertwined. For example, the execution time of the
process task tpi

j results

Dpi
(
tpi
j

) =
[

min
t
pi,wk
m

(
dwk

j − δwk
m

)
, max

t
pi,wk
m

(
dwk

m + δwk
m

)
]

s.t. tpi,wk
m implements tpi

j

otherwise, the problem is unfeasible. Similarly, the map of
processes tasks tpi

j into several feasible workers tasks of tpi,wk
i

according to the different constraints (precedence constraints,
resource constraints, etc.) is far to be simple. Proper SW tools
autonomously compute such information (see Section V) that
complete the model from user input, using proper synchro-
nization rules R.

Given a set of state variables SVP, SVpi , SVwk and synchro-
nization rules R, we can now introduce the timeline-based
planning formalization [28], [36]. We consider the generic
state variable SVg = (Vg, Tg, Dg, γ g) and denote by xg

j =
(vg

j , [eg
j
−
, eg

j
+

], [dg
j
−
, dg

j
+], γ (vg

j )) a “token” with vg
j ∈ Vg,

and Dg(vg
j ) = [dg

j
−
, dg

j
+]. We define a flexible timeline

FTLSVi of a state variable SVi as a sequence of tokens {xg
j }

that span the process execution time and describes what the
worker does over the process. Finally, a timeline-based plan π

consists of a set of flexible timelines, one for each state vari-
able, valid with respect to R. A timeline-based solver exploits
different search techniques to find the optimal π among the
feasible ones.

3The set Vp could be {assembly A, check the quality of B, disassemble C},
and Vp1 = {Take the bottom of part A, pick and places the screws of A, Tight
the screws of A}.
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Fig. 2. Example: A pick-and-place action.

D. Action Planning Model for Human–Robot Cooperation

The action planner finds the best ACTION to execute a given
TASK twk

j . To do so, it gathers all the necessary geometric
information from the scene descriptor (e.g., through queries
to a database). Then, it determines all the actions that can
realize task twk

j (i.e., all actions ai ∈ A such that twk
j = S(ai),

according to Definition 5). For example, consider twk
j equal

to “pick a blue object and place it in an empty box.” The
action planner uses the tags “blue object” and “empty box”
to identify all the locations of the scene to which these labels
are assigned. Then, the action planner finds the best sequence
of ROBOTMOVEMENTS that connects those locations in the
order specified in Fig. 2.

We formulate the action planning problem as the identifica-
tion of the best path on a directed graph G = (Ug, Eg), where
Ug is the set of vertices and Eg is the set of edges, and:

1) Ug,i is a set of ROBOTCONFIGURATIONS, that corre-
sponds to the goal of the ith ROBOTMOVEMENT;

2) Eg,j connects two sets of ROBOTCONFIGURATIONS, that
is, each edge is a set of ROBOTMOVEMENTS.

Indeed, Ug,i includes all the ROBOTCONFIGURATIONS that
are logically equivalent for the task (e.g., each one is the
location of equivalent “blue objects”). Furthermore, if the rep-
resentation of the location is in the Cartesian space, many joint
configurations may correspond to each Cartesian pose.

For a generic action composed of n movements, the set of
vertices is therefore given by

Ug =
n⋃

i=0

Ug,i

where the starting vertex Ug,0 is a single
ROBOTCONFIGURATION since the starting configuration
is usually known.

The action planner shall find the shortest path on G from
a vertex in Ug,0 to a vertex in Ug,n. The advantage of this
formulation is that it maps a symbolic task into all its possible
realizations. Recalling the example of the blue cubes, the best
action is optimal for all possible inverse kinematic solutions
of all grasping points of all available blue cubes.

III. OPTIMIZATION AND SOLVERS

This section proposes algorithms to solve task and action
planning problems despite the high computational complex-
ity of these problems in real-world scenarios. Without loss of

generality, we will refer to the case where the workers are one
robot and one human.

A. Optimization of Collaborative Processes

Consider a set of interaction windows Y = {yj} during
which the human and the robot perform some task tpk

i asso-
ciated with a production target pk. Let bH

i,j and bR
i,j be binary

control variables such that

bR
i,j =

{
1, if the robot does tpk

i during yj

0, otherwise

bH
i,j =

{
1, if the human does tpk

i during yj

0, otherwise.
(1)

The robot and the operator can perform only one task during
a particular interaction window, namely

∀ j s.t. yj ∈ Y,
∑

i

bR
i,j = 1, and

∑

i

bH
i,j = 1. (2)

Each task can be assigned only once during a process and thus
executed only by the human or the robot, that is

∀ i s.t. tpk
i ∈ T ,

∑

j

bR
i,j + bH

i,j = 1. (3)

A duration cost function fd can be therefore defined as

fd =
∑

i

∑

j

dR
i bR

i,j + dH
i bH

i,j (4)

where dH
i and dR

i are the expected duration of task tpk
i ∈ T

when performed by the human and by the robot separately.
However, (4) does not consider coupling effects between the

robot and the human. For example, if the robot and the human
move to the same area concurrently, the robot will either stop
or slow down for safety reasons. To capture this synergy, we
define �dR

i,j and �dH
i,j as

�dR
i,j = dR

i,j − dR
i and �dH

i,j = dH
i,j − dH

i (5)

where dR
i,j is the expected duration of task tpk

i performed by
the robot while the human is performing tpk

j (and vice versa
for dH

i,j). The synergy cost function fs is therefore defined as

fs =
∑

i

∑

j

∑

k

�dR
i,jb

H
j,kbR

i,k +�dH
i,jb

R
j,kbH

i,k

=
∑

i

∑

j

(

si,j

∑

k

bH
j,kbR

i,k

)

(6)

where si,j = �dR
i,j +�dH

i,j is a synergy coefficient, that is, an
index of the simultaneous tasks coupling, as shown in Table I.

In conclusion, the solution plan π is a solution to the
following multiobjective optimization problem:

minimizeπ {fd, fs} (7)

subject to constraints (2) and (3). This article focuses on
time-efficiency criteria, but the extension to other objectives
is straightforward and does not undermine the search strategy.
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TABLE I
SYNERGY MATRIX. EACH ELEMENT si,j REPRESENTS THE INCREMENT

OR DECREMENT OF DURATION GIVEN BY THE SIMULTANEOUS

EXECUTION OF TASKS i AND j

Algorithm 1 Timeline-Based Plan Synthesis

Input: SV , R, SRH

Output: π = (FTL, R)
1: � ← ∅
2: π ← initialize(SV, R)
3: while ¬ isSolution(π, SV, R) do
4: � ← flaws(π, SV, R)
5: �∗ ← chooseFlaws (�, R)
6: for φ ∈ �∗ do
7: � ← refine (π, φ.resolvers)
8: π ← choosePlan (�, SRH)
9: return π

B. Task Planning as Multiobjective Search

The synthesis of a plan π uses a domain-independent refine-
ment search, briefly described in Algorithm 1. Timelines are
refined iteratively to solve inconsistencies. We detect flaws in
the current partial plan at each iteration, select which flaw
to solve, and refine the plan by applying possible solutions.
Each solution determines an alternative refinement and, thus,
an alternative partial plan. Unexplored partial plans compose
the fringe of the search space and are collected into a ded-
icated data structure in case of backtracking. A solution is
found when the partial plan extracted from the fringe does
not contain flaws.

Three points are crucial in Algorithm 1: 1) the selection of
the flaw to solve for plan refinement (line 5); 2) the selection
of the next partial plan (line 8); and 3) the computation of the
objective functions.

1) Flaw Selection and Refinement: We refer to “flaws” as
conditions that affect the completeness or validity of timelines.
Flaws may concern tokens to be added to timelines (plan-
ning flaws) or tokens of a timeline to be ordered because they
overlap (scheduling flaws). This choice determines the way the
solving process interleaves planning and scheduling decisions.
We implement a hierarchy-based heuristic that considers the
synchronization rules of a domain specification [37].4

2) Refinement of Partial Plans: Given the multiobjective
nature of the problem, we pursue a Pareto optimality
approach [38] and apply the dominance relationship to partial
plans.

4Intuitively, a higher hierarchical level is assigned to SVs appearing in
the rules’ trigger (i.e., SVs influencing behaviors of other SVs). A lower
hierarchical level is assigned to SVs appearing in the rules’ body (i.e., SVs
whose behavior depends on other SVs).

Definition 6: Given a set {f1, . . . , fn} of cost functions, a
partial plan πi dominates a partial plan πj (with i 
= j) if

fk(πi) < fk
(
πj
) ∀ k = 1, . . . , n.

The dominance condition is used to compare partial plans to
heterogeneous objective functions and identify the Pareto set
of the search space. The Pareto set comprises partial plans and
represents a suitable tradeoff between objective functions fk.
Such partial plans are compared on a priority assigned to
the objectives. This work’s objectives are makespan, fd, and
synergy, fs. Among the dominant plans, we prioritize synergy.

3) Cost Estimation of Partial Plans: The implementation
of (7) according to the timeline framework needs some
intermediate steps. The objective function must be composed
of a “cost term” and a “heuristic term.” Specifically, the cost
term models the scheduled tokens of the timelines of a plan
FTLi ∈ π . Instead, the heuristic term considers possible pro-
jections of the timelines. A projection ξ i

j represents a particular
sequence of tokens xk ∈ ξ i

j that may complete the timeline
FTLi in future refinements of a plan π . All the possible pro-
jections of the timeline FTLi define a set 
i � ξ i

j for all j, and
the minimization passes through the computation of partial
plans whose timelines are not necessarily complete.

Consider (4), the objective function fd(π) turns in

fd(π) = max
FTLi∈π

⎛

⎜
⎝
∑

xj∈FTLi

dj + max
ξ i

j∈
i

∑

xj∈ξ i
j

dk

⎞

⎟
⎠. (8)

Given FTLi, the makespan turns into the sum of the duration
dj of its tokens xj ∈ FTLi with the maximum sum of the
duration dk of tokens xk belonging to the projections ξ i

j ∈ 
i.
Consider (6), the objective function fs(π) turns in

fs(π) =
∑

xR
i ∈FTLR

∑

xH
j ∈�(xR

i )

si,j

+ max
ξR

j ∈
R

∑

xR
k ∈ξR

j

max
xH

m∈VH

m
=k

(
sk,m

)
(9)

where FTLR is the robot timeline, �(xR
i ) = {xH

1 , . . . , xH
n } the

set of tokens of the human timeline FTLH . The execution of
xH

j may overlap in time with xR
i , and the synergy term si,j is

computed for each pair of overlapping tokens, xR
i and xH

j and
extracted from the matrix SRH (Table I). The first term of (9)
is the cost term, while the second is the heuristic term. This
last term considers possible projections of the robot timeline
ξR

j ∈ 
R as the maximum expected synergy of the plan accord-
ing to the worst synergy that corresponds to the maximum
value of sk,m of the tokens xR

k ∈ ξR
j and xH

m ∈ VH with m 
= k,
that is, the maximum value of all the possible combinations.

C. Action Planning as Multigoal Motion Planning Problem

According to Section II-D, the optimal action planning
problem consists of finding the shortest path from the cur-
rent configuration q0 ∈ Ug,0 to a vertex in Ug,n on a graph
G = (Ug, Eg). Each edge in Eg corresponds to a motion plan-
ning problem between the configurations associated with the
edge vertices.
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Algorithm 2 Refining Tasks Into Motion Plans
Input: action_model, robot_tree
Output: motion_plans

1: qcurrent ← getCurrentConfiguration()
2: (Ug,1, . . . , Ug,n) ←getGoalsFromScene(action_model,

robot_tree)
3: for Ug,i in (Ug,1, . . . , Ug,n) do
4: (σ, c) ← motionPlanning

(
robot_tree, qcurrent, Ug,i

)

5: if isEmpty(σ ) then
6: break
7: else
8: motion_plans.append(σ )
9: cost ← cost+c

10: qcurrent ← σ(1)
11: return motion_plans

Solving the shortest path on G is often not viable because
evaluating all the edge weights is time consuming (solving a
single motion planning problem may take seconds in a real-
istic scenario). To achieve online implementation, we pursue
an approximated approach. We decompose the action planning
problem into a sequence of subproblems, that is, one subprob-
lem for each ROBOTMOVEMENT of the ACTION. Then, we
optimize the sequence of ROBOTMOVEMENTS step by step.
The procedure is described in Algorithm 2.

Procedure getGoalsFromScene gets the
ROBOTCONFIGURATIONS, Ug,1, . . . , Ug,n (line 2), where
Ug,i is the set of configurations goals associated to the ith
movement. Then, the algorithm solve a motion planning
problem from qcurrent to Ug,i (line 4). The resulting motion
plan is a curve σ : [0, 1] → C such that σ(0) = qcurrent
and σ(1) ∈ Ug,i. The curve σ is appended to the array
motion_plans (line 8), and the total cost is updated (line 9).
Finally, the current configuration is updated with the final
configuration of the chosen trajectory (line 10), and the
procedure is repeated.

Function getGoalsFromScene queries the database contain-
ing all locations in the environment. If the locations are
expressed as Cartesian poses, the function converts them
into ROBOTCONFIGURATIONS by applying inverse kinemat-
ics. Simplifying, the function gets all the configuration goals
associated with each movement of an ACTION.

This approximated approach turns a subaction into a
multigoal motion planning problem (line 4), for which effi-
cient solvers exist. Procedure motionPlanning outputs the
minimum-cost path from a starting configuration to any con-
figuration in Vg,i. This problem may be solved by running the
motion planner for each configuration in Vg,i and by select-
ing the best solution, although this approach is inefficient and
does not scale well to the number of goals. Informed sampling-
based planners [39] solve the problem efficiently in a single
query.

IV. QUALITATIVE ASSESSMENT

Existing TAMP approaches for HRC fit different require-
ments and assumptions, leading to the lack of a shared
standard. A quantitative, fair comparison between existing
works is difficult because each method is designed to comply

TABLE II
COMPARISON BETWEEN THE PROPOSED TAMP APPROACH

AND OTHER WORKS IN THE LITERATURE

with different constraints. In this section, we resort to examples
of real-world problems to argue that our methodology can
address a wider variety of cases than existing methods.

A. Case Studies

We consider a typical end-of-line packaging application,
where two collaborative lightweight robots are installed, and
a human operator can access the cell [40]. The robots must
pick the packs from a ball-transfer table and place them into
boxes. Storing packs in the boxes must follow certain rules
(e.g., a mosaic composition). If needed, the human inspects the
packing quality and handles the packs. The packs on the ball-
transfer table are randomly positioned. An external camera and
an eye-in-hand camera give a raw and refined localization. In
this scenario, we analyze the effectiveness of the most relevant
works mentioned in Section I-A. The results are summarized
in Table II.

1) Temporally Bounded Process Execution: Consider the
noncollaborative case (that is, no human intervention) in which
the robot cannot overcome a maximum execution time owing
to plant constraints. The methods in Table II that do not model
temporal constraints cannot guarantee the plan constraints.
This could not be granted even if they integrate optimal
robot trajectories and optimal robot actions because action
optimality does not imply the plan is minimum time.

2) Execution in Dynamic Environments: Consider the non-
collaborative case in which the position of the remaining
packs can change after each grasping operation. The methods
in Table II that do not implement any contingency strate-
gies or online geometric reasoning need replanning when an
unforeseen event occurs. Suppose an action takes longer than
expected (e.g., the camera takes longer to identify the grasp-
ing position). In that case, temporal constraints as in [10]
may be violated unless the plan is robust to action dura-
tion. Conversely, the algorithms with contingency strategies
or online geometric reasoning need a local replanning.

3) Execution With Multiple Agents: In the case that two
robots are used, a delay in the execution of a task (e.g., due
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to slow processing of a sensor, occlusions of a camera, etc.)
may introduce synchronization issues between the agents.

All the methods in Table II that integrate neither temporal
constraints nor contingency strategies can be highly inefficient
in the execution. On the one hand, methods that integrate only
contingency strategies could cope with the coordination of
multiple agents, but a delay in the task execution may violate
precedence constraints. On the other hand, methods that inte-
grate only temporal constraints [10] may fail in the execution
when a worker overcomes the time limits due to unmodeled
events (e.g., occlusions, the hold of the movement for safety
reasons, etc.). Increasing temporal constraints to compensate
for this behavior is not helpful since this information is used
only in the planning phase and not during the execution. This
issue can be mitigated if the temporal modeling used in the
plan computation is robust to the task execution latency.

4) Optimal Execution With Multiple Agents: Consider that
throughput must be maximized to guarantee the economic
return on the robotic cell. The methodologies in [8] and [9]
compute an optimal initial plan. However, synchronization
issues would arise when a task takes longer than expected, as
discussed in Section IV-A3. Consequently, a delay in grasping
(e.g., due to slow camera perception) leads to an optimality
loss or the need to recompute the whole plan.

5) Optimal Execution in Dynamic Environments: Consider
throughput as the goal, and consider that the packs’ posi-
tion can change after each grasping. Toussaint [8] and
Zhang and Shah [9] cannot grant the plan’s feasibility because
the trajectory must be recomputed online without excessive
idle times. Although [32] exploits the timelines, it fails because
the optimal plan is computed offline, based on a proba-
bilistic model. The plan computation should be continuously
updated to overcome this limitation in parallel with the task
execution. However, the latency of the continuous update is
high due to the high computational load of the methodology.
Darvish et al. [24], [25] grant local optimality, but movable
objects in the scene do not allow for global optimization.
Finally, [26], [27] embody a contingency strategy to overcome
failures related to misalignment between models and reality.
These methods do not generalize to temporal constraints and
do not allow for trajectory and action optimization.

B. Discussion

According to the analysis above, our TAMP approach is
the most adequate to deal with typical real-world require-
ments. The capability of considering execution issues at both
task and action/motion planning levels is a crucial advan-
tage. This capability enables reliable coordination of agents
while preserving the optimality of task assignment, action
implementation, and the resulting collaboration.

The combination of temporal flexibility, optimal task allo-
cation, and optimal online motion trajectories allows us to
preserve coordination and production efficiency through reli-
able task plans and behaviors. Specifically, timeline-based
planning effectively integrates reasoning on allocating tasks
to the agents and optimizing production while considering
possible deviations at execution time. Furthermore, the action

planner evaluates the state of the environment online and
computes optimal trajectories of motions on the fly.

V. EXPERIMENTAL ASSESSMENT

A. Case Study

We consider a case study derived from the EU-funded
project ShareWork (http://www.sharework-project.eu) where a
robot arm (Universal Robots UR5 on an actuated linear track)
and a human operator have to assemble a mosaic (see Fig. 3).
We consider four mosaics composed of 4, 9, 16, and 50 cubes
of different colors (blue, orange, and white). Each slot has a
label given by its column letter and its row number (that is,
A1, A2, . . .). A common condition in HRC is that some oper-
ations can be performed only by the robot or the human. In
this example, the following allocation constraints are imposed:
orange cubes shall be moved only by the robot; white cubes
shall be moved only by the human; both can move blue cubes.

1) Process Planning Model: The case study is traced back
to the timeline-based formalism described in Section II-C.
The process is modeled as a production state variable SVP =
(VP, TP, DP, γ P), where each value of VP represents the
assembly of a row, that is, VP = {DoRow1, DoRow2, . . .}.
The precedence of some rows over others may be set at this
level as synchronization rules. Two behavior state variables,
SVH = (VH, TH, DH, γ H) and SVR = (VR, TR, DR, γ R),
model the low-level tasks that the human and the robot can per-
form. In this case study, the human and the robot perform tasks
of the type PickPlacex, which consists of picking a cube and
placing it in the slot with label x. Hence, VH = {PickPlacey}
and VR = {PickPlacez}, where y is the labels corresponding to
white and blue cubes, and z are labels corresponding to orange
and blue cubes. Note that VR ∩ VH 
= ∅ because blue tiles
can be assigned to humans and robots.

According to the controllability notion given in Section II-C,
the human behavior is modeled as uncontrollable (γ H(vk) =
u ∀vk ∈ VH) and the robot behavior of is partially control-
lable (γ R(vk) = pc ∀vk ∈ VR). The duration of each task
(DR and DH) is estimated as in [41]. This duration estima-
tion method considers the human interference on the robot
paths and estimates the duration for all possible obstruction
and safety stop cases. Based on this estimation, each element
si,j of the synergy matrix is computed as in (6).

Each task PickPlacez ∈ VR corresponds to a set of actions
to be performed by the robot. Each action boils down to a
sequence of ROBOTMOVEMENTS, as shown in Fig. 2. When
the action planner receives a task, the action planner decodes
the cube’s color and the goal slot from a database. Then, it
solves the action planning problem described in Algorithm 2.

2) Software Implementation: The task planner in
Section III has been integrated into the timeline-based
planner PLATINUm [42], using a hierarchy-based heuristics
for flaw selection and an HR-balancing search strategy
for search expansion [43]. The rest of the framework is
implemented in ROS and connected to PLATINUm by
rosbridge_suite [44]. PLATINUm dispatches tasks to the
robot action planner and waits for feedback. In real-world
tests, an HMI system would communicate the task to humans
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Fig. 3. Case study: A 7-degree-of-freedom robot and a human worker collaborate to assemble a mosaic. Four mosaics are considered, with the number of
cubes ranging from 4 to 50.

Fig. 4. Results of Experiment 1a. The proposed method (proposed) is compared with [32] (baseline). The proposed method reduces the execution time (left
plot), the robot’s traveled distance (middle plot), and the planning time of the task planner (right plot). The difference is even more evident when more cubes
than strictly necessary are used (proposed with all cubes).

and receive feedback from them. In simulated tests, the
human is modeled through a mannequin5 commanded by a
second instance of the action planner used for the robot.6

The action planner is implemented by using the library [45],
which builds high-level skills on top of MoveIt!. Because of
the multigoal nature of the proposed action planning and the
online requirement, we use MI-RRT∗ [46], a fast variant of
Informed-RRT∗ [39], to solve the motion planning problems.

B. Experiments

We discuss three experiments to evaluate the different com-
ponents of the proposed approach. The first two analyze the
reasoning capabilities of the task planner and action planner
alone. The third one then evaluates their integration within
the proposed TAMP approach. We conclude the section with a
final discussion of the results emphasizing the main advantages
and strengths of the approach. A video of the experiments is
attached to this manuscript.

1) Experiment 1 (Task Planning Performance): We com-
pare our approach with a timeline-based approach [32] and

5The modeled movements are: trunk (2 translations and 3 rotations),
shoulders (3 rotations each), elbow (1 rotation each), and wrist (3 rotations).

6Using a simulation model of the environment and the human worker is
fundamental to ensure high repeatability of the tests, erasing the effects of
measurement uncertainty, differences between human subjects, and human–
machine communication. This allows for a fair comparison between different
methods, focusing only on the effects of TAMP.

an action-based approach [10] (according to Table II, [32]
and [10] are the only approaches that can manage temporal
constraints).

a) Comparison with timeline-based approaches:
Reference [32] has two main limitations. First, the task
planner reasons at a low level of abstraction (i.e., each
point-to-point movement is modeled as a TASK), putting the
task planner in charge of finding the optimal ordering and
assignment of all the ROBOTMOVEMENTS. Second, it is
based on the a-priori modeling of the trajectories, that is, all
trajectories are precomputed, and the task planner reasons on
the estimated costs of such plans.

To demonstrate that our approach scales better than [32]
to complex processes, we consider the mosaics in Fig. 3.
Pellegrinelli et al. [32] modeled each ROBOTMOVEMENT

from a cube to each slot (and vice versa) as a TASK. On
the contrary, the proposed method only requires one TASK for
each slot. As the planning time roughly grows exponentially
in the number of TASKS, the planning time of the proposed
method is around one order of magnitude smaller than that
of [32], as shown in Fig. 4 (right plot). Note that [32] could
not solve the 50-cube mosaic within the maximum planning
time of 15 min.

Similar reasoning holds for the motion planning phase.
Pellegrinelli et al. [32] precomputes all trajectories from all
cubes to all slots and vice versa. Suppose the number of cubes
in the scene is equal to the number of slots of the mosaic, and
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TABLE III
RESULTS OF EXPERIMENT 1.2. COMPARISON OF THE

PROPOSED METHOD AND [10]

let τmax be the maximum planning time after which a motion
planning query is stopped and b the number of slots. Then,
the offline phase can take up to 2τmaxb2 s. Considering that,
in our tests, τmax = 5 s, this corresponds to 90, 360, 1690,
and 14440 s for each mosaic. On the contrary, our approach
computes the trajectories online, dealing with uncertainty and
changing goals.

Concerning the execution phase, we compare the
performance of the two approaches for the 4-cube, 9-cube,
and 16-cube mosaics. Fig. 4 shows that the execution time of
the proposed method is significantly shorter (−14%, −12%,
−20% for the three mosaics) because the action planner
chooses the most convenient movement online and based
on the current robot and human state. Indeed, the robot’s
traveled distance is much shorter (−26%, −39%, −27% for
the three mosaics). This difference is even more evident when
more cubes than necessary are available. For example, we
consider the case where 50 cubes are available although only
4, 9, and 16 are necessary (method “proposed w/ all cubes”
in Fig. 4). Because our method can choose among a broad
set of objects at each PickPlacex task, it leads to a further
improvement of the execution time (−44%, −22%, −34% for
the three mosaics) and the robot’s traveled distance (−63%,
−39%, −46% for the three mosaics).

b) Comparison with action-based approaches: A direct
comparison with other approaches mentioned in Table II is dif-
ficult because of the intrinsic differences in planning formalism
and models.

Nonetheless, we consider [10] as it supports temporal con-
straints and hierarchical decomposition. Thus, the comparison
focuses on how the two models deal with uncertain and strict
temporal requirements.

Edelkamp et al. [10] proposed an integration of TAMP
capabilities based on PDDL2.1 [47]. It uses an action-based
representation with so-called durative actions that do not con-
sider scheduling aspects. PDDL2.1 planners do not pursue
makespan optimization but use temporal constraints for plan
consistency. Furthermore, neither temporal flexibility nor tem-
poral uncertainty are considered by such planners. Therefore,
the task planning models pick-and-place tasks with a fixed
duration and consider the robot and worker controllable.
We run our implementation of [10] for the 4-cube, 9-cube,
and 16-cube mosaic and show the results in Table III. As
expected, [10] achieves the best planning time for all scenarios
because the action-based planner focuses on process decom-
position without considering optimization aspects. Scheduling
decisions do not impact the reasoning, while the lack of

flexibility reduces the number of choices considered during the
search. Then, we execute the plans obtained for the 4-cube,
9-cube, and 16-cube mosaic, simulating the uncertainty of the
worker’s actions (δ = ±5 time units). The objective is to
evaluate the reliability of synthesized plans in a realistic sce-
nario where human workers behave uncontrollably. As shown
in Table III, the execution time of [10] is greater than the exe-
cution of our approach (up to +110%). The lack of temporal
flexibility with respect to uncertainty does not allow to deal
with the uncontrollable dynamics of the worker effectively.
Consequently, the frequent need for replanning increases the
execution time of the plan, leading to less efficient (and
effective) collaborations.

2) Experiment 2 (Action Planning Performance): Consider
the 50-cube mosaic of Fig. 3 and the following action-planning
configurations.

1) Precomputed: Motion plans from and to each point are
computed offline, as in [32]. Before each movement, the
algorithm chooses the closest goal to the current robot
position. Referring to Table II, this approach displays
optimal robot trajectories, but neither optimal actions
nor online geometric reasoning. It cannot deal with
dynamic environments as paths are computed a priori.

2) Single-Goal: Motion plans are computed before exe-
cution. The action planner always selects the closest
goal to the current robot position. Referring to Table II,
this approach has optimal robot trajectories and online
geometric reasoning, but no optimal actions.

3) Multigoal: The proposed action planning. Motion plans
are computed just before their execution. The multigoal
optimal motion planner considers all the goals with the
desired properties, yielding optimal robot trajectories,
online geometric reasoning, and optimal actions.

We evaluate the following indexes: 1) total execution time
of the robot tasks (in seconds); 2) joint-space distance traveled
by the robot (in radians); and 3) planning time for the motion
planning algorithm, that is, the sum of the planning times of
all movements to perform a pick-and-place action (in seconds).

We run 20 tests for each configuration by using a task
plan generated by the feasible configuration described in
Section V-B3 (the chosen plan assigns 25 tasks to the robot and
25 tasks to the human). Results are in Fig. 5. The multigoal
configuration outperforms the precomputed and the single-
goal variants with a reduction of around 48% in the traveled
distance (precomputed: mean = 1487 rad, stdev = 23.7 rad;
single-goal: mean = 1480 rad, stdev = 27.1 rad; multigoal:
mean = 768 rad, stdev = 2.21 rad). All configurations use the
same optimal path planner; the improvement of the solution
is due to the choice of the goal: precomputed and single-goal
direct the search toward the closest goal, which is often sub-
optimal. Other heuristics could be adopted to select the goal,
but the results would strongly depend on the geometric proper-
ties of the workspace. For example, the “closest-one” heuristic
would perform even worse in a cluttered environment. On the
contrary, multigoal always finds the best solution regardless
of the geometry of the workspace. Shorter paths reduce the
execution time, as shown in Fig. 5. Note that the difference
in the execution time is less pronounced than the one in the
traveled distance. The reason is that the execution time also
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Fig. 5. Results of Experiment 2. Comparison of the proposed multigoal action planner and a precomputed motion planner and a single-goal planner. The
path length is reduced (left plot) as the robot execution time (middle plot). Planning times are larger but suitable for online planning (right plot; precomputed
is not shown because it relies on offline planning).

Fig. 6. Results of Experiment 3. The proposed method (optimized) is compared with a feasibility-oriented approach (feasible): optimized reduces the process
execution time (left plot) and the idle time of human and robot (middle plot) and increases the time the robot and the human work simultaneously (right plot).

considers planning latency, safety slowdown, and communica-
tion overhead, and it is affected by the path parametrization
algorithm. Nonetheless, multigoal leads to a significant reduc-
tion (around 21%) in the robot execution time (precomputed:
mean = 632 s, stdev = 12.0 s; single-goal: mean = 629 s,
stdev = 8.05 s; multigoal: mean = 500 s, stdev = 1.27 s).
Note that the multigoal approach results in a minor variance
of the traveled distance and execution time because the multi-
goal search is less affected by the robot state at the beginning
of each action.

Finally, the motion planning times are shown in the right
plot of Fig. 5 (precomputed is not shown as all paths
are computed offline). As expected, multigoal has planning
times higher than single-goal (single-goal: mean = 0.567 s,
stdev = 0.057 ms; multigoal: mean = 2.65 s, stdev =
0.211 s). This difference is intrinsic to the multigoal nature
of the planner, which has to plan toward all available goals.
Nonetheless, planning times of multigoal are still in the
order of a few seconds and, therefore, suitable for online
planning. Moreover, this discrepancy is expected to decrease
thanks to the constant advances in multigoal motion planning
algorithms.

3) Experiment 3 (TAMP Performance): Consider the
50-cube mosaic of Fig. 3 and the following cases.

1) Feasible: We generate feasible random task plans with
respect to allocation and precedence constraints but do
not optimize duration and synergy. The number of tasks
assigned to the human is chosen as a uniform ran-
dom variable between 12 and 39 (i.e., the smallest
and largest number of cubes the human can move).
Referring to Table II, this configuration reproduces those
methods that do not implement any task optimization,
contingency strategy, or temporal robustness.

2) Optimized: We use the proposed multiobjective
optimization approach. The task planner decides the
order and allocation of the tasks.

Both configurations use the proposed action planner to high-
light the differences owing to the task plan generation.

For optimized, the task planner decides the number of tasks
for each worker in such a way as to minimize the process
duration. This is a key feature of our approach, while exist-
ing works either assume that the number of assignments is
given or they find a feasible assignment, disregarding its opti-
mality. To reproduce this issue, we let the feasible approach
randomly decide the number of tasks assigned to each worker
as long as the assignment is feasible. The following indexes
are evaluated.

1) Process Execution Time, ETP = max(ETR, ETH).
2) Idle Time IT = 100 |ETR − ETH|/ETP [%].
3) Concurrent working Time of human and robot, CT =

100 · (min(ETR, ETH)− ST)/ETP [%].
where ETR and ETH are the execution time of the robot and
the human, and ST is the robot holding time because of safety
(i.e., when the human is close to the robot). The first index
measures the throughput of the process, and the second and
the third measure the quality of collaboration.

We run 20 tests for each configuration; results are in Fig. 6.
The optimized approach outperforms the feasible one by reduc-
ing ETP of around 16% (optimized: mean = 467 s, stdev =
11.9 s; feasible: mean = 557 s, stdev = 39.3 s) and IT of
around 95% (optimized: mean = 2.36%, stdev = 1.50%; fea-
sible: mean = 44.2%, stdev = 15.2%), while increasing CT of
around 74% (optimized: mean = 79.6%, stdev = 3.26%; fea-
sible: mean = 45.8%, stdev = 12.1%). Note that the optimized
approach displays a balanced assignment of tasks to the robot
and the human. In this case, the task planner assigns 27 tasks
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to the human and 23 tasks to the robot, so the two expected
makespans are similar. As a result, the execution time and the
idle time are shorter.

C. Discussion

The outcomes of these experiments confirm the conclusions
of the qualitative assessment. The task planning assessment
shows that the timeline-based approach achieves a higher level
of reliability during plan execution in the case of uncontrol-
lable delays or temporal deviations in the execution of tasks. It
also shows that the proposed approach scales to more complex
tasks than previous timeline-based methods (Fig. 4).

The action planning assessment shows that the dynamic
selection of the motion goal significantly increases the flex-
ibility and reliability of robot motions and achieves shorter
execution time and robot traveled distance (Fig. 5).

The third experiment focuses on integration. It shows
the advantages of integrating the two planning approaches.
The results of Fig. 6 clearly show that the combination of
optimal reasoning at the two levels of abstraction significantly
improves the synergetic behaviors of the agents in terms of
both idle time and concurrency.

VI. CONCLUSIONS AND FUTURE WORKS

This article proposed a TAMP approach for hybrid
collaborative processes. The proposed method follows
a multiobjective optimization approach to maximize the
throughput of the process. We demonstrated the advantages
of the method compared with state-of-the-art techniques, both
from a qualitative and numerical point of view. Future works
will focus on integrating learning techniques to refine the pro-
cess model through experience and speed up the search for
optimal plans [48]. For example, [49] presents a preliminary
study on learning task duration and human–robot synergy via
linear regression. Further investigation will also address the
use of other optimization objectives (e.g., taking into account
human factors and user preferences [50] or agent–agent com-
munication [51]). Finally, real-world tests of human workers
will assess the system’s performance and dependability.
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