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Abstract— This paper presents a novel optimal control ap-
proach for systems represented by a multi-model, i.e., a finite
set of models, each one corresponding to a different operating
point. The proposed control scheme is based on the combined
use of model predictive control (MPC) and first order integral
sliding mode control. The sliding mode control component plays
the important role of rejecting matched uncertainty terms pos-
sibly affecting the plant, thus making the controlled equivalent
system behave as the nominal multi-model. A min-max multi-
model MPC problem is solved using the equivalent system
without further robustness oriented add-ons. In addition, the
MPC design is performed so as to keep the computational
complexity limited, thus facilitating the practical applicability
of the proposal. Simulation results show the effectiveness of the
proposed control approach.

Index Terms— Sliding mode control, model predictive con-
trol, multi-model systems, uncertain systems.

I. INTRODUCTION

Many industrial plants present different behaviours in
correspondence of different operating points. When this
happens, it is convenient to reformulate the nonlinear model
describing the plant as the union of a finite number of linear
models. This gives rise to a multi-model representation,
also called in the literature “multi-model uncertainty”, to
underlying the fact that when this modeling approach is
adopted, the active system matrices at certain time instant are
unknown, but it is known that they belong to finite sets of
known matrices. Different approaches have been proposed to
design MPCs for systems with multi-model uncertainty, see,
e.g., [1]–[3]. The presence of matched disturbances, which
are added to the multi-model uncertain term, can make the
use of a robust MPC mandatory, which implies a certain level
of conservativeness in the control solutions [4], [5].

In the literature, the problem of reducing the conserva-
tiveness of MPC schemes has been faced by proposing a
combination of MPC with sliding mode control [6], [7]. The
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underlying idea was to exploit the robustness features of slid-
ing mode control to allow the MPC component of the scheme
to be designed relying on a plant with reduced uncertainty.
The reduction of the uncertainty effects was performed by the
sliding mode control component. Different proposals were
studied in recent years. In [8], a nonlinear MPC combined
with an integral sliding mode control was proposed for
continuous-time sampled data nonlinear systems. This was
extended in [9] to the case of networked systems, producing
an original asynchronous packetized MPC solution. An MPC
and a sliding mode observer are proposed in [10], still for
continuous-time systems. Other schemes based on analogous
concepts are proposed in [11] and [12] for discrete-time
systems. Moreover, such concepts have been also customized
for several applications, from robotics to traffic systems (see
e.g., [13], [14] among many others).

In all the previously mentioned schemes, classical single
models are considered to represent the plant to control. In
this paper we aim at further extending the scope of combined
MPC/sliding mode control schemes to make it encompass
also the case of plants which need to be described by a
multi-model representation affected by matched uncertainty.
The proposed solution has the advantage of reducing the
conservativeness of the MPC law thanks to the exploitation
of the invariance property of sliding mode control. Moreover,
by virtue of a suitable transformation, the MPC considered in
this paper can be designed relying on a collection of models
which results in being of reduced order with respect to the
original collection of models describing the plant in its entire
multi-model nature.

It should be noticed that the proposed control solution
differs from the proposals in [2] and [3] since, in our work,
although we consider the additional source of uncertainty
due to the matched disturbance terms, we do not need to use
any disturbance observer. It also differs from [15, Ch. 6],
where multi-model systems are considered, but a continuous-
time Linear Quadratic (LQ) control approach is adopted
in contrast to this paper where we rely on a discrete-time
MPC formulation. To the best of the authors’ knowledge,
this is the first time that a multi-model sliding mode based
predictive control is proposed. It fills a scientific gap, since
the previously published MPC/sliding mode schemes are not
applicable when the plant affected by matched uncertainties
has dynamical features only capturable via a multi-model
representation.

Notation: The used variables and operators are mostly
standard. Some notation for the MPC is instead recalled. Let



x be a vector, then xi refers to its ith entry. Given a signal u,
then utj |tk denotes its prediction at tj , predicted at the time
tk. Moreover, let Np be the horizon length, u[tk,tk+Np−1|tk]
indicates the whole input sequence from tk to tk+Np−1.

II. PROBLEM FORMULATION

Consider a system captured by the uncertain continous-
time-invariat model

ẋ(t) = Ax(t) +B(u(t) + ϕm(t)), x(0) = x0, (1)

where x ∈ Rn is the (measurable) state vector, u ∈ Rm

denotes the control vector, while the term ϕm ∈ Rm

represents parameters uncertainties, external disturbances or
unmodelled dynamics of the system. Moreover, the following
assumption holds.

A1: The system is subject to hard constraints on state and
control, i.e.,

x ∈ X , (2a)
u ∈ U , (2b)

where X and U are compact sets containing the origin
as an interior point.

As for the uncertain term ϕm, which is unknown and from
(1) appears to be matched, it also satisfies the following
assumption.

A2: The matched uncertain term ϕm(t) is unknown but
bounded as ∥ϕm(t)∥ ≤ γ∥x(t)∥ + δ, with γ ≥ 0 and
δ > 0 being known constants.

Now, assuming that model (1) presents multiple operating
points corresponding to N linear models, then, depending on
the current point, system (1) can be represented as follows

ẋα(t) = Aαxα(t) +B(u(t) + ϕm(t)), xα(0) = x0, (3)

where the state xα(t) is measurable, Aα ∈ Rn×n is the
corresponding dynamics matrix, B ∈ Rn×m is fixed and
common to all subsystems. The following assumption holds.

A3: The active system matrix Aα at certain time in-
stant is unknown, but it is known that it belongs
to a finite set of N known matrices, that is Aα ∈
{A1, A2, . . . , AN}, α ∈ A, with A := {1, 2, . . . , N}.
Moreover, the control matrix B ∈ Rn×m is a bounded
known full rank matrix, i.e., rank(B) = m.

We are now in a position to state the control problem. We
want to design a control law u(t) capable of guaranteeing the
asymptotic stability of the multi-model system (3), without
the knowledge of the active subsystem at generic time instant
t, while fulfilling state and input constraints (2) despite the
presence of matched uncertain terms affecting the plant.

III. THE PROPOSED CONTROL APPROACH

In this paper, to solve the problem formulated in Section
II, we propose a min-max MPC combined with an integral
sliding mode control capable of rejecting the matched uncer-
tain terms affecting the system.

Making reference to [16], [17], assume a control signal
split into two components, that is

u(t) = u1(t) + u0(t), (4)

such that the element u1 is devoted to eliminate the matched
perturbations, and u0 is a stabilizing controller based on an
MPC law. In the following sections, the two components will
be discussed in detail.

A. Integral sliding mode control component

Let us design the sliding mode control law u1(t). Consider
system (3) and design the so-called sliding variable as

s(t) = B+ (xα(t)− x0)−
t∫

0

u0(τ)dτ, s(0) = 0, (5)

where B+ is the left inverse of B, which guarantees that
possible unmatched uncertainty terms are minimal and not
amplified [18]. The sliding mode control component is then
selected as

u1(t) = −β(xα(t))
s(t)

∥s(t)∥
, (6)

where the control amplitude β(xα(t)) is a positive scalar
function such that there exists β̄ ≥ β, and it is designed to
dominate the matched uncertain term affecting the system.
Specifically, the following result proves the invariance prop-
erty provided by the sliding mode component in front of the
matched uncertain term ϕm.

Proposition 1: Given the multi-model system (3) with u1

as in (6), and the sliding variable s in (5), if A2 holds and
a sliding mode s = 0 is enforced, with ṡ = 0 in Filippov’s
sense, then the equivalent control ũ1 is given by

ũ1 = −B+Aαxα(t)− ϕm(t), (7)

with equivalent dynamics on the sliding mode

ẋα(t) = Āαxα(t) +Bu0, (8)

where Āα := (I −BB+)Aα.
Proof: Compute the time-derivative of (5) so that

ṡ(t) = B+ẋα(t)− u0(t)

= B+Aαxα(t) + u1(t) + ϕm(t). (9)

Since in sliding mode one has s = 0 with ṡ = 0 in Filippov’s
sense, relying on the so-called equivalent control concept
(see e.g., [7, Ch. 1]), by posing (9) equal to zero, (7) is
obtained. Applying the latter to the multi-model system (3),
its equivalent dynamics constrained to the sliding mode is
given by

ẋα(t) = (I −BB+)Aαxα(t) +Bu0

= Āαxα(t) +Bu0, (10)

with Āα = (I −BB+)Aα, which concludes the proof.
Instead, the following proposition provides the needed

condition to guarantee finite-time convergence of the sliding
variable and its derivative to zero. Let a = max

α∈A
{∥Aα∥}.



Proposition 2: Given the sliding variable (5) and its dy-
namics (9), with u1 as in (6), if A2 holds and β(xα(t)) >
(∥B+∥a+ γ) ∥xα(t)∥ + δ, then a sliding mode s(t) = 0 is
enforced for any t ≥ 0, with ṡ(t) = 0 in Filippov’s sense.

Proof: Consider the candidate Lyapunov function
V (x) = 1

2s
⊤s. Then, its derivative has the form

V̇ (s) = s⊤
(
B+Aαxα(t) + u1(t) + ϕm(t)

)
≤ −∥s∥

(
β(xα(t))−

(
∥B+∥a+ γ

)
∥xα(t)∥ − δ

)
.

Hence, if β(xα(t)) > (∥B+∥a+ γ) ∥xα(t)∥+ δ, the reach-
ability condition (see, e.g., [7, Ch. 1] for a definition) holds,
that is, s tend to zero in finite time, with ṡ = 0 in Filippov’s
sense. Since s(0) = 0, then s(t) = ṡ(t) = 0 for any t ≥ 0.

B. Min-max optimal control problem

The matched perturbations are rejected under the sliding
mode control action, thus generating an equivalent multi-
model system without uncertainties. This considerably sim-
plifies the design of the min-max MPC component. Since
the whole control law is given by (4), in order to fulfil the
input constraint (2b), that is to guarantee the feasibility of the
finite horizon optimal control problem (FHOCP), the MPC
input constraint must be redefined considering the amplitude
of the components u1. Then, a new set can be accordingly
found as

U0 := {u0 | u0 ∈ U0 ⇒ u ∈ U}. (11)

Defining u1 as in (6), a quantity equal to β̄ must be sub-
tracted to each component of the control bounds to determine
the bounds of the components of the MPC. We assume that
U0 is a non-empty set, that is even for the worst realization
of the uncertainty terms, a residual amplitude for the MPC
is guaranteed.

Then, relying on (8), the min-max optimal control problem
consists in finding u0(t), in the interval 0 ≤ t ≤ t̄, such that

min
u0∈U0

max
α∈A

J(xα, u0)

s.t. ẋα(t) = Āαxα(t) +Bu0(t),

xα(t) ∈ X , xα(0) = x(0),
(12)

with the cost given by

Jα(xα, u0) =
1
2x

α⊤(t̄)Pαxα(t̄) + 1
2

t̄∫
0

[
xα⊤(t)Qαxα(t)

+
(
u0(t)−B+Āαxα(t)

)⊤
Rα

(
u0(t)−B+Āαxα(t)

)]
dt

= 1
2x

α⊤(t̄)Pαxα(t̄)

+ 1
2

t̄∫
0

xα⊤(t)
(
Qα + Āα⊤B+⊤RαB+Āα

)︸ ︷︷ ︸
Q̄α

xα(t)

−2xα⊤(t) Āα⊤B+⊤Rα︸ ︷︷ ︸
Sα

u0(t) + u⊤
0 (t)R

αu0(t)

]
dt, (13)

where Qα and Rα are symmetric semi-positive definite and
positive definite matrices, respectively, and Pα is the posi-
tive definite solution of the corresponding algebraic Riccati
equation for the α-subsystem.

At this point, in order to solve the min-max optimal
control problem, the robust maximum principle [19] is used.
More precisely, the controller is defined by identifying the
plants for which the maximum cost is reached during the
optimization procedure. Therefore, consider the following
definition.

Definition 1 (Simplex [19]): The simplex of dimension
N − 1 is the set

SN :=

{
µ ∈ RN |

∑
α∈A

µα = 1, µα ≥ 0

}
.

We need now to consider an extended system to take
into account all the families of the model constituting the
plant. Hence, let x(t) :=

[
x1⊤(t)x2⊤(t) · · · xN⊤(t)

]⊤
be

the extended state vector, such that the extended system takes
the form

ẋ(t) = Ax(t) +Bu0(t), (14)

with x(0) =
[
x1⊤(0)x2⊤(0) · · · xN⊤(0)

]⊤
, while matri-

ces A := diag(Ā1, Ā2, . . . , ĀN ) ∈ RnN×nN , and B :=
col(B,B, · · · , B) ∈ RnN×m.

By introducing the parameter µ ∈ SN , the min-max
problem (12) is recast into a µ-dependent optimal control
problem of the following form

min
u0∈U0

max
µ∈SN

J(x, u0, µ)

s.t. ẋ(t) = Ax(t) +Bu0(t), x(t) ∈ XN ,

x(0) =
[
x1⊤(0)x2⊤(0) · · · xN⊤(0)

]⊤
,

(15)

with the cost in (13) given by

J(x, u0, µ) =
1
2x

⊤(t̄)P(µ)x(t̄) + 1
2

t̄∫
0

[
x⊤(t)Q(µ)x(t)

−2x⊤(t)S(µ)u0(t) + u⊤
0 (t)R(µ)u0(t)

]
dt, (16)

where

P(µ) := diag(P 1µ1, P
2µ2, . . . , P

NµN ) ∈ RnN×nN ,

Q(µ) := diag(Q̄1µ1, Q̄
2µ2, . . . , Q̄

NµN ) ∈ RnN×nN ,

S(µ) :=
[
S1⊤µ1 S

2⊤µ2 . . . SN⊤µN

]⊤ ∈ RnN×m,

R(µ) :=

N∑
α=1

µαR
α ∈ Rm×m.

C. MPC design

We are now in a position to design the MPC component.
To this end, it is worth highlighting that, by virtue of the
integral sliding mode control action, since the initial time
instant, the equivalent multi-model (8) does not contain any
residual uncertainty term (note that this beneficial effect
would not be possible in case of use of discrete-time sliding
mode control, see, e.g., [20]).



It is also worth noticing that the previous min-max op-
timal control problem has dimension nN , and this aspect
could significantly affect the computational complexity of the
MPC. This paper uses a procedure to reduce the dimension
of the extended system, by exploiting a state transformation
method [15, Ch. 6]. Specifically, consider the following
transformation matrix

T :=

[
B⊥

B+

]
=

[
T11 T12

T21 T22

]
, (17)

where B⊥ is the orthogonal complement matrix with
rank(B⊥) = n−m, and let

zα = Txα =

[
zα1
zα2

]
=

[
T11x

α
1 + T12x

α
2

T21x
α
1 + T22x

α
2

]
, (18)

with xα
1 , z

α
1 ∈ Rn−m and xα

2 , z
α
2 ∈ Rm. Then, the multi-

model system can be written as

żα(t) = Ãαzα(t) + B̃u0(t), zα(0) = zα0 = Txα
0 , (19)

with Ãα = TĀαT−1 and B̃ = TB. More precisely, the
proposed transformation is such that

T (I −BB+) =

[
B⊥

0

]
,

thus implying that żα2 (t) = u0(t), and the new system
matrices become

Ãα =

[
Ãα

11 Ãα
12

0 0

]
, and B̃ =

[
0
Im

]
.

Hence, the extended system dimension can be reduced by
defining z(t) :=

[
z11(t) z

2
1(t) . . . z

N
1 z2(t)

]
, with z2 = zα2 ,

so that the reduced version of the system is

ż(t) = Ãz(t) + B̃u0(t), (20)

with matrices Ã ∈ R((n−m)N+m)×((n−m)N+m) and B̃ ∈
R((n−m)N+m)×m as

Ã =


Ã1

11 0 . . . Ã1
12

0 Ã2
11 . . . Ã2

12
...

... . . .
...

0 0 . . . 0

 , B̃ =


0
0
...
I

 .

Consider now the new weight matrices

P̃α = T−1⊤PT−1 =

[
P̃α
11 P̃α

12

P̃α
21 P̃α

22

]
,

Q̃α = T−1⊤QαT−1 =

[
Q̃α

11 Q̃α
12

Q̃α
21 Q̃α

22

]
,

S̃α = T−1⊤Sα =

[
S̃α
1

S̃α
2

]
,

then the reduced min-max problem equivalent to (16) is

min
u0∈U0

max
µ∈SN

J(z, u0, µ)

s.t. ż(t) = Ãz(t) + B̃u0(t), T
−1

[
zα1 (t)
z2(t)

]
∈ X ,

z(0)=
[
z1⊤1 (0) z2⊤1 (0) . . . z⊤2 (0)

]⊤
,

(21)

with the cost redefined as

J(z, u0, µ) =
1
2z

⊤(t̄)P̃(µ)z(t̄) + 1
2

t̄∫
0

[
z⊤(t)Q̃(µ)z(t)

−2z⊤(t)S̃(µ)u0(t) + u⊤
0 (t)R(µ)u0(t)

]
dt. (22)

In (22), the matrices P̃ ∈ R((n−m)N+m)×((n−m)N+m), Q̃ ∈
R((n−m)N+m)×((n−m)N+m), S̃ ∈ R((n−m)N+m)×m are

P̃(µ) =


P̃ 1
11µ1 0 . . . P̃ 1

12µ1

0 P̃ 2
11µ2 . . . P̃ 2

12µ2

. . . . . . . . . . . .

P̃ 1
21µ1 P̃ 2

21µ2 . . .
N∑

α=1
P̃α
22µα

 ,

Q̃(µ) =


Q̃1

11µ1 0 . . . Q̃1
12µ1

0 Q̃2
11µ2 . . . Q̃2

12µ2

. . . . . . . . . . . .

Q̃1
21µ1 Q̃2

21µ2 . . .
N∑

α=1
Q̃α

22µα

 ,

S̃(µ) =


S̃1
1µ1

S̃2
1µ2

. . .
N∑

α=1
S̃α
2 µα

 .

Now, since we want to design an MPC, a discretization
of the reduced system (20) is needed. Hence, relying on (8),
let Ts be the sampling time, and tk, with k ∈ N≥0, be the
discrete-time instant, such that

zd(tk+1) = Ãdzd(tk) + B̃du0(tk), (23)

with discrete-time matrices defined as Ãd = eÃTs , B̃d =
Ts∫
0

eÃtB̃ dt. The MPC relies on the solution of a FHOCP,

which consists in minimizing, at any sampling time tk,
a cost function with respect to the control sequence
u0,[tk,tk+Np−1|tk] := [u0,0(tk)u0,1(tk), . . . , u0,Np−1(tk)],
with Np ≥ 1 being the so-called prediction horizon. In our
case, the cost function used to compute the MPC law u0 is

J(zd(tk),u0,[tk,tk+Np−1|tk], Np, µ
o) = (24)

Ts
2

Np−1∑
j=0

χ⊤(tk+j)Γ(µ
o)χ(tk+j)+

1
2z

⊤
d (tk+Np)P̃(µo)zd(tk+Np),

subject to the hard constraints represented by the reduced
discrete-time dynamics (23), and constraints on states and
input given by

T−1

[
zαd1(tk+j)
zd2(tk+j)

]
∈ X , (25a)

u0(tk+j) ∈ U0. (25b)

Moreover, in (24), one has χ = [z⊤d u0]
⊤, while

Γ(µ) =

[
Γ11 Γ12

Γ21 Γ22

]
,



with entries

Γ11 = Ã⊤
d (µ)Q̃(µ)Ãd(µ),

Γ12 = Ã⊤
d (µ)(Q̃(µ)B̃d − S̃(µ)),

Γ21 = (B̃⊤
d Q̃(µ)− S̃⊤(µ))Ãd(µ),

Γ22 = B̃⊤
d Q̃(µ)B̃d − B̃⊤

d S̃(µ)− S̃⊤(µ)B̃d +R(µ).

The optimal value of µ is in turn given as

µo = arg max
µ∈SN

J(zd(tk),u0,[tk,tk+Np−1|tk−1], Np, µ), (26)

subject to the dynamics (23). More precisely, following [19]
the optimal parameter µ can be obtained by solving the finite
horizon optimal problem

µo = arg max
µ∈SN

1

2
z(tk)

⊤Π(0, µ)z(tk), (27)

with Π(0, µ) being the backward solution of the discrete-
time Riccati equation

Π(k, µ) = Q̃(µ) + Ã⊤
d Π(k + 1, µ)Ãd

−
(
S̃(µ) + B̃⊤

d Π(k + 1, µ)Ãd

)⊤

×
(
R(µ) + Ã⊤

d Π(k + 1, µ)B̃d

)−1

×
(
S̃(µ) + B̃⊤

d Π(k + 1, µ)Ãd

)
, (28)

with boundary condition Π(Np, µ) = P̃(µ).
Finally, according to the receding horizon strategy, the

applied piecewise-constant control law is the following

u0(t) = uo
0,0(tk), t ∈ [tk, tk+1), (29)

that is the first element of the optimal control sequence
uo
0,[tk,tk+Np−1|tk] is selected and applied to the plant.
To conclude this section, notice that the MPC that has been

designed, by relying on the nominal equivalent dynamics
(14), is a standard MPC, so that the proof of feasibility and
stability of the overall control scheme follows from classical
arguments. Moreover, also consider that, even if continuous-
time state constraints are considered and the extended system
(14) is continuous-time as well, this is only conceptual,
because in practice a numerical implementation would need
a time discretization of that system, and the constraints satis-
faction could be checked only at the integration time instants.
Yet, as clarified in [8], this is not a limitation. According to
[21, Theorem 3], by choosing an integration step τi small
enough (i.e., τi ≪ Ts), to emulate the continuous-time
extended system, one has that the convergence properties
of the control system are preserved, without increasing the
conservativeness due to the numerical approximation.

IV. ILLUSTRATIVE EXAMPLE

In this section, the proposal is assessed in simulation on a
four-tanks system, which is a multivariable laboratory plant
of interconnected tanks with nonlinear dynamics subject to
state and input constraints (see, [2]).

The linearized model corresponding to (1) is given by:

ẋ(t) =

− 1
τ1

0 1
τ3

0

0 −1
τ2

0 1
τ4

0 0 −1
τ3

0

0 0 0 −1
τ4

x(t) +
 γa

S
0

0
γb
S

0
1−γb

S
1−γa

S
0

(u(t) + ϕm(t)),

where xi = hi−ho
i , i ∈ {1, 2, 3, 4} is the ith state deviation

variable, with hi being the water level of tank i and ho
i its

linearization level, and uj = qj − qo
j , j ∈ {a, b} is the input

deviation variable, with qj being the inlet flows of the valves,
and qo

j the linearization flows. Moreover, S = 0.06m2 is
the cross section of tanks, τi = S/ai

√
2ho

i/g ≥ 0 is the
time constant of tank i, with a1 = 1.31 × 10−4 m2, a2 =
1.51×10−4 m2, a3 = 9.27×10−5 m2, a4 = 8.82×10−5 m2

being the discharge constants, g = 9.81m s−2, while γa =
0.3 and γb = 0.4 are the ratios of the three-way valves
of pumps a and b. The matched disturbance is instead
ϕm(t) =

[
0.2 sin(pi/8 cos(3πt)+π/7 sin(5πt)+0.04

−0.2 cos(π/8 cos(4πt)+π/9t cos(3πt)−0.03

]
(see Fig. 1,

bottom). As in [2] the multi-model system has been obtained
by linearizing the plant in four (i.e., α ∈ {1, 2, 3, 4}) different
operation points (see Table I), while the initial conditions are
x0 = [0.031 0.03 0.031 0.018]⊤.

TABLE I
LINEARIZATION AND STEADY STATE POINTS.

α ho
1 ho

2 qo
a qo

b hs1 hs2 hs3 hs4 qsa qsb

1 0.42 0.47 1.48 1.52 0.42 0.47 0.42 0.47 1.48 1.52
2 0.29 0.33 1.24 1.28 0.29 0.33 0.29 0.33 1.24 1.28
3 0.86 0.57 1.04 2.69 0.86 0.57 0.85 0.57 1.04 2.698
4 0.65 0.66 1.63 2 0.65 0.66 0.65 0.66 1.62 2

As for the sliding mode component of the control law
(4), its amplitude is chosen as β(xα) = 3.51∥xα∥ + 0.24,
such that β̄ = 0.74. In order to design the min-max MPC,
the weight matrices are instead chosen as Qα = I4×4 and
Rα = 0.01I2×2. The FHOCP is then solved with prediction
horizon Np = 6, sampling time Ts = 15 s, subject to state
and input constraints defined as (0.012 − 0.06hsi) ≤ xi ≤
(0.072−0.06hsi),

[
0
0

]
≤ u ≤

[
3.26
4

]
, and − 1

2

[
qsa
qsb

]
≤ u0 ≤

1
2

[
3.26
4

]
− 1

2

[
qsa
qsb

]
, respectively, where hsi , i ∈ {1, 2, 3, 4}

and qsj , j ∈ {a, b} are the steady state level and flows of
the plant (see Table I). In Fig. 1, the time evolution of the
state x(t) is illustrated, which is regulated to zero despite the
presence of the matched disturbance ϕm(t) and the variation
of the active subsystem. Fig. 2 illustrates the MPC control
signal u0(t), which is always inside the constraints, and
the sliding variable s(t) zeroed from the beginning. Fig.
3 reports the time evolution of the cost J(t), which is
minimized according to the proposed min-max MPC law,
while the active model, indicated by α(t), is reported in
Fig. 4, together with the optimal parameter µ(t). Overall,
as expected, by virtue of the proposed sliding mode control
action, the system controlled by the MPC is not affected by
the presence of the matched perturbation and behaves as the
nominal one.



Fig. 1. Time evolution of the state x(t) (top) with constraints (dashed red
lines), and of the matched uncertainty ϕm(t) (bottom).

Fig. 2. Time evolution of the MPC input signals u0(t) (top) with
constraints (dashed red lines), and of the sliding variable s(t) (bottom).

Fig. 3. Time evolution of the cost J(t).

Fig. 4. Time evolution of the optimal parameter µ(t) (top), under the time
varying active subsystem α(t) (bottom).

V. CONCLUSIONS

A novel multi-model predictive control combined with
an integral sliding-mode control is presented in this paper.
The proposal exploits the advantages provided by the sliding
mode controller of rejecting the matched uncertainty which
affects the plant. As a consequence the MPC component is
designed relying on the solution to a min-max optimization
problem, and considering the nominal multi-model system.

Future works will be devoted to the extension of the
proposal to more complex situations, in particular those
characterized by unmatched uncertainty terms, and multi-
model uncertainty also on the control effectiveness matrix.
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