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A B S T R A C T

This paper proposes and implements a novel approach to simulate the dynamic behavior of hot-water fire-
tube boilers, in which physical phenomena-based and data-driven modeling methodologies have both been
employed. The first model, which includes a reduced one-dimensional finite volume method to simulate the
flue-gas side’s behavior, can be employed for accurate sizing of the unit considering end-users’ dynamic
consumption profile. In the data-driven model instead, machine learning algorithms are used to estimate
hot water’s supply temperature, which makes it a suitable tool for real-time prediction and model predictive
control. Utilizing the latter model in combination with an advanced management system allows reducing
the plant’s energy consumption and enhancing its controllability. Employing the measurements performed in
an Italian industrial firm, the developed model is validated and is demonstrated to have a limited thermal
efficiency estimation bias of 1.2%. Furthermore, the data-driven model achieves a mean absolute relative
difference error lower than 6%, demonstrating its acceptable accuracy for various prediction horizons.
Introduction

The hot water demand with low to medium required volumetric
flow rates, for both residential and industrial sectors, is commonly
addressed by fire-tube boilers [1]. Optimal sizing of these units, while
considering the end-users’ consumption profile, is a crucial step to
evade the utilization of unnecessarily oversized units and reduce the
corresponding required capital cost. However, such a sizing procedure
(specifically for notably varying demand profiles) requires a detailed
and accurate model that can simulate the boiler’s dynamic behavior
[2,3]. Several previous studies have investigated the thermal behavior
of water-tube boilers that are commonly utilized for supplying steam
[4–12], a few of which have also modeled the heat transfer rate of
flue-gases [13,14]. Fire-tube boilers, instead can either be configured to
supply medium-to-low saturated steam or sub-cooled water. Dynamic
thermal modeling of these units, have mainly been dedicated to fire-
tube boilers utilized for saturated steam generation. A few studies
have employed Computational Fluid Dynamics (CFD) models [15–18]
that describe the underlying physical phenomena with a promising
accuracy, however, utilizing them results in a significant computational
cost.

∗ Corresponding author.
E-mail address: behzad.najafi@polimi.it (B. Najafi).

Simplified finite volume modeling approach is an alternative
methodology that has been employed in this area in order to achieve
an acceptable accuracy, while reducing the computational cost [19].
Sorensen et al. [20] implemented a dynamic thermal model for the
traditional fire-tube boilers supplying saturated steam. The authors
adopted a sub-modeling approach to simulate the behavior of the flue-
gas side. A more detailed approach has been proposed by Gutierrez
Ortiz [21], utilizing a one-dimensional finite volume methodology
to describe the flue-gas side’s heat transfer mechanism. The latter
modeling methodology has also been employed in previous studies,
conducted by Tognoli et al. [2,3] focused on dynamic thermal behavior
modeling and optimal sizing of fire-tube boilers used for supplying
vapor at low-medium pressure. In these studies, the authors first
simulated the radiative thermal heat transfer phenomena of the flame
in the combustion chamber employing a gray-gas model, as proposed
by Hottel–Sarofim [22], with a net heat transfer contribution towards
the assumed gray-surface surrounding walls; the Dittus–Boelter corre-
lation [23] was instead utilized for the internal flow. At the water-side,
the heat transfer between the hot metal walls and the saturated water
was described by the Cooper nucleate pool boiling correlation [24].
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Nomenclature

𝑐𝑃 isobaric specific heat coefficient kJ∕°Ckg
𝑐𝑉 isocoric specific heat coefficient kJ∕°Ckg
𝑑 diameter m
𝑒 helical coil’s wire thickness m
𝑓 Fanning friction factor
𝑔 equivalent radiative thermal resistance W∕m2K4

ℎ specific enthalpy kJ∕kg
ℎ𝑐𝑜𝑛𝑣 convective heat transfer coefficient W∕m2K
𝑘 linear thermal conduction coefficient W∕mK
𝑘𝑡 average metal conductive heat transfer coefficient

kW∕m°C
𝐿 length m
𝐿𝐻𝑉 fuel mass lower heating value MJ∕kg
𝑚 mass kg
𝑀𝐴𝐸 Mean Absolute Error
𝑀𝐴𝑅𝐷 Mean Absolute Relative Difference %
𝑀𝑆𝐸 Mean Squared Error
𝑁 number of points/discrete finite volumes
𝑛𝑡,𝑗 number of tubes in a given gas pass section at

given tube banks
𝑁𝑢 Nusselt number
𝑃 Pressure bar
𝑝 helical coil’s pitchm
𝑃𝑟 Prandtl number
𝑄̇ heat transfer rate kWt
𝑞̇ specific heat transfer rate by unit area kWt∕m2

𝑅 radius m
𝑅2 Coefficient of determination
𝑅𝑎 Rayleigh number
𝑅𝑒 Reynolds number
𝑇 temperature °C
𝑡 time s
𝑇𝑠 simulation time s
𝑉 volume m3

𝑌 fuel axial heat release fraction MJ∕MJtot
𝑥 axial coordinate m
o.r. of reading

Greek

𝜖 residuals
𝜂 first law efficiency term
𝜌 density kg∕m3

𝜎 Stefan Boltzmann’s constant
𝜀 emissivity

Subscripts

2𝑛𝑑 2nd gas pass
3𝑟𝑑 3rd gas pass
𝐶𝐶 combustion chamber
𝑐𝑜𝑛𝑣 convective
𝑓 feedwater
𝑓𝑢𝑒𝑙 fuel
𝑔 flue gas
ℎ hydraulic
𝑖 finite element index
𝑖𝑛 inlet
𝑗 tube bank of reference
2

𝑜𝑢𝑡 outlet condition
𝑟𝑎𝑑 radiative
𝑟𝑒𝑓 reference temperature conditions (0 K)
𝑡 metal
𝑡𝑢𝑟𝑏 turbulators
𝑤𝑎𝑙𝑙 tube wall

An experimental research activity performed by Morelli et al. [19]
has investigated the convective and radiative heat transfer mechanism
between the hot methane-exhaust gases and the surrounding tube’s
walls by applying a reduced Finite Volume Methodology (FVM) at the
flue-gas side. In this study, based on the obtained results, an opti-
mized convective heat transfer correlation is proposed, while a gray-gas
model employing the weighted sum of grey gas coefficients (WSGG)
(as proposed by Smith et al. [25]) describes the radiative heat flux.
A similar procedure has been investigated by the work developed by
Abene et al. [26] in the context of the start-up process of a 3 gas-passes
fire-tube boiler. In this work, a detailed model of the water sub-cooling
region is also included, while the water-side convective heat transfer
mechanism is described employing the Churchill–Chu [27] correlation
of external natural convection in horizontal cylinders (motivated by the
quasi-stationary forced movement of water inside the boiler vessel).
Although the mentioned works describe the dynamic thermal perfor-
mance of steam-supplying fire-tube boilers with acceptable accuracy,
no previous comprehensive work has been conducted on developing
an accurate model for hot-water boiler architecture.

Helical-coil turbulators are one of the commonly employed metallic
inserts that are utilized for enhancing the heat transfer in fire tubes.
Turbulators promote the convective heat transfer rate by enhancing the
flow turbulence pattern. The resulting benefits, in terms of enhance-
ment in the convective heat transfer coefficient (compared with the
net heat transfer rate of a traditional smooth tube), have been analyzed
by Ji et al. [28] over a wide range of operating conditions and insert
geometries. The authors also observed a drastic increase in friction
losses motivated by the enhanced turbulence caused by the inserts. In
the boiler that is considered in the present investigation, helical-coil
type inserts are present, the geometry of which is described by the outer
coil diameter, the pitch distance, and the metal wire diameter. Several
works assessed the heat transfer performances and friction losses of
helical-coil inserts [29–32] while other authors performed experimen-
tal investigations at a wide range of operating conditions employing
distilled water and propylene glycol [33], plain liquid water flow [34],
and externally heated air [35]. For the scenario that is considered in the
present study, the heat exchange phenomena of medium to cold flow
of exhaust gases, which exchange heat with the colder metal walls, is
described in details in the study conducted by Tognoli et al. [36]. In this
study, the authors experimentally investigated the ensemble radiative
and convective heat transfer, while also analyzing the friction factor, of
internally heated tubes. Accordingly, the authors proposed parametric
Nusselt and Fanning friction factor correlations that model the effect of
turbulator’s geometry.

On the other hand, a promising approach that can be employed
to reduce energy consumption and enhance the controllability of the
fire-tube boilers is improving the corresponding control (e.g. employ-
ing model predictive control) and setpoint management strategy [37]
of these units. Implementation of such strategies requires a robust
and rapid model that permits near-real-time behavior prediction. Ac-
cordingly, the significant calculation cost of the previously described
physical phenomena-based model makes it unsuitable for such appli-
cations. Furthermore, this modeling approach requires boiler units’
detailed geometrical data and material characteristics, while, in many
industrial cases, the detailed geometrical configuration of the boiler
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is not provided by the third party (e.g. manufacturer). The physical
phenomena-based model is thus not a proper choice in such case studies
(in which such data is unavailable). In order to address these issues,
employing data-driven modeling methodology [38] is a viable alterna-
tive, which has successfully been utilized in the literature for modeling
complex phenomena in heat transfer [39] and fluid mechanics [40] Fur-
ther, the application of a data-driven model for predicting the dynamic
behavior of the system, is of major interest in the presence of low data
granularity [41]. Among the available data-driven model architectures,
the Artificial Neural Networks (ANNs) category has been utilized by
Romeo et al. [42] aiming at describing the thermal performance of a
biomass-fed boiler under progressive fouling phenomena. The method-
ology that was followed in this study was driven by a physical approach
aiming at decomposing the boiler assembly into simpler sub-sections,
which resulted in promising model accuracy. In this context, a relevant
investigation on data-driven modeling of a power plant output has been
conducted by Smrekar et al. [43], modeling the plant’s output power.
Separate models were developed for the boiler and the turbine sections
employing ANNs, which were later trained using the plant’s data that
was measured on-site. However, no previous comprehensive work has
investigated the overall boiler’s (and specifically a fire-tube unit’s)
dynamical thermal performances employing a data-driven modeling
approach.

Accordingly, considering the above-mentioned motivations, in the
present work, dynamic thermal models for a hot-water fire-tube boiler
are developed. As the first step, employing a simplified 1-D finite
volume methodology, a physical model is developed. Next, the ex-
perimental data, obtained through performing measurements on the
considered case study, is utilized to validate the latter developed model.
In the following step, in order to control the fuel flow rate supplied to
the burner, provided the desired hot-water temperature setpoint (which
dynamic behavior is affected by the unsteady hot-water request), a
PID (Proportional-Integral-Derivative) controller is included within the
model. The boiler cumulative thermal efficiency, addressing the mea-
sured thermal demand, is determined, which is estimated beginning
from the measured natural gas consumption profile. Furthermore, as
secondary indicators, the deviation of the hot-water supply temperature
and natural gas flow rate from the corresponding experimental mea-
surements are estimated. It is worth mentioning that a similar modeling
approach has been employed by the authors in the dynamic modeling
of saturated steam supplying fire-tube boilers [2,3]. Though, in the
present work, more detailed convective heat-transfer correlations [19,
36] and flue-gas radiative heat transfer [25] mechanisms have been
considered. Furthermore, the presence of sub-cooled water in presence
of natural convection requires the application of suitable heat transfer
equations. Moreover, dynamic thermal behavior modeling of hot-water
boilers has not been investigated by the authors in their previous works.

Alongside the mentioned steps, data-driven predictive thermal mod-
els are developed aiming at describing the boiler’s dynamic thermal
behavior (as a whole) for a range of prediction horizons. In the cor-
responding methodology, state-of-the-art machine learning(ML)-based
pipelines are first implemented. Next, for each pipeline, a genetic
algorithm-based [44,45] pipeline optimization procedure is conducted
to determine the algorithm (and the corresponding tuning parame-
ters) [46], using which the highest performance (estimation accuracy)
is achieved. Finally, the obtained estimation errors are compared and
correspondingly reported.

In summary, the novel contributions of the present study can be
summarized as:

• Proposing and implementing a physical-based dynamic model of
a hot-water fire-tube boiler, in which a simplified finite-volume
modeling approach is employed at the flue-gas side’s behavior.
The developed model can be employed for the accurate sizing
3

of boiler units while considering the end-user’s dynamic demand
profile.

• Developing a data-driven model for predicting the hot-water sup-
ply temperature. The developed data-driven model allows a near
real-time estimation of the boiler unit’s dynamic behavior, which
permits reducing the required computational resources (com-
pared to a more resource-expensive physical phenomena-based
model), making it a more suitable choice for model predictive
control applications.

Description of the considered fire-tube boiler

In the present section, a general overview of the operation principle
of the considered fire-tube boiler (utilized for supplying hot-water) is
presented.

Boiler description

The operation principle of a fire-tube boiler, employed for gener-
ating hot-water, is based on the heat exchange between the hot flue
gases (resulting from the combustion process) and the surrounding
sub-cooled water. The combustion process is controlled by the burner,
which manages the air and fuel flow rates. The control scheme is
operated by a PID controller, the objective of which is stabilizing the
water temperature inside the boiler close to the desired setpoint. In
the considered boiler model, a premixed natural-gas fed burner allows
the development of the flame along the combustion chamber [47]. The
chemical species that are undergoing the combustion process exchange
heat (through radiation and convection) with the surrounding com-
bustion chamber’s wall [48], which in turn exchanges heat with the
colder water mass that is stored in the boiler vessel. The flue gases,
that are still hot, subsequently stream into the 2nd gas pass, which is
a single smooth horizontal tube that enables further transfer of heat
from the flue gases to the water side. Finally, the remaining energy
content of flue-gases, is recovered at the 3rd gas pass that consists of a
bundle of tubes in which helical coil turbulators (in order to enhance
the convective heat transfer rate at medium-to-low temperature range)
are employed.

On the other side, the sub-cooled water is progressively heated as
the result of the heat flux from the combustion chamber and the gas
passes. Fig. 1 demonstrates a detailed schematic representation of the
considered unit.

Description of the mathematical model

In the present section, a thorough description of the methodology
that has been utilized in the reduced 1-D FVM physical modeling and
the predictive data-driven simulation (motivated by the corresponding
considerations and assumptions) has been provided.

Mathematical model

In order to accurately model the underlying physical phenomena
that occur in the fire-tube boiler, a sub-modeling approach has been
utilized and separate models have been developed for simulating the
flue-gas and sub-cooled water sides. A similar procedure has been
carried out by the authors in the context of saturated steam sup-
plying fire-tube boiler models [2,3]. It is worth mentioning that, in
the present work, more detailed convective heat-transfer correlations
[19,36] and flue-gas radiative heat transfer [25] mechanisms have been
considered. Furthermore, the presence of sub-cooled water in presence
of natural convection requires the application of suitable heat transfer
equations. Accordingly, the following sections have been dedicated to
providing a description about the approach that has been utilized for
simulating each of these sides.
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Fig. 1. (top-left) Schematic representation of the water-side and the flue gas’s stream in a hot-water fire-tube boiler. (top-right) thermal–electrical analogy diagram extended from
the flue-gas bulk flow condition to the water-side temperature. (bottom) The employed finite volume method modeling architecture.
Flue-gas side
The flue-gas side modeling phase is aimed at simulating the heat

transfer mechanisms that take place due to the temperature gradient be-
tween the hot flue-gases and the colder tubes metal surfaces. Motivated
by the different geometrical configurations and thermal behavior of
various heat transfer surfaces, separate control volumes are considered
in order to estimate the dynamic behavior of the flue gases in the
combustion chamber and the subsequent gas passes.

Air and natural gas are pre-mixed and are later ignited, allowing the
development of a longitudinal flame front along the main combustion
chamber. The combustion process is assumed to be complete and
instantaneous, while an exponential heat release curve is considered (as
proposed by Gutierrez Ortiz [21]) The exponential behavior of the heat
release function, motivated by the design of burners, describes a large
portion of the heat release, due to the combustion process, located far
from the injection point. The behavior of the latter combustion products
is assumed to be ideal; thus, an ideal gas behavior is considered. The
flame radiative heat transfer term is expressed by the flame character-
istic emissivity value. It is also worth highlighting that although the
air-to-fuel ratio is constant, the fuel flow rate, managed by the PID
controller, is determined time-by-time by the heat balance equations
discussed in the following section. The mentioned controller aims at
4

supplying the hot-water at the desired setpoint temperature, which nec-
essary fuel quantity is analytically determined when iteratively solving
the DOEs (Discrete Ordinate Equations). Furthermore, motivated by
the negligible relative effect of the frontal area compared to the more
relevant lateral surfaces, for the radiative heat transfer mechanism, no
axial component is considered. Flue gas properties are estimated locally
employing a reduced 1-D FVM approach. The FVM discretization is
performed separately at the combustion chamber side and at the later
gas passes, using cylindrical elements along the longitudinal direction.
A schematic representation of the FVM modeling of the flue gas side is
provided in Fig. 1.

The number of finite volume elements is selected considering the
non-linearities introduced by the time-based differential algebraic equa-
tions, while balancing the computational cost. Accordingly, 100 volume
elements 𝑁𝐶𝐶 have been considered for the combustion chamber, while
𝑁2𝑛𝑑 = 𝑁3𝑟𝑑 = 20 elements are utilized for the 2nd and 3rd gas
passes. For solving the equations, a numerical solver for stiff problems
of the ODEs, originally implemented by Shampine et al. [49] has been
employed.

Combustion chamber
For each 𝑖th volume element, the main dynamic heat balance ex-

pression describes the resulting spatially homogeneous temperature (of
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the discrete flue-gas cylindrical volume), as the net result of the energy
terms involved in the combustion process and the heat exchange with
the surrounding metal wall, which is expressed in Eq. (1).

𝑑
𝑑𝑡

(𝜌𝑔𝑉 𝑐𝑉 ,𝑔,𝐶𝐶𝑇
𝑖
𝑔,𝐶𝐶 )

= 𝑚̇𝑓𝑢𝑒𝑙𝐿𝐻𝑉 𝛥𝑌𝑖 + 𝑚̇𝑔𝑐𝑃 ,𝑔,𝐶𝐶 (𝑇 𝑖−1
𝑔,𝐶𝐶 − 𝑇 𝑖

𝑔,𝐶𝐶 ) − 𝑞̇𝑖𝑟𝑎𝑑,𝐶𝐶 − 𝑞̇𝑖𝑐𝑜𝑛𝑣,𝐶𝐶 (1)

Where the wall temperature is assumed to be constant, which is mo-
tivated by the predominant heat conduction effect of the metal sur-
face [50]. The discretized fractional heat release rate by combustion
𝛥𝑌 , is instead expressed in Eq. (2).

𝛥𝑌𝑖 = 𝑒𝑥𝑝
{

−4.6 𝑖
𝑁𝐶𝐶

}(

𝑒𝑥𝑝
{

4.6
𝑁𝐶𝐶

}

− 1
)

(2)

Furthermore, the convective heat transfer flow term is reported in
Eq. (3):

̇ 𝑖𝑐𝑜𝑛𝑣,𝐶𝐶 = ℎ𝑖𝑐𝑜𝑛𝑣,𝐶𝐶
2𝜋𝑅𝐶𝐶𝐿𝐶𝐶

𝑁𝐶𝐶
(𝑇 𝑖

𝑔,𝐶𝐶 − 𝑇𝑤𝑎𝑙𝑙,𝐶𝐶 ) (3)

Where the convective heat transfer coefficient is estimated employing
the Dittus–Boelter equation for internal cooling flow of flue-gases [23],
while the flow’s properties are described assuming an ideal gas mixture
behavior. The convective heat transfer coefficient is therefore expressed
analytically in Eq. (4).

ℎ𝑖𝑐𝑜𝑛𝑣,𝐶𝐶 =
0.023 ⋅ 𝑘𝑔,𝐶𝐶

2 ⋅ 𝑅𝐶𝐶
𝑅𝑒0.8𝑖 𝑃𝑟0.3𝑖 (4)

Next, the radiative heat flux, imposed by the longitudinal shaped flame,
is modeled assuming the metal walls to be gray Lambertian bodies,
while the extracted flame’s fuel dependant emissivity is modeled thanks
to the Hottel and Sarofim [22] correlation. For the current application,
natural gas isotropic emissivity is assumed to be equal to 0.85, where
the net radiative heat flux is reported in Eq. (5).

̇ 𝑖𝑟𝑎𝑑,𝐶𝐶 =
2𝜋𝑅𝐶𝐶𝐿𝐶𝐶

𝑁𝐶𝐶
𝜎
𝜀𝑤𝑎𝑙𝑙,𝐶𝐶 + 1

2
𝜀𝑔,𝐶𝐶 (𝑇

4,𝑖
𝑔,𝐶𝐶 − 𝑇 4

𝑤𝑎𝑙𝑙,𝐶𝐶 ) (5)

urther details and a demonstration about the share of the radiative
eat flux, along with the dynamic energy balance applied to the com-
ustion chamber and the details of the model employed for simulating
he 2nd and 3rd gas passes, are presented in Appendix D (provided in
upporting materials).

ater side
Alongside the net heat quantity transferred through conduction by

he metal separation walls, two additional energy flow terms (that
ross the boundary of the boiler vessel) are considered. These terms
orrespond to the sub-cooled water’s inlet and outlet flows that dy-
amically interact with the mentioned water control volume. Liquid
ater is assumed to be incompressible; therefore, no dynamic variation
f the water volume inside the reservoir is considered. The volumetric
eedwater flow rate is externally controlled by a centrifugal pump
hat is managed by an external control entity, which is outside the
cope of the present investigation. The boiler vessel is geometrically
esigned to promote the mixing phenomena of the water flows and
he local heat fluxes of the previously mentioned heat transfer regions.
urthermore, the boiler’s temperature is assumed to be homogeneously
istributed. The equation employed for modeling the heat transfer
etween the tube-bank and the mixing water, along with additional
etails about the water side’s model, are presented in Appendix D
provided in supporting materials). The approach utilized to determine
he boiler’s efficiency is also reported in Appendix D (provided in
upporting materials).
5

a

ata-driven modeling

As was previously pointed out, in many industrial case studies
specifically those in which old components are utilized or those in
hich the simulation is being conducted by a third party), the geo-
etrical details of the boiler are not available; a data-driven approach,
tilizing the data obtained from the boiler, can thus be utilized to
imulate its dynamic behavior. Accordingly, in the present study, in
rder to accurately forecast the boiler’s thermal behavior, an ML [51]
ased pipeline aimed to estimate the outlet temperature of the hot-
ater is developed. The pipeline is developed in the training step
nd is then assessed in the testing phase. Accordingly, the available
rocessed dataset is first divided into the training and testing sub-sets.
n the training step, in which only the training sub-set is utilized, the
raining algorithm of the machine-learning model, iteratively adapts
ts internal configuration, subject to the minimization of the target
rror function with respect to the experimental training data. The latter
rocedure is conducted through performing the cross-validation (CV)
lgorithm [52,53], in which the training dataset itself is divided into
equal subsets. The model is next trained utilizing 𝑘 − 1 subsets and

s then validated by predicting the target data with the remaining 𝑘
ubset [54]. By repeating the mentioned process for 𝑘 iterations, all
he samples of the training data set are utilized as train and validation
oints at least once. Employing the latter approach, the models are
ess prone to over-fitting [55] issue. In the testing step, the rest of the
nput dataset is employed to compute the performance of the resulting
rained data-driven model in predicting the desired target [51]. The
nitial steps of the implemented approach include performing the data
leaning and filtering followed by the creation of lagged features. In this
ontext, since the developed models should simulate the boiler while it
s in operation (On state), the available data is filtered preserving only
he recordings in which the natural gas flow rate is more than zero.
ext, pipelines with different prediction horizons are implemented
nd the performance of three benchmark algorithms (Random Forest
RF) [41], Extreme Gradient Boosting (XGBoost), and Support Vector
achines (SVM)), for each pipeline is determined. Subsequently, an al-

orithm optimization step is performed identifying the most promising
lgorithm (and the corresponding tuning parameters) for each pipeline.
inally, the performance of the initial (with benchmark algorithms) and
ptimized pipelines, utilizing the considered accuracy metrics, are com-
ared. The employed accuracy metrics along with brief descriptions of
tilized algorithms are provided in Appendix E (provided in supporting
aterials).

ontrol strategy

As was indicated in the description of the hot-water boiler and the
orresponding dynamic model, the system has two degree of freedom:
he fuel-air mixture flow rate and the water flow rate. The system’s
ynamics is controlled through the management of the these variables,
hich thus determines (described by the provided dynamic equations)

he temperature of the water inside the boiler vessel. The feedwater
low rate is traditionally controlled by circulating centrifugal pumps,
hich operate at a rotating velocity that is driven by the thermal
emand (downstream of the boiler). Therefore, the water flow control
pparatus is separate from the boiler control’s boundaries. The combus-
ion rate is instead actively controlled by an agent, the control variable
f which is the water temperature inside the boiler. The mentioned
gent’s architecture is traditionally composed of a PID controller. More-
ver, the closed-loop control estimates the bias between the water
et-point temperature and the mentioned process variable.

Following the described control architecture, the PID controller’s
arameters need to be tuned in order to minimize the undesired hys-
eresis that would in turn reduce the hot-water supply quality (devi-

tion from the desired setpoint) and the system’s efficiency, which is
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motivated by the rapid variation of fuel flow rate that increases the flue-
gas’s discharge temperature. Among the available tuning procedures, a
trial and error process is commonly employed utilizing time-consuming
and resource-intensive experiments. The mentioned methodology is
labour intensive and requires the presence of a testing apparatus. A
different methodology, which has been implemented in the present
work (as described at Section ‘‘Mathematical model’’), is conducted
through the linearization procedure. Plant’s local linearization is made
available thanks to the presence of detailed dynamic model of the
system. The linearization operation defines the plant’s transfer function
employing the estimated input and output variables [56]. The proce-
dure thus allows a drastic reduction of the (otherwise necessary) fuel
and labour costs, while resulting in an improvement compared with
the sub-optimal PID coefficients that are obtained in the mentioned
experimental procedure. Furthermore, the obtained optimal controller’s
coefficients cover a wide range of boiler’s operating conditions in
contrast to the sub-optimal solution, which take into account only the
boiler’s nominal performances. Thus, an improved control stability,
outside the maximum power output state, is also achieved.

Results and discussions

In the present section, the results of the physical model’s valida-
tion and corresponding considerations are first reported and discussed.
In the second step, the data-driven predictive modeling approach is
implemented and the achieved performance of the chosen benchmark
ML algorithms, for the implemented pipelines (with different predic-
tion horizons), are presented. Finally, the optimal pipeline, for each
prediction horizon, is determined and the resulting performance (esti-
mation error) is compared with those offered by the above-mentioned
benchmark algorithms.

Physical model’s validation

In order to validate the developed physical dynamic model, the
measurements performed on a hot-water boiler that is utilized in an
Italian industrial factory (including the hot-water consumption data
and boiler’s operating parameters) have been used. The considered
boiler is employed in the factory for space-heating (in the winter)
and warming up the raw materials (later utilized in manufacturing
process). In this context, the measurement data corresponding to the
month of January has been utilized, as this period (due to the elevated
thermal demand for space heating in northern Italy) includes the
highest required thermal production, which (as illustrated at Fig. 2
(right)) helps evading the long-term stand-by events of the boiler.
The water volumetric flow rate, temperature of the feedwater injected
into the boiler vessel, along with the supplied water’s temperature are
measured, which are correspondingly reported at Fig. 2 (left). At the
flue-gas side, the corrected natural gas flow rate is registered at the
standard conditions, while a gas analyzer measures the volumetric O2
nd CO concentration at the stack alongside the flue-gas discharge
emperature. The measured variables (as listed in Table 1) allow per-
orming an energy analysis on the system as a whole and thus permit
he estimation of the boiler’s efficiency. The sampling frequency is set
qual to 1 min, allowing fine granularity of the measurement, thus
etaining major information about the system’s dynamic behavior.

The external operating conditions that are imposed, while perform-
ng the validation process, are reported in Table 1. Additionally, the
egistered average stack oxygen concentration is directly employed
hile simulating the combustion process to coherently estimate (in a
ynamic manner) the combustion quality. The additional geometrical
pecifications, of the considered boiler model, are listed in Table 1. For
he previously described consumption profile of hot-water flow rate,
he performance of the boiler is estimated and the corresponding key
ndicators are obtained. It is also worth mentioning that the model’s
ub-parts validation has been carried out by the authors in previous
6

Table 1
List of experimental variables, geometrical characteristics, Ambient conditions and the
range of boiler’s operating conditions and their instrument errors recorded on the
hot-water boiler.

Variables recorded Instrument error

Water hourly volumetric flow rate m3∕h ±1% o.r.
Inlet water feed temperature ◦C ±0.4 ◦C
Outlet water feed temperature ◦C ±0.4 ◦C
Natural gas volumetric hourly flow rate Sm3∕h ±1% o.r.
Flue gas stack temperature ◦C ±0.4 ◦C
Stack percentage volumetric average oxygen
concentration 𝑉O2

∕𝑉𝑡𝑜𝑡,𝑓%
±1% o.r.

Stack percentage volumetric average CO concentration ppm ±10 ppm

Parameters of the simulation Values

Ambient temperature [◦C] 20
Ambient pressure [bar] 1.01325
Ambient relative humidity [%] 50.0
Maximum hourly fuel mass flow rate [kg∕h] 100.0

Parameters of the Fire-tube boiler Values

Number of tubes (3rd gas pass) 116
Helical coils pitch (3rd gas pass) [mm] 80
Helical coils diameter (3rd gas pass) [mm] 42
Boiler net vessel volume [m3] 3.65
Heat transfer surface [m2] 86.10
Net water volume/Heat transfer surface ratio [103 m] 42.39

Table 2
The bias between simulated and experimentally measured (and calculated) thermal
efficiency and (cumulative) consumed fuel mass and the bias indicators obtained
comparing the experimental and simulated data.

Experimental Simulated

Cumulative thermal efficiency [%] 104.21 103.01
Mass (cumulative) of consumed fuel [kg] 186.13 191.82

Cumulative bias

Water supply temperature [K] 0.4126
Natural gas flow rate [kg∕h] 6.2192

works [3,19,36], therefore the current procedure aims at providing
the boiler model’s validity as a whole, thus considering the additional
water-side and control strategy parts in addition to the previously
presented works. The cumulative average efficiency is a performance
index, which has also been utilized as the primary validation term
(compared with the experimental data). Next, in order to evaluate the
deviation from the registered variables of the case-study, the estimation
bias of the water supply temperature and the mass (cumulative) of
consumed fuel (determined by comparing the measured data and the
estimated results) is calculated.

Validation results

Table 2 compares the simulated cumulative thermal efficiency and
the (cumulative) mass of consumed fuel with the corresponding exper-
imental values. Results demonstrate an acceptable agreement between
the simulated values and the measured data, indicating a cumulative
thermal efficiency deviation of 1.2%.

Fig. 3 represents the trends of simulated natural gas flow rate and
the supply water temperature in comparison with the corresponding
experimental data. The latter comparison demonstrates the marginal
deviation of the simulated data with respect to the experimental mea-
surements, confirming the model’s validity over the range of operating
conditions that has been investigated in the present work. Furthermore,
the resulting cumulative deviations (simulation results vs. the measured
value) of these two parameters is reported in Table 2, which further
confirm the consistency of the simulation results with the experimental

data.



Sustainable Energy Technologies and Assessments 58 (2023) 103321M. Tognoli et al.
Fig. 2. (Left) Water volumetric flow rate trend within one week in January. (Right) Water inlet and outlet temperature trends experimentally recorded within one week in January.
Fig. 3. Comparison between the simulated natural gas flow rate and experimental data (left) and simulated water supply temperature vs. the experimental data (right).
Results of data-driven dynamic modeling

In the present section, the results of data-driven predictive modeling
procedure, which aims at forecasting the water supply temperature
with different prediction horizons (15 min, 30 min, and one hour), are
represented. The experimental data, described in sub-section ‘‘Physical
model’s validation’’, is utilized for training, validating, and testing
the implemented prediction pipelines. In the data creation step (to
describe the underlying dynamic physical phenomena), lagged values
of the target and input features, for each pipeline (while taking into
account the corresponding prediction horizon), are created and are
added to the dataset. The dataset is then split into training (also used
for validation through cross-validation) and test subsets. This splitting
step is performed by choosing the training set (that constitutes 70% of
the dataset) and the test set (that constitutes 30% of the dataset) to be
(chronologically) subsequent.

Next, utilizing time-series cross-validation methodology (with 10
chronologically subsequent splits), the performance of chosen bench-
mark ML algorithms (SVM, XGBoost, and RF), for each prediction
pipeline, are assessed (validation accuracy). Next, the accuracy of the
latter pipelines for the test set (while training the model over the whole
training dataset) is determined. The achieved validation accuracy of
these models for different prediction horizons (in terms of MAE, MSE,
MARD, and R2 metrics) are represented in Table 3. The corresponding
results for the test set are represented in Table 3. In the next step, for
each pipeline, the algorithm optimization procedure, which is described
in Appendix E (provided in supporting materials), is performed. In
this procedure, while utilizing MARD as the optimization objective
7

and the training (also used for validation through cross-validation)
subset as the dataset, the most promising ML-based pipeline for each
prediction horizon is identified. Finally, using the identified optimal
pipelines, the corresponding accuracy over the test set is calculated.
The motivation behind the choice of MARD as the key objective in the
optimization procedure is the fact that (in the considered application)
it is desired to reduce the percentage of the difference between the real
and predicted values (while normalizing the impact of the magnitude
of the real value). It is also worth mentioning that splitting the dataset
into training and test sets, facilitates assessing the performance of the
identified optimal pipeline for a (unseen) dataset for which it has not
been optimized.

Comparing the validation MARD value achieved by the optimal
pipeline with those obtained utilizing the benchmark algorithms (repre-
sented in Table 3), demonstrates that conducting the pipeline optimiza-
tion step, results in a notable reduction in the resulting estimation error.
In addition, comparing the MARD results of benchmark algorithms
for the validation (cross-validation over the training set) and test sets
demonstrates that the overall estimation error is higher for the test set
independent from the choice of the model. The latter observation can
be attributed to the difference in the profile of the demand in the test
set that, due to the resulting increase in temperature oscillations, makes
the supply temperature prediction task more challenging. Accordingly,
the achieved MARD values of the optimal pipeline are similarly higher
for the test set compared to the corresponding achieved values for the
validation set. Therefore, this difference can be partly attributed to the
above-mentioned difference in the supply temperature profile in the
two dataset and to a lower extent to the potential model over-fitting.



Sustainable Energy Technologies and Assessments 58 (2023) 103321M. Tognoli et al.
Fig. 4. Effect of various prediction horizons on evaluation metrics of the validation and the test set.
Fig. 5. Accuracy of the 30-minute optimal pipeline predictive model on predicting train and test dataset.
Nevertheless, the achieved MARD of the optimal pipeline on the test
set is notably lower than those offered by the state-of-the-art bench-
mark algorithms for all of the considered prediction horizons, which
demonstrates the notable benefit of implementing the pipeline opti-
mization procedure. Fig. 4 graphically represents the above-mentioned
observations on the variations of the estimation error achieved by
the optimal pipeline over the validation and test sets for different
prediction horizons.

In order to visually represent the accuracy of the achieved opti-
mal pipelines, the comparison between the estimations provided by
the identified optimal pipeline for 30 min ahead prediction and the
corresponding real values is illustrated in Fig. 5. As can be noticed
in this figure, the estimations of the optimal pipeline are in a suit-
able agreement with the experimentally measured data. The optimal
pipeline can estimate the values of the outlet water temperature in
the next 30 min with an MAE of less than 1.9 ◦C for the validation
and 2.7 ◦C for the test set, which demonstrates its elevated forecasting
accuracy. These pipelines can thus be effectively utilized in a model
predictive control scheme, aiming at improving the controllability of
the boiler and potentially reducing its consumption. In order to provide
8

the reader with complete information, the details of the identified ob-
tained optimal pipelines (including various steps, algorithms, and their
tuned hyper parameters along with the corresponding definitions), for
different prediction horizons, are reported in Appendix A to Appendix
C (provided in supporting materials).

Conclusions

The present work was aimed at providing dynamic thermal models
of hot-water supplying fire-tube boilers. As the first step, a detailed
dynamic physical model, employing reduced one-dimensional finite-
volume methodology to simulate the flue-gas side, was proposed and
implemented. In the next step, the measurements performed on the
demand profile and the operating conditions of a hot-water boiler
installed in an Italian industrial factory, were utilized for both tuning
a PID controller (using a closed-loop linearization procedure) and the
validation of the developed model. The obtained results demonstrated
a maximum thermal efficiency bias (determined through comparing the
experimental data and the simulated values) of 1.2%, which confirms
the validity of the developed model over the investigated range of
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Table 3
Results of Cross-Validation analysis and test results applying SVM, XGBoost, RF, and
the optimal pipeline models of different prediction horizons.

Prediction
horizon

Evaluation
metric

SVM XGBoost RF Optimal
pipelines

Cross-validation results

15 min

MARD [%] 2.41 3.10 3.39 1.90
MAE [◦C] 1.4 1.9 2.1 1.2
MSE [◦C2] 4.8 6.9 10.6 4.5
R2 [−] 0.92 0.95 0.93 0.88

30 min

MARD [%] 3.55 5.44 5.01 2.66
MAE [◦C] 2.9 3.3 3.1 1.9
MSE [◦C2] 11.7 22.2 18.4 8.6
R2 [−] 0.83 0.84 0.87 0.80

60 min

MARD [%] 6.40 7.86 6.62 3.75
MAE [◦C] 4.4 5.1 4.2 2.9
MSE [◦C2] 24.5 53.8 37.5 14.3
R2 [−] 0.75 0.62 0.74 0.73

Test results

15 min

MARD [%] 3.90 5.89 5.94 3.08
MAE [◦C] 2.8 2.9 3.1 1.9
MSE [◦C2] 7.2 30.1 30.2 6.8
R2 [−] 0.96 0.61 0.55 0.95

30 min

MARD [%] 6.10 7.53 6.13 4.51
MAE [◦C] 3.2 3.3 3.0 2.7
MSE [◦C2] 17.3 49.2 29.0 14.7
R2 [−] 0.88 0.55 0.57 0.84

60 min

MARD [%] 8.70 13.44 9.11 5.16
MAE [◦C] 5.9 6.6 5.3 3.4
MSE [◦C2] 26.4 184.9 91.5 16.5
R2 [−] 0.87 0.46 0.48 0.76

operating conditions. The model can thus be effectively utilized in the
design and sizing procedure of this type of boilers.

In the second part of the study, ML-based pipelines were imple-
mented and optimized for predicting the water supply temperature with
15 min, 60 min, and one hour prediction horizons. It was demonstrated
that performing the pipeline optimization step can notably reduce the
estimation error of the prediction pipeline (compared with the state-of-
the-art benchmark ML algorithms) for all of the considered prediction
horizons. It was specifically shown that the MARD values (on the test)
achieved by identified optimal pipelines are 3.1%, 4.5%, and 5.2% for
15 min, 30 min, and one hour prediction horizons respectively, which
demonstrates their elevated accuracy. Therefore, these pipelines can be
utilized for implementing predictive control schemes to improve the
controllability and (potentially) the thermal efficiency of these boilers.
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