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ABSTRACT

Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting
meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have
achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an
overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A
systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using “artificial
intelligence” and “brain” as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696
were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance,
and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools.
Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are
designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians’
decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the
brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0011697

I. INTRODUCTION

Over the last three decades, hospitals and healthcare systems pro-
duced a vast quantity of unstructured data such as Medical Imaging
(MI) data, genomic information, and free text and data streams from
monitoring devices.1 The analysis of such data significantly changed
the approaches used by medical experts and practitioners for identify-
ing, understanding, and treating brain pathologies, as well as identify-
ing risks and reactions to therapies.2 In particular, MI and MI
processing started a revolution in the field; indeed, they paved the way
for studying, treating, managing, and predicting diseases in a quick
and noninvasive manner. Furthermore, advances in image and image
processing technologies led to more and more cost-effective and low-
risk analysis.3 Computed Tomography (CT), Positron Emission
Tomography (PET), and Magnetic Resonance Imaging (MRI), for
instance, have revolutionized the study of the brain by allowing doc-
tors to perform noninvasive evaluations of the brain structure and to
infer causes of abnormal function due to different diseases.4,5

However, “manually” processing medical data, and brain images
in particular, is often time consuming, and chances of errors in the
interpretation are not irrelevant. For example, it has been estimated
that day-to-day error rates and discrepancies in radiology are greater
than 3%–5%.6 This called for novel methods to help physicians in effi-
ciently and effectively analyzing data. As more computational power
has been available and the medical data quality increased, the interest
in employing advanced algorithms has increased.7 However, despite
the significant results obtained over the years, given the rise in the
complexity and volume of data, many traditional computer-based
techniques and algorithms are not feasible in real-world scenarios. For
instance, objects like lesions and organs in MI may be too complex to
be accurately represented simply by traditional equations or models.
Furthermore, it is not always easy for experts to define precise rules to
apply, for example, for disease analysis and control. Hence, the use of
Artificial Intelligence (AI) techniques has received growing interest in
the field of brain imaging and computational neurosciences over the
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last decade, as demonstrated in the exponential growth of scientific
publications reported in Fig. 1. Among these approaches, Machine
Learning (ML) techniques are now renowned and widely used for
addressing brain-related problems.

ML is a subset of AI algorithms that automatically “learn” to
identify categories or forecast future or unknown conditions starting
from data. Several solutions have been developed over the years, and
many of them still provide successful results in the analysis and proc-
essing of brain data.

Quantitative and qualitative characterization studies of normal
and pathological structures are often part of clinical tasks in which ML
has achieved the most promising results.8–10 In this context, brain data
processing using ML methods has been widely used to identify brain
conditions such as Alzheimer’s disease, dementia, schizophrenia, mul-
tiple sclerosis, cancer, and infectious and degenerative diseases.
Furthermore, approaches for segmentation and detection of brain
structures, as well as pathological tissues, are also widely studied.11

Detection and precise localization of the abnormal tissue and sur-
rounding healthy structures, indeed, are crucial for diagnosis, surgical
planning, postoperative analysis, and chemo/radiotherapy treatment.

Nevertheless, it is worth noting that, because of the complexity
and the amount of brain data, ML methodologies usually comprise
several steps in order to actually perform a task. For example, image
pre-processing, feature selection and ranking, and dimensionality
reduction are often required as initial stages to boost algorithm per-
formances up to adequate levels.12

In recent years, a subfield of AI, Deep Learning (DL), has revolu-
tionized a variety of neurosurgical tasks10,13,14 (Fig. 2). In particular,
DL algorithms rose a prominent position in computer vision, outper-
forming other methods on several high-profile image analysis bench-
marks.15 Different from traditional ML models, in DL, useful
representations and features are learnt automatically, directly from

raw data, overcoming the issue of manually computing and selecting
potentially relevant attributes. Thanks to critical advancement in com-
puting power, including the use of a Graphic Processing Unit (GPU),
such algorithms started to be effectively used for learning from 3D and
2D images typical of the medical domain.12

This work primarily focuses on providing an overview of the
recent literature on AI techniques directly supporting brain care. We
provide a brief analysis of key ideas and areas of application of AI as
well as the principal modalities and knowledge used in neuroscience.
First, we present a summary of the key clinical uses of AI in the brain,
including classification, segmentation, organizational preparation,
postoperative analysis, and predictive methods; furthermore, we

FIG. 1. Cumulative and absolute number of papers on artificial intelligence in brain published in the latest ten years (as reported in the considered databases).

FIG. 2. Relations among artificial intelligence, machine learning and deep learning.
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provide a thorough description of recent classification methods based
on brain connectivity; eventually, taking into account recent develop-
ments and the rapidly growing potential of the field, we discuss how
AI might transform brain care in the near and long term, identifying
open issues and promising directions for future work.

The remainder of this paper is organized as follows. We briefly
introduce the main type of data used for brain analysis, as well as the
main AI techniques adopted for solving brain-related tasks. The meth-
odology used for evaluating the state-of-the-art is explained in Sec. V
and analyzed more in detail in Sec. VII. We discuss our findings in
Sec. VIII and draw our conclusions in Sec. IX.

II. TYPE OF DATA

Many different technologies have been developed with the aim of
understanding brain structure without the need for invasive neurosur-
gery. CT and MRI are the two primary innovations that improved
diagnostic and management efficiency across the spectrum of neuro-
logical disorders.8,12 CT uses computer-processed adaptations of sev-
eral x-ray measurements taken from various angles to produce cross-
sectional (tomographic) images. PET is used to observe metabolic pro-
cesses at cellular levels. MRI uses a strong magnetic field and radio
waves to render high-quality imagery of biological structures.5

By controlling the radio frequency pulses and the oscillations of
the gradient, specific pulse sequences determine how the image is
obtained (weighed) and how the different tissues appear. T1- and T2-
weighted imagery is useful for demonstrating the anatomy and pathol-
ogy of the brain, respectively. A third commonly used sequence is the
Fluid Attenuated Inversion Recovery (FLAIR).

Advanced imaging is playing an increasingly more important
role in the management of patients with neuro-oncologic disease. In
this way, advances in Diffusion Tensor Imaging (DTI) and Functional
Magnetic Resonance Imaging (fMRI) provide noninvasive means of
brain mapping.16 More in detail, DTI provides in vivo visualization of
white matter tracts in the brain, helping to analyze pathological altera-
tions outside visible lesions on MRI.17 This is achieved through the
creation of a map of the axonal network in the brain by measuring the
diffusivity of water molecules. fMRI is a technique to detect eloquent
cortex by identifying increased blood oxygen levels in areas of the
brain, which are activated by task-based paradigms. During the last
two decades, an explosion of fMRI studies took place mapping neural
functions to distinct parts of the brain at rest or during task perfor-
mance. However, much attention has been directed toward Resting
State Functional Magnetic Resonance Imaging (rs-fMRI) data.18

Hyperspectral Imaging (HSI) is an emerging imaging modality
for medical applications, especially in disease diagnosis and image-
guided surgery. It provides diagnostic information about the tissue
physiology, morphology, and composition. HSI acquires a three-
dimensional dataset called hypercube, with two spatial dimensions
and one spectral dimension.19 Another technique that gained interest
because of the capabilities of obtaining real-time visualizations is
Intra-operative Ultrasound (IUS), a diagnostic imaging tool that uses
high-frequency sound waves to create images of structures in the
body.20 Ultrasound images are captured in real time using an external
probe and ultrasound gel placed directly on the skin.

A fundamental concept in modern neuroscience is that anatomi-
cal and functional links between brain regions are arranged in such a
way that information processing is close to optimal. Recently applied

in neurosciences, graph-based models opened up new perspectives for
the study of brain structural and functional integration through
graph-derived metrics.21,22 In this context, brain connectivity analysis
rests upon three different but related forms of connectivity: Structural
Connectivity (SC) consists of nodes, corresponding to segmented cor-
tical regions, and links, e constructed by tractography from white mat-
ter fiber-tracts.23,24 Functional Connectivity (FC), instead, is defined as
the temporal dependency of neuronal activation patterns of anatomi-
cally separated brain regions. Other brain connectivity forms exist,
which, however, are not treated in this review.

Other types involved in the brain care are gene sequence,
Electronic Health Record (EHR), Electroencephalography (EEG), and
Microelectrode Recording (MER) data. EHR is digitizing valuable
medical data on a massive scale. Electronic health records (EHR) cap-
ture “real-world” disease and care processes and, hence, offer richer
and more generalizable data for comparative effectiveness research
than traditional randomized clinical trial studies. EEG measures the
weak electromagnetic signals generated by in-brain neuronal activities.
It captures both slowly and rapidly changing dynamics of brain activa-
tions with a time resolution of milliseconds. This enables the investiga-
tion of neuronal activity over a wide range of frequencies that can
offer potentially complementary insights regarding how the brain
works as a large system.25 The MER technique further enhances the
ability of the surgeon subcortical area; MER data are used as an
adjunct approach to ensure that the Deep Brain Stimulation (DBS)
electrode is correctly placed within the target structure.26

All input data of the reviewed article are reported in Table I.

III. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING,
AND DEEP LEARNING

One of the main AI goals is the development of software for com-
puters or computer-controlled machines able to perform tasks com-
monly associated with intelligent beings.1 Its use in healthcare
commonly attempts to emulate and even overcome human cognition
in the analysis of complicated medical data.

As schematized in Fig. 2 among the various AI branches, ML
plays a prominent role in brain data analysis. ML is an adaptive pro-
cess that enables computers to learn from experience, learn by exam-
ple, and learn by analogy.27 The goal is to define generic algorithms
able to automatically improve their performance over time on the basis
of previous results and is achieved by training the algorithms via
proper optimization approaches. One of the most valuable properties
of such models is the capability of achieving accurate results on several
tasks, such as classification or prediction, over unseen data, thus gener-
alizing their learned expertise. In general, every ML algorithm falls
into one of the two main categories: supervised learning and unsuper-
vised learning. Supervised learning is generally used when the answer
to the problem is known. In this scenario, a set of samples with known
labels (training set) is provided to the ML algorithm. Thus, a model is
prepared through a training process where its parameters are tuned to
produce accurate predictions for the labeled data. Classification meth-
ods fall in this category. With unsupervised learning, different from
supervised learning, input data are not labeled and no known result is
provided to the model. In this case, the algorithm is generally trained
at deducing structures and common patterns present in the input
data. Clustering is a prime example.

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 4, 041503 (2020); doi: 10.1063/5.0011697 4, 041503-3

VC Author(s) 2020

 01 July 2024 13:57:03

https://scitation.org/journal/apb


In this review, we mainly focus on the supervised approach, as
widely adopted in brain image processing tasks. In this context,
several ML solutions provide promising and reliable solutions.
According to the function used to process the input, they can be
classified into many categories. Among the most common we find
Decision Tree (DT), which predicts the output Y based on a
sequence of splits in the input feature space X. Ensembles of DT,
such as Random Forest (RF) or boosted trees (e.g., AdaBoost), are
thus a more popular choice in most applications since they yield
much better prediction performance. Support Vector Machines
(SVMs) search for an optimal separating hyperplane between clas-
ses, which maximizes the margin, i.e., the distance from the hyper-
plane to points closest to it on either side.

Among the various ML solutions, Deep Neural Networks
(DNNs) are nowadays considered as the state-of-the-art solution for
many problems, including tasks on brain images. Such human brain-
inspired algorithms have been proven to be capable of extracting
highly meaningful statistical patterns from large-scale and high-
dimensional datasets. A DNN is a DL algorithm aiming to approxi-
mate some function f �. For example, a classifier can be seen as a func-
tion y ¼ f �ðx; hÞ mapping a given input x to a category labeled as y. h
is the vector of parameters that the model learns in order to make the
best approximation of f �. Artificial Neural Networks (ANNs) are built
out of a densely interconnected set of simple units, where each unit
takes a number of real-valued inputs (possibly the outputs of other
units) and produces a single real-valued output (which may become

TABLE I. Type of data explained.

Type of data Definition

Medical imaging
MRI (magnetic resonance imaging) MRI uses a strong magnet and radio frequency (RF) waves to provide clear and

detailed pictures of internal organs and tissues.
MRI-T1WI (T1-weighted image) T1 weighted image is one of the basic pulse sequences in MRI and demonstrates differ-

ences in the T1 relaxation times of tissues.
MRI-T2WI (T2-weighted imaging) T2-weighted image is one of the basic pulse sequences in MRI. The sequence weighting

highlights differences in the T2 relaxation time of tissues.
MRI-FLAIR (fluid-attenuated inversion recovery) FLAIR is an MRI sequence with an inversion recovery set to null fluids.
MRI-DWI (diffusion weighted imaging) DWI measures the strength of molecular motions of diffusion within a tissue structure

or boundaries of white and gray matter brain tissues and brain lesions, which have
their own diffusion criteria and can be restricted by the diseases

MRI-DTI (diffusion tensor imaging) DTI is a magnetic resonance imaging technique that enables the measurement of the
restricted diffusion of water in tissue in order to produce neural tract images instead of
using these data solely for the purpose of assigning contrast or colors to pixels in a
cross-sectional image

PET (positron emission tomography) PET offers superior soft-tissue contrast and a means of assessing cellular density with
diffusion-weighted imaging

CT (computed tomography) Uses computer-processed adaptations of several X-ray measurements taken from vari-
ous angles to produce cross-sectional (tomographic) images.

IUS (intra-operative ultrasound) IUS is a Dynamic imaging modality based on ultrasounds, which provides interactive
and timely information during surgical procedures.

fNIRS (functional near-infrared spectroscopy) fNIRS is a Noninvasive optical imaging technique used to monitor changes in hemo-
globin (Hb) amounts within the brain by means of the characteristic absorption spec-
tra of Hb in the near-infrared range.

HSI (hyperspectral imaging) HSI is an imaging techniques based on capturing and processing of an image using
information from all over the electromagnetic spectrum.

Connectivity
FC (functional connectivity) FC is a network representing temporal dependency of neuronal activation patterns of

anatomically separated brain regions.
SC (structural connectivity) SC is a network representing anatomical brain regions connected each other through

fiber bundles.
Other data
MER (microelectrode recording) MER is a technique used for recording electrical patterns from surrounding brain

structures.
EEG (electroencephalography) EEG is a technique for recording and interpreting the electrical activity of the brain.
Gene sequence Gene sequence is a string of data representing the order of nucleotides in DNA.
EHR (electronic health record) EHR is digital version of a patient’s paper chart.
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the input to many other units). DNNs are called networks because
they are typically represented by composing together many functions.
The overall length of the chain gives the depth of the model; from this
terminology, the name “deep learning” arises. Recently, more
advanced neural network models with local receptive fields, like
Convolutional Neural Networks (CNNs), have proven to have promis-
ing classification accuracy in image processing tasks such as classifica-
tion or segmentation. CNNs replace the fully connected operations by
convolutions with a set of “learnable” filters. Success of this approach
stems from its ability to exploit the full resolution of 2D and 3D spatial
structures (e.g., MRI) without the need for learning too many model
parameters, thanks to the weight sharing. Many other DL architectures
have been presented over the years; here, it is worth mentioning that
the Recurrent Neural Network (RNN) is widely used where longitudi-
nal data are available and the Graph Neural Network (GNN) extends
neural networks with the purpose of processing graph structure data.

IV. CLINICAL AIMS

AI is a major branch of computer science; it counts many meth-
ods for building effective tools for analyzing complex domains, includ-
ing medical data. Its potential to exploit meaningful relationships
within a dataset can be used in diagnosis, surgical treatment, intra-
operative assistance, and postoperative predicting outcome in many
clinical scenarios. Indeed, modern medicine is faced with the challenge
of acquiring, analyzing, and applying a large amount of knowledge
necessary to solve complex clinical problems. The development of
medical AI has naturally been related to the development of AI techni-
ques; in the brain care, these are intended to support healthcare work-
ers in their duties, especially with tasks that rely on the manipulation
of data and knowledge. More specifically, in the context of brain care,
one of the main purposes is to help clinicians in the formulation of
diagnosis “classification” problems, using anatomical, morphological,
and connectivity information.7,8,12,18 Usually, automatic classification
helps clinical decision-making on a pathology of the brain or multiple
classes of it, by discerning patterns corresponding to classes. For exam-
ple, classification methods, using anatomical information, are widely
used for the detection of Alzheimer’s Disease (AD) and other cognitive
impairments,8 as well as the characterization of various brain tissues
including brain tumors.14 Moreover, a classification using morphologi-
cal information is performed, and the task is known as “image
segmentation.”11 The goal is to partition an image into multiple
regions that share similar attributes, enabling localization and quantifi-
cation. Segmentation is commonly used for detecting, measuring, and
analyzing the main morphological structures of the brain and eventu-
ally identifying pathological regions. This accurate structural classifica-
tion is particularly important in patients with tumors, edema, and
necrotic tissues. Brain image segmentation is also useful in clinical
diagnosis of neurodegenerative and psychiatric disorders, treatment
evaluation, and surgical planning.

To help the formulation of the surgical treatment, similarly, clas-
sification is used for surgical candidate selection and segmentation is
used for finding and categorizing the surgical target. In brain images,
ML detection techniques are performed to identify the areas where the
patient’s lesions are located as box coordinates and localization of
stimulation zones within the brain for DBS treatment used for brain
lesion and Parkinson patients. Moreover, AI systems are used for
assisting a surgeon during the definition of an optimal trajectory.

Prognosis is extremely important in planning appropriate
postoperative treatment. Accurate identification of high-risk
patients may facilitate targeted aggressive adjuvant therapy, which
may help cure the disease and prolong survival.28 The implementa-
tion of EHR in hospitals is increasing rapidly; the generated data
can be fed to an AI algorithm in their raw form, and the algorithm
can try to learn which features are associated with the outcome of
interest.29 In this way, the algorithm can be able to predict mortal-
ity, postoperative hospitalization, transsphenoidal surgery
response, DBS outcome, reperfusion, and disease recurrency in a
variety of disease conditions including Cushing’s disease,
Parkinson’s disease, brain tumor, brain injury, brain lesion, and
neurological disorders, easing the burden of clinicians who have to
come up with meaningful structured data.

V. METHODS

A systematic literature review was performed according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. In particular, Pubmed, Scopus, and Web of
Science databases were searched to identify all potentially relevant
studies back to January 1, 2008. The search queries were carefully built
with the guidance of a professional librarian using search terms related
to artificial intelligence and brain. A comprehensive list of the key-
words used for the search is reported in Table II. All biomedical stud-
ies that evaluated AI models assisting in brain care were included;
duplicates are discarded by using the EndNote reference management
software. Following the elimination of duplicates, a careful screening
of titles and abstracts was made in order to identify papers that were
relevant to our research topic. Any work that matched at least one of
the following exclusion criteria was crossed out:

(i) No full-text available
(ii) No AI application
(iii) Conference abstracts
(iv) Animal models
(v) Conference papers
(vi) Books
(vii) Book chapters
(viii) Non-English language.

After a proper check of full texts and references, a total of 154
articles/reviews were identified as eligible and, hence, included into
this systematic review. Any article appearing to help our research was
included and classified; nevertheless, we decided to not cover papers
already covered by previous reviews. Data considered from each study
were the following:

(1) Application
(2) Name of the first author
(3) Year of publication
(4) Clinical aim
(5) Pathology
(6) Type of data
(7) Data
(8) AI method
(9) Benchmark measure
(10) Results.
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On this basis, we computed the distribution of all published
articles within the domains of clinical aim, pathology, ML algorithm,
and type of data used as input features.

We considered a quantitative synthesis to be inappropriate, due
to the heterogeneity in applications. A qualitative synthesis of results is
hence provided next by means of a narrative approach. Concerning
classification tasks, given the large amount of publications in the litera-
ture and the recent results sublimely analyzed, both quantitatively and
qualitatively, by previous surveys, we limited the detailed overview to
50 most cited papers of 2019. Finally, we made a strong distinction
between image-based and connectivity-based classification tasks. In
fact, given the promising results obtained by these techniques, we find
the latter to be an evolving challenge that deserves a thorough analysis.

VI. EVALUATION METRICS

For all AI applications, and ML is no exception, the performance
measurement is an essential task. Benchmark measures used for the
evaluation of the reviewed studies are explained in Table III. Accuracy,
precision, sensitivity, and specificity are metrics widely used to evaluate
performance in ML classification tasks. Accuracy and precision reveal
a test’s basic reliability, while specificity and sensitivity reveal the likeli-
hood of false negatives (FNs) and false positives (FPs). These parame-
ters are largely used, but, as reported by other reviews,30 in some cases,
these evaluation metrics might not constitute a realistic measure. For
these reasons, several works are starting to extend their evaluations by
also reporting the Positive Predictive Value (PPV) and Negative
Predictive Value (NPV).31–35 The Area Under the Curve (AUC)
Receiver Operating Characteristic (ROC) curve is one of the most
important evaluation metrics to check or visualize the performance of
a ML classification problem. It tells how much model is capable of dis-
tinguishing between classes: the higher the AUC, the better the model
is at predicting. To make a quantitative evaluation of automatic seg-
mentation results, the frequently used procedure is to determine the
overlap with the gold standard that in this field is the manual segmen-
tation by and expert radiologist. Generally, Jaccard Coefficient (JC) or
Dice Similarity Index (DSI) is used. It ranges from 0 to 1, ranging

from no overlap to perfect overlap. For probabilistic segmentation, the
validation metric is AUC. Other validation metrics include Mean
Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Mean
Absolute Distance (MAD), and Housdorff Distance (HDD) values.
Regarding path planning problems, the most important evaluation
metrics reported are the Center of Mass Distance (CMD), Mean
Square Distance (MSD), min Square Distance (mSD), and risk score
for the trajectory evaluation and time complexity to evaluate the total
time of execution for time-constrained applications. For predictive
model, the metrics reported are the error rate, Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE) that can be interpreted
as a measure of the ratio between the true and predicted values.

As a final remark, it is worth mentioning the efforts spent by
researchers to validate their methods, in order to reduce the possibility
of human error and handle variations in brain data. To this aim, a cru-
cial role is played by validation methods. Cross-validation methods (k-
fold, leave-one-out, and leave-one-group out) are still the most valu-
able approach in this sense. Such methods allow us to better validate
ML and DL algorithms, avoiding biases that might be present in a sin-
gle dataset.

VII. RESULTS

Out of the 2696 citations initially identified in the selected data-
bases, 2231 were selected by title/abstract and full-text screening
(Fig. 3). We witnessed an exponential growth, in the latest ten years, of
the number of studies evaluating AI models as an assisting tool across
multiple paradigms of brain care; such paradigms include diagnosis
with anatomical information, diagnosis with morphological informa-
tion, diagnosis with connectivity information, candidate selection for
surgical treatment, target definition for surgical treatment, trajectory
definition for surgical treatment, modeling of tissue deformation for
intra-operative assistance, and prediction of patient outcome for post-
operative assessment, as outlined in Fig. 4; AI-enhanced brain care in
patients with a wide variety of brain disorders include epilepsy, brain
tumors, brain lesion, Parkinson’s diseases, brain injury, and cerebro-
vascular abnormalities. Algorithms used were Natural Language

TABLE II. Keywords for the systematic review.

Database Query

SCOPUS TITLE-ABS-KEY ( “Machine Learning” AND “Deep Learning” AND ( “Classification” OR “Detection” OR
“Identification” OR “Diagnosis” ) AND ( “brain disease” OR “neuro” OR “MRI” OR “medical imaging” ) ) AND
( LIMIT-TO ( DOCTYPE, “ar” ) OR LIMIT-TO ( DOCTYPE, “cp” ) ) AND ( LIMIT-TO ( LANGUAGE,
“English” ) ) AND ( LIMIT-TO ( EXACTKEYWORD, “Brain” ) OR EXCLUDE ( EXACTKEYWORD, “Image
Segmentation” ) OR EXCLUDE ( EXACTKEYWORD, “Image Reconstruction” ) OR EXCLUDE (
EXACTKEYWORD, “Connectivity” ) OR EXCLUDE ( EXACTKEYWORD, “Functional” ) )

WEB OF SCIENCE ((“Machine Learning” AND “Deep Learning”) AND (“Classification” OR “Detection” OR “Identification” OR
“Diagnosis”) AND (“brain disease” OR “brain disorders” OR “MRI” OR “medical imaging” OR “neuro”) NOT
“segmentation” NOT “functional” NOT “connectivity”) AND LANGUAGE: (English) AND DOCUMENT
TYPES: (Article OR Proceedings Paper)

PUBMED (“Machine Learning”[Title/Abstract/MeSH] OR “Deep Learning”[Title/Abstract/MeSH]) AND
(“classification”[Title/Abstract] OR “diagnosis”[Title/Abstract] OR “identification”[Title/Abstract] OR
“detection”[Title/Abstract]) AND (“Brain”[All Fields] AND “MRI”[All Fields]) NOT “Connectivity”[Title/
Abstract/MeSH] NOT “Segmentation”[Title/Abstract/MeSH] NOT “Functional”[Title/Abstract/MeSH] NOT
Review[ptyp] AND English[lang]
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TABLE III. Benchmark measures explained.

Benchmark measures Definition

Acc (accuracy) The proportion of correct predictions among the total No. of predictions (TP þ TN)/total population.
Sp (specificity) The proportion of negatively classified cases among the total No. of negative cases; TN/(TN þ FP).
Se (sensitivity) The proportion of positively classified cases among the total No. of positive cases; TP/(TP þ FN);
TP (True positive) An outcome where the model correctly predicts the positive class.
TN (true negative) An outcome where the model correctly predicts the negative class.
FP (false positive) Where you receive a positive result for a test, when you should have received a negative results.
FN (false negative) Where you receive a negative result for a test, when you should have received positive results.
Error (error rate) The frequency of errors occurred, defined as “the ratio of total number of data units in error to the total

number of data units transmitted.”
Risk (risk score) Designed to represent an underlying probability of an adverse event denoted Y¼ 1, given a vector of P

explaining variables X containing measurements of the relevant risk factors.
Time (time complexity) The computational complexity that describes the amount of time it takes to run an algorithm.
JD (Jaccard coefficient) Also known as the Intersection over Union and the Jaccard similarity coefficient is a statistic used for gaug-

ing the similarity and diversity of sample sets. The Jaccard coefficient measures similarity between finite
sample sets and is defined as the size of the intersection divided by the size of the union of the sample sets

DSI (dice similarity index) Statistics for similarity.
PSNR (peak signal-to-noise
ratio)

The ratio between the maximum possible power of a signal and the power of corrupting noise that affects
the fidelity of its representation.

MSE (mean square error) Measures the average of the squares of the errors.
RMSE (root mean square error) Measures the standard deviation of the residual.
FRDD (fault rate dust detection) Calculated as FRDD ¼ ðTP þ FNÞ=ðTP þ TN þ FP þ FNÞ
PCC (Pearson correlation
coefficient)

A measure of the linear correlation between two variables X and Y.

HDD (Hausdorff distance) Measures how far two subsets of a metric space are from each other.
AUC (area under the curve) A graphical plot illustrating the sensitivity as a function of “1-specificity” in a binary classifier with a varying

discrimination threshold. The area under the curve corresponds to the probability that a binary classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative one; range 0 to 1.

MAD (Mean absolute distance) The average absolute distance between two-surface points.
CMD (center of mass distance) The distance between two centers of mass of surface points.
MSD (mean distance of the sur-
face point)

The average distance between two-surface points.

mSD (min. distance of the sur-
face point)

The minimum distance between two-surface points.

pFDR (positive false discovery
rate)

Can be written as pFDR ¼ E[V /R—R> 0], where V is the number of false positives (Type I error) and R
is the number of rejected null hypotheses. The term “positive” describes the fact that we have conditioned
on at least one positive finding having occurred.

MAE (mean absolute error) An average of the absolute errors: jeij ¼ jyi-xij, where yi is the prediction and xi the true value.
RMSLE (root mean square loga-
rithmic error)

Measures the ratio between actual and predicted. It is then sqrt (mean (squared logarithmic errors)).

Rec (recall) Quantifies the number of positive class predictions made out of all positive examples in the dataset. It is
calculated as the number of TP divided by the total number of TP and FN.

Pr (precision) Quantifies the number of positive class predictions that actually belong to the positive class. It is calculated
as the ratio of correctly predicted positive examples divided by the total number of positive examples that
were predicted.

PPV (positive predictive value) The probability that subjects with a positive screening test truly have the disease.
NPV (negative predictive value) The probability that subjects with a negative screening test truly do not have the disease.
FAR (false alarm rate) The number of false alarms per the total number of warnings or alarms in a given study or situation.
ROC (receiver operating
characteristic)

Created by plotting the true positive rate against the false positive rate at various threshold settings.

IGV (intergroup variance) Variations caused by differences within individual groups.
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Processing (NLP) algorithms, Genetic Algorithm (GA), ANN, SVM,
fuzzy C-means, RF, logistic regression, linear regression, K-nearest
Neighbors (KNN), DT, Gradient Boosting Machine (GBM), Sparse
Autoencoder (SAE), and k-means, all described in Table IV. A trend
in adopting custom solutions, as well as less widely used ML algo-
rithm, was also observed. Commonly used Types of data were MRI,
CT, IUS, DTI, HSI, EHR, MER, EEG, and Functional Near-Infrared
Spectroscopy (fNIRS). MRI data were the most frequently used input

features. Radiological brain tumor segmentation and classification
were the most frequently evaluated applications.

A. Diagnosis

121 studies considered AI for diagnosis. This includes classifica-
tion using anatomical information, morphological information, and
connectivity information for neurological disorders, brain tumors,

FIG. 3. PRISMA flow diagram of systematic identification, screening, eligibility and inclusion. 154 studies were included in the final analysis out of the 2696 screened.
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brain lesion, brain injury, Parkinson’s disease, epilepsy and cerebral
artery, schizophrenia, Alzheimer’s disease, autism disorder, and multi-
ple sclerosis. CT, MRI, PET, SC, and FC data were used as input fea-
tures for the development of classification algorithm. Results of the
distributions for pathology, AI methods and type of data for diagnosis
are reported in Fig. 5. Notice that, due to the vast heterogeneity of sub-
tasks found concerning classification using anatomical information, a
qualitative rather than a quantitative research design was chosen.

Computer-Assisted Diagnostics (CAD) reflects a large portion of
the various facets of AI for medical imaging.12 Such tools constitute a
valuable resource for the assistance of medical doctors in diagnosis,
prognosis, and pre-and postsurgical processes. One key task is to

automatically determine the presence or absence of a disease or a par-
ticular type of malignancy.36–41 This classification stage is focused on
making clinical decisions on a pathology of the brain or multiple clas-
ses of it, by discerning patterns corresponding to classes.42–52

Several ML-based algorithms have been proposed in recent years
for automatically discovering and exploiting visual characteristics sta-
tistically associated with clinical outcomes.5 Specifically, as previously
observed by related studies,5,7,12,53 a variety of suitable solutions,
mainly based on supervised learning techniques, have been developed
for addressing classification tasks in brain imaging.54–57 As observable
from Table V, different works still exploit classic ML algorithms such
as the SVM and its variants58–62 and RF.63–65 Such algorithms, indeed,

FIG. 4. Diagram of multiple paradigms using AI in brain care identified in this review including diagnosis with anatomical information, diagnosis with morphological information,
diagnosis with connectivity information, candidate selection for surgical treatment, target definition for surgical treatment, trajectory definition for surgical treatment, modelling of
tissue deformation for intra-operative assistance and prediction of patient outcome for postoperative assessment.
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TABLE IV. AI algorithm explained.

AI algorithm Mechanism

Regression algorithms Regression is concerned with modeling the relationship between variables, which is iteratively
refined using a measure of error in the predictions made by the model.

Linear regression Relationships between variables are modeled by fitting a linear equation to observed data.
Logistic regression Explains the relationship between one dependent binary variable and one or more indepen-

dent variable regressing for the probability of a categorical outcome using a logistic function.
Instance-based algorithms An instance-based learning model is a decision problem with instances or examples of train-

ing data that are deemed important or required for the model. Such methods typically build
up a database of example data and compare new data with the database using a similarity
measure in order to find the best match and make a prediction.

KNN (k-nearest neighbor) Categorize instances based on their similarity with the neighborhood, defined using a proper
similarity function (e.g., Eulidean distance).

SVM (support vector machines) Search for an optimal separating hyperplane between classes, which maximizes the margin,
i.e., the distance from the hyperplane to points closest to it on either side.

Bayesian algorithms Bayesian methods are those that explicitly apply Bayes’ Theorem for problems such as classi-
fication and regression.

NB (naive Bayes) Apply Bayes’ theorem with the naive assumption of conditional independence between the
features.

Clustering algorithms Clustering, like regression, describes the class of problem and the class of methods.
K-means By following an iterative procedure, the algorithm creates K partitions and assigns entry

points to each partition using some heuristic (e.g., similarity with a representative point called
the centroid).

Fuzzy C-means Allows one piece of data to belong to two or more clusters. The procedure is carried out
through an iterative optimization of an objective function, with the update of the membership
of each data point in each cluster.

HMM (hidden Markov model) A Markov chain in which states are not directly observable.
SAE (sparse autoencoder) DNN models trained at reproducing their inputs. Using a proper loss function, the model is

forced to rely on a small number of neurons (sparsity).
Artificial neural network algorithms Artificial neural networks are models that are inspired by the structure and/or function of

biological neural networks. They are a class of pattern matching that are commonly used for
regression and classification problems but are really an enormous subfield composed of hun-
dreds of algorithms and variations for all manner of problem types.

ANN (artificial neural network) Network of highly interconnected processing units, which process information by their
dynamic state response to external inputs

Deep learning algorithms Modern update to artificial neural networks that exploit abundant cheap computation. They
are concerned with building much larger and more complex neural networks, and, as com-
mented on above, many methods are concerned with very large datasets of labeled analog
data

FCNN (fully connected neural network) ANN in which each unit in a layer is connected with all the units in the next layer.
CNN (convolutional neural network) ANN in which the fully connected operations by convolutions with a set of learnable filters.
CLNet (corrective learning network) Explicitly learn a mapping from a new speech segment and the current predictions, to a

correction
RNN (recurrent neural networks) Allows you to model a temporal dynamic behavior dependent on the information received at

the previous instants of time by interconnecting higher levels with lower levels.
RFNN (recurrent fuzzy neural
networks)

Finds the parameters of a fuzzy system (i.e., fuzzy sets and fuzzy rules) by exploiting approxi-
mation techniques from neural networks.

LSTM (long short-term memory
networks)

Special kind of RNN, capable of learning long-term dependencies.

DBN (deep belief networks) Stack of restricted Boltzmann machines, where the nodes in each layer are connected to all
the nodes in the previous and subsequent layer.

ELM (extreme learning machines) Single hidden layer NN where the weights between inputs and hidden nodes are randomly
assigned and remain constant during training and predicting phases.
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provide desirable characteristics, especially for the clinical domain.
Other than achieving accurate solutions, indeed, their capability to
quantify feature importance measures forms the basis for their
explainability.

However, it is evident that a lot of work relies on DL solutions.
Independent of the clinical aim, several papers have been proposed
exploiting CNNs for classification purposes.7,53 Thanks to their capa-
bility of extracting latent complex patterns, these algorithms still
caught the interest of a wide community and constitute the state-of-
the-art for many classification tasks. Indeed, medical imaging is usu-
ally achieved by taking slices of the tissue to be analyzed; however,
given that the body consists of 3D objects in motion, all images need
to be interpreted in order to be actually useful. Such data can be ini-
tially processed by a 3DCNN, thus reducing the time needed for
human evaluation and fostering a faster patient care.66,67 Several novel
architectures have been proposed, achieving significant performance

with overall accuracy greater than 90% for many classification tasks.
In the study by Wang et al.,68 an ensemble of 3D-densely connected
CNNs for AD and Mild Cognitive Impairment (MCI) diagnosis was
proposed, outperforming previous methods in all four classification
tasks. Such kinds of models allow us to process three-dimensional vol-
umes offering a more global and anatomically meaningful view of the
input data with respect to the classical bi-dimensional version. Pang
et al.69 introduced a novel fused CNN that combines shallow layer fea-
tures and deep layer features. In the analysis, it was observed that the
shallow layers provided more detailed local features, which could dis-
tinguish different diseases in the same category, while the deep layers
could convey more high-level semantic information used to classify
the diseases among the various categories. In Zhou et al.,70 the authors
aim to maximally utilize multimodality neuroimaging and genetic
data for identifying AD and its prodromal status, MCI from normal
aging subjects. The proposed approach consists in stage-wise learning

TABLE IV. (Continued.)

AI algorithm Mechanism

Dimensionality reduction algorithms Like clustering methods, dimensionality reduction seeks and exploits the inherent structure
in the data, but in this case in an unsupervised manner or order to summarize or describe
data using less information. This can be useful to visualize dimensional data or to simplify
data, which can then be used in a supervised learning method. Many of these methods can be
adapted for use in classification and regression.

LDA (linear discriminant analysis) Projects a dataset of n-dimensional samples onto a latent subspace k (k � n� 1) while pre-
serving class-discriminatory information.

Ensemble algorithms Ensemble methods are models composed of multiple weaker models that are independently
trained and whose predictions are combined in some way to make the overall prediction.

AdaBoost The algorithm generates H hypotheses through an ensemble of learning algorithms. The out-
put of the learning algorithms is combined into a weighted sum that represents the final out-
put of the boosted classifier.

RF (random forest) Consists of a large number of individual decision trees that operate as an ensemble. Each
individual tree outputs a class prediction and the class with the most votes represents the
model’s prediction.

GBM (gradient boosting machines) ML technique providing a prediction model in the form of an ensemble of weak prediction
models

GBRT (gradient boosted regression
trees)

GBM with decision tree predictors.

Sparse MVTC (sparse multi-view task-
centralize)

Multi-view and multi-task ensemble classification method for image-based ASD diagnosis.

Other artificial intelligence algorithms
GA (genetic algorithm) A number of candidate solutions (individuals) for a problem are created. The algorithm

reflects the process of natural selection where the fittest individuals are selected for reproduc-
tion in order to produce offspring of the next generation. Fitness is evaluated by a proper
optimization function.

NLP (natural language processing) Techniques to process and understand the natural language.
GBS (graph-based semisupervision) Semisupervised learning method in which labeled and unlabeled data are jointly represented

as a weighted graph; the resulting graph structure is then used as a constraint during the clas-
sification of unlabeled data points.

Multivariate analysis Involves observation and analysis of more than one statistical outcome variable at a time.
Supervised LOCATE (locally adaptive
threshold estimation)

Determines the optimal local thresholds to apply to the estimated lesion probability map, as
an alternative option to global thresholding.
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latent representations of each modality first independently and then
jointly in order to finally learn diagnostic labels.

A widely used technique for enhancing results on limited datasets
is transfer learning (also known as fine-tuning or pre-training), which
consists in training the model on large banks of natural images, before

actually training it over the small (medical) dataset. This technique
allows the model to learn general features like shapes, colors, and pat-
terns, which can be used to process the small dataset more effectively.

Several works applied this technique to enhance their results.71–76

They show how fine-tuned models achieved state-of-the art results
and how the effect of reduction in training data did not impact the
performance of the fine-tuned CNNmodels.

Another possible way to overcome limited data availability is to
artificially create new data. As an example, new instance images can be
obtained by applying linear transformations (i.e., rotation, reflection,
scaling, etc.) to already available ones. One of the most interesting
alternatives, when dealing with image data, consists of learning the
latent manifold on which the input images lie and then sample realistic
pictures (and their labels) from this manifold. Researchers are investi-
gating this approach in the biomedical domain, achieving promising
results. For example, the recently proposed Wasserstein-Generative
Adversarial Network (GAN) model was applied by Wegmayr et al.77

to generate a synthetically aged brain image given a baseline image.
The aged image is passed to an MCI or AD discriminator deciding the
future disease status, achieving 73% accuracy on MCI-to-AD conver-
sion prediction at a 48months follow-up using only one coronal slice
of a patient’s baseline T1image.

Another current DL limitation is related to the understanding of
the model when performing the decision-making process. In this
direction, Lee et al.78 proposed a DL system to detect acute intra-
cranial hemorrhages and classify Intra-cerebral Hemorrhage (ICH)
subtypes. The system was equipped with an attention map and a pre-
diction basis retrieved from training data in order to enhance explain-
ability. In the study by Bohle et al., Layerwise Relevance Propagation
(LRP) was used to produce heatmaps to visualize the importance of
each voxel. They showed how this method was very specific for indi-
viduals with high interpatient variability. A similar approach was
introduced in the study by Eitel et al.,79 where LRP helped in explain-
ing MS diagnosis by showing relevant brain areas beyond visible
lesions. Wang et al.80 trained a CNN to distinguish six hepatic tumor
entities. Interestingly, the presence of previously manually defined fea-
tures was assessed by analyzing the CNN activation patterns. Lee81

proposed a novel framework to better understand which parts of the
brain were pathological and how different brain regions are related to
symptomatic observations. To this aim, Regional Abnormality
Representations were extracted using complex linear relationships
among voxels.

Also, “hybrid” approaches are widely adopted.82 In a typical
CNN architecture, the feature extraction part includes several convolu-
tion layers followed by max-pooling and an activation function.
Output of these layers provides latent representation of the original
input space, which could constitute useful information. In hybrid
approaches, features are extracted from the CNN layers and then used
to feed a shallow classifier that performs the classification task. To this
aim, a widely adopted pipeline consists in encoding input features by
means of Autoencoder architectures. In such models, a network is
trained to reconstruct its input. This technique is typically used for
dimensionality reduction since, in its simplest version, the input is
projected in a smaller latent space before being reconstructed. In this
scenario, latent encoding is used as input for the shallow classifier, as it
contains “compressed” informative content. Martinez-Murcia et al.,83

for example, extracted high-level abstract features directly from MRI

FIG. 5. Distribution of general applications for diagnosis, in the brain care literature,
related to classification using anatomical information, morphological information and
connectivity information. From top: Pathology, AI method and type of data.
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TABLE V. Anatomical information: details on the clinical aim, type of data, dataset, AI method, benchmark measure, and results.

First author (year of
publication) Clinical aim

Pathology/
anatomical area Type of data Dataset AI method(s)

Benchmark
measure Results

Anatomical information
Pang (2019)69 Classification of various

brain disorders
Neurological
disorders

CT
MRI

… CNN
SVM
RF

Acc …

Talo (2019)36 Classification of various
brain disorders

Neurological
disorders

MRI-T2WI … CNN Acc …

Spiteri (2019)62 Cerebellar mutism syn-
drome identification

Neurological
disorders

MRI 40 SVM AUC
ROC

…

Squarcina (2019)190 Bipolar disorder
classification

Neurological
disorders

MRI-T1WI 75 Graph-based
semisupervision

Acc
Sp
Se

AUC

…

Ramasubbu (2019)37 Depression Disorder
classification

Neurological
disorders

MRI-T1WI
clinical

44 SVM Acc
Sp
Se

…

Zhou (2019)70 AD vs MCI classification Alzheimer’s
disease

MRI
PET

Gene sequence

805 DNN Acc …

Basaia (2019)191 AD vs MCI classification Alzheimer’s
disease

MRI-T1WI 1409 CNN Acc …

Spasov (2019)42 AD vs MCI classification Alzheimer’s
disease

MRI-T1WI 785 CNN Acc
AUC

…

Wang (2019)68 AD vs MCI classification Alzheimer’s
disease

MRI-T1WI 624 CNN Acc
Pr
Rec
DSI

…

Mehdipour (2019)192 AD progression modeling Alzheimer’s
disease

MRI-T1WI 742 LSTM AUC
ROC

…

Bohle (2019)43 AD classification Alzheimer’s
disease

MRI-T1WI 344 CNN Acc …

Martinez-Murcia (2020)83 AD diagnosis Alzheimer’s
disease

MRI-MRI-
T1WIWI

479 CNN
SVM

Se
Sp
Acc
DSI

…

Raza (2019)44 AD diagnosis Alzheimer’s
disease

MRI 432 CNN
SVM

Acc
Rec
Pr
Se
Sp

…

Wang (2019)66 MCI vs AD classification Alzheimer’s
disease

MRI-T1WI 624 CNN Acc
Pr
Rec
DSI

…

Yamashita (2019)60 AD diagnosis Alzheimer’s
disease

PET MRI 507 SVM Acc
Pr
Rec
Sp R
OC

…

Benyoussef (2019)45 AD diagnosis Alzheimer’s
disease

MRI 416 CNN
KNN

… …

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 4, 041503 (2020); doi: 10.1063/5.0011697 4, 041503-13

VC Author(s) 2020

 01 July 2024 13:57:03

https://scitation.org/journal/apb


TABLE V. (Continued.)

First author (year of
publication) Clinical aim

Pathology/
anatomical area Type of data Dataset AI method(s)

Benchmark
measure Results

Forouzannezhad (2019)41 MCI diagnosis Alzheimer’s
disease

MRI PET
Clinical

… CNN Acc
Sp
Se

…

Jabason (2019)46 AD diagnosis Alzheimer’s
disease

MRI-T1WI … CNN Acc
Se
Sp

…

Khan (2019)72 AD diagnosis Alzheimer’s
disease

MRI … CNN Acc
Pr
Rec
DSI

…

Punjabi (2019)47 AD classification Alzheimer’s
disease

MRI-T1WI
PET

723 CNN Acc …

Kim (2019)48 AD vs dementia
classification

Alzheimer’s
disease

MRI-T1WI 339 LDA Acc
Sp
Se

AUC

…

Sato (2019)56 AD classification Alzheimer’s
disease

PET 379 CNN AUC
ROC

…

Eitel (2019)79 MS diagnosis MS MRI-T2WI 147 CNN Acc
AUC

…

Mato-Abad (2019)49 MS classification MS DWI 34 Naive Bayes
DNN

AUC
ROC

…

Ebdrup (2019)65 Diagnosis of
Schizophrenia

Schizophrenia MRI EHR 104 SVM
RF
DT

Acc …

Talpalaru (2019)50 Schizophrenia
identification

Schizophrenia MRI-T1WI 167 Logistic
regression

RF
SVM

ROC
AUC

…

Kniep (2019)63 Metastatic tumor type
classification

Brain tumor MRI-T1WI
MRI-FLAIR

189 RF Acc
AUC

…

Kunimatsu (2019)58 Tumor type classification Brain tumor MRI-T1WI 76 SVM Se
Sp

AUC

…

Wu (2019)64 Tumor type classification Brain tumor MRI 126 RF Acc
AUC

…

Kebir (2019)57 Tumor type classification Brain tumor MRI PET 39 SVM ROC
AUC

…

Swati (2019)71 Tumor type classification Brain tumor MRI 233 CNN Acc
Pr
Rec
Sp
DSI

…

Jeong (2019)39 Tumor type classification Brain tumor MRI-T2WI
MRI-FLAIR

25 RF Acc
AUC

…

Pan (2019)51 Tumor mutation
prediction

Brain tumor MRI-T1WI
MRI-T2WI

151 RF Acc
AUC

…

Sultan (2019)38 Tumor type classification Brain tumor MRI-T1WI 233þ 73 CNN Acc
Pr
Se
Sp

…
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TABLE V. (Continued.)

First author (year of
publication) Clinical aim

Pathology/
anatomical area Type of data Dataset AI method(s)

Benchmark
measure Results

Ozyurt (2020)82 Brain tumor detection Brain tumor MRI-T1WI 500 CNN Acc
AUC
ROC

…

Ahammed (2019)40 Tumor grade
identification

Brain tumor MRI-T2WI 20 CNN Acc
Pr
Rec
DSI
Se
Sp

…

Wang (2019)80 Diagnosis of liver tumor Brain tumor MRI 334 CNN PPV
Se
Pr

… Rec

Shrot (2019)61 Tumor type classification Brain tumor MRI DTI 141 SVM Acc
Sp
Se

…

Rehman (2019)73 Tumor type classification Brain tumor MRI 233 CNN
SVM

Acc
Pr
Se
Sp

…

Tian (2019)52 Glioblastoma vs anaplastic
astrocytoma classification

Brain tumor MRI-T1WI 123 LDA Se
Sp

AUC

…

Ortiz-Ramon (2019)54 Ischemic stroke lesion
identification

Brain lesions MRI-T1WI
MRI-T2WI
MRI-FLAIR

100 RF SVM AUC …

Lau (2019)55 WM hypertensity
detection

Brain lesions MRI-T1WI
MRI-T2WI
MRI-FLAIR

180 DNN Se
Sp

AUC

…

Kim (2019)138 Ischemic stroke lesion
identification

Brain lesions EHR … DT Acc
Pr
Rec
DSI

…

Shen (2019)133 Parkinson’s disease
diagnosis

Parkinson’s
disease

PET 350 Deep Belief
network

Acc
Se
Sp

…

Lee (2019)78 Hemorrhage detection Cerebral artery CT 196 CNN Se
Sp

AUC

…

Ker (2019)67 Brain hemorrhage
detection

Cerebral artery CT 399 CNN DSI …

Dawud (2019)75 Hemorrhage classification Cerebral artery CT … CNN
SVM

Acc …

Liu (2019)112 Cerebral microbleed
detection

Cerebral artery MRI 255 CNN AUC
ROC

…

Gunter (2019)59 DESH detection Other MRI-T1WI 1576 SVM AUC
ROC

…

Xin (2019)113 Gender identification Other Diffusion MR 1065 CNN Acc …

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 4, 041503 (2020); doi: 10.1063/5.0011697 4, 041503-15

VC Author(s) 2020

 01 July 2024 13:57:03

https://scitation.org/journal/apb


images and performed an exploratory data analysis of AD based on
deep convolutional autoencoders. They observed how the imaging-
derived markers could predict clinical variables with correlations
above 0.6, achieving a classification accuracy over 80% for the diagno-
sis of AD.

Segmentation can be treated as a pixel- or voxel-level image clas-
sification problem. In recent years, several methods have been adapted
to segmentation of complex structures, thus producing accurate and
robust segmentation. However, the high intersubject variability along
with the modifications caused by pathology makes automatic segmen-
tation a very challenging task. Classical ML methods such as the SVM
represent a valuable resource in this sense, especially when meaningful
features can be manually extracted. However, it is worth observing
that CNNs represented a significant breakthrough in the advancement
of brain image segmentation. Their effectiveness is based on multiple
convolutional and down-sampling layers that extract image features at
different scales. The well-known and currently very popular U-Net84

architecture and 3DCNN solutions85–87 allowed us to achieve cutting-
edge results in many brain structure segmentation competitions.88

As reported in Table VI, AI methods were used preoperatively
for radiologic segmentation, as previously reported in other
reviews.1,29 Segmentation of the anatomical structure is important for
the diagnosis and treatment of many neurological disorders.89 Yepes-
Calderon et al.90 presented a segmentation strategy for the cerebral
ventricular volume, based on an algorithm that uses four features
extracted from the medical images to create a statistical estimator
capable of determining ventricular volume. When compared with
manual segmentation, the correlation was 94% and holds promise for
even better accuracy by incorporating the unlimited data available.
Cherukuri et al.91 used a learning approach that treats segmentation as
supervised classification at the pixel level. The proposed algorithm is
computationally less burdensome and exhibits a graceful degradation
against a number of training samples.

Tumor segmentation is used for neurosurgical planning to
extract the three-dimensional shape from an MRI scan and its rela-
tionship with the surrounding anatomy. Thillaikkarasi and
Saravanan92 presented a novel DL algorithm (kernel based CNN) with
the M-SVM to segment the tumor automatically and efficiently.
Experimental results of the proposed method can show that the pre-
sented technique can executes brain tumor segmentation accurately
reaching almost 84% in evaluation with existing algorithms. Sharma
and Rattan93 proposed a method of segmentation based on a statistical
model called the Hidden Markov Model (HMM). The results obtained
from parametric analysis show that this algorithm has performed bet-
ter than the technique of Support Vector Regression (SVR) for brain
cancer segmentation, in terms of PSNR, MSE, Fault Rate Dust
Detection (FRDD), and accuracy. Pushpa and Louies94 presented a
SVM algorithm to segment the tumor. The proposed method obtained
a better accuracy in classifying the malignant tumor (accuracy of 99%)
compared to the other existing systems. Laukamp et al.95 used a multi-
parametric DL model on routine MRI data in automated detection
and segmentation of meningiomas in comparison to manual segmen-
tation. The DL model yielded accurate automated detection and seg-
mentation of meningioma tissue. Chen et al.96 adopted Random
Forest-based feature selection methods to select the most significant
features. They developed a reliable MRI-based radiomics approach to
perform pathological and molecular diagnosis. Soltaninejad et al.97

suggested a novel 3D supervoxel based learning method for segmenta-
tion of the tumor. The method provides a close match to expert delin-
eation across all tumor grades, leading to a faster and more
reproducible method of brain tumor detection and delineation to aid
patient management images. The minimum size for supervoxels
regarding its parameters and image characteristics cause limitations in
segmenting very small volumes, which can be, however, solved by fur-
ther postprocessing stages. Sengupta et al.98 presented a semiautomatic
method for segmentation between nonenhancing tumor and vasogenic
edema, based on an SVM classifier trained on an alternative ground
truth to a radiologist’s manual delineation of a tumor. The proposed
methodology may prove to be a useful tool for pre- and postoperative
evaluation of glioma patients. Rundo et al.99 implemented a novel fully
automatic method for necrosis extraction, using the Fuzzy C-Means
algorithm, after the gross tumor volume segmentation. This unsuper-
vised ML technique detects and delineates the necrotic regions in also
heterogeneous cancers. Perkuhn et al.100 evaluate a DL-based, auto-
matic glioblastoma tumor segmentation. The proposed approach for
automatic segmentation of this kind of tumor proved to be robust on
routine clinical processes. In addition, it showed on all tumor com-
partments a high automatic detection rate and a high accuracy, com-
parable to inter-related variability, even if the requirement of all four
MR input modalities may limit its applicability. Liu et al.101 combined
CNN features and SVM classifier for the segmentation task, joining
the capability of the SVM for classification while avoiding the problem
of extracting handcrafted features. Experiments demonstrate that the
cascaded CNN method achieves a good tumor segmentation result
with a high DSI of 77.03%. However, automatically extracted features
may limit the explainability of the model. Fabelo et al.102 obtained the
segmentation map via unsupervised clustering employing a
Hierarchical K-Means algorithm. It demonstrated that the use of this
method can improve the outcomes of the undergoing patient, assisting
neurosurgeons in the resection of the brain tumor. Binaghi et al.103

suggested a fully automatic procedure based on the allied use of the
Graph Cut and SVM. Experimental results, obtained by processing in-
house collected data, prove that the method is robust and oriented to
the use in clinical practice.

Regarding brain lesion segmentation is used for the diagnosis
and follow-up treatment. Sundaresan et al.104 used LOCally Adaptive
Threshold Estimation (LOCATE), a supervised method for determin-
ing optimal local thresholds to apply to the estimated lesion probabil-
ity map, as an alternative option to global thresholding. It allowed us
to detect more deep lesions and provided better segmentation of peri-
ventricular lesion boundaries. Praveen et al.105 showed that a deep
architecture is using SAE layers. The experimental results showed that
the proposed approach significantly outperforms the state-of-the-art
methods in terms of precision, DC, and recall.

Segmentation is also used for diagnosis and follow-up treatment
of brain injury. Remedios et al.106 used three neural networks to con-
vergence on a CT brain hematoma segmentation task. Resultant lesion
masks with the multi-site model attain an average DSI of 0.64, and the
automatically segmented hematoma volumes are correlated with those
done manually with a Pearson Correlated Coefficient (PCC) of 0.87,
corresponding to an 8% and 5% improvement, respectively, over the
single-site model counterparts. Nevertheless, the improvement in per-
formance relies on a significant amount of time at training and infer-
ence times, which may limit its practical application.
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TABLE VI. Morphological information: details on the clinical aim, pathology/anatomical area, type of data, dataset, AI method, benchmark measure, and results.

First author (year of
publication) Clinical aim

Pathology/
anatomical area Type of data Dataset AI method(s)

Benchmark
measure Results

Morpholoical information
Yepes (2018)90 Determine the quantity

of CSF

Neurological
disorders

MRI-T1WI 44 SVM Acc 94%

Cherukuri (2018)91 Determine the quantity

of CSF

Neurological
disorders

CT 15 CNN Time 0.003 s

Thillaikkarasi (2019)92 Early detection of
brain tumor

Brain tumor MRI 40 CNN
SVM

Acc
Error
Time

98%
15%
15ms

Sharma (2019)93 Simulating tissue
deformation and locat-
ing cancerous nodes

Brain tumor MRI-T1WI 6 HMM Acc
PSNR
MSE
FRDD

88%
21

985mm
72%

Pushpa (2019)94 Detect and classify the
tumor type

Brain tumor MRI 60 SVM Acc 99%

Rundo (2018)99 Necrosis extraction of
brain tumor

Brain tumor MRI 32 Fuzzy C-Means DSI
MAD

95.93%
0.22 pixel

Laukamp (2019)95 Volumetric assessment
of meningiomas

Brain tumor MRI-T1WI
MRI-T2WI

56 CNN
FCNN

DSI 81%

Chen (2019)96 Detect mutations in
aniopharyngioma

patients

Brain tumor MRI-T1WI 44 RF AUC
Acc
Sp
Se

89%
86%
85%

Soltanine (2018)97 Segmentation of brain
tumor

Brain tumor MRI
MRI-DTI

30 RF DSI
Se

Error

89%
96%
2%

Sengupta (2018)98 Segmentation of brain
tumor

Brain tumor MRI-T1WI
MRI-T2WI

9 SVM Error 8.2%

Perkuhn (2018)100 Segmentation of brain
tumor

Brain tumor MRI-T1WI
MRI-T2WI
MRI-FLAIR

64 CNN
FCNN

DSI 86%

Liu (2018)101 Segmentation of brain
tumor

Brain tumor MRI … CNN
SVM

DSI
Acc

77.03%
94.85%

Fabelo (2018)102 Segmentation of brain
tumor

Brain tumor HSI 5 K-means Acc
Se
Se

99%
96%
96%

Binaghi (2019)103 Segmentation of
meningiomas

Brain tumor MRI-T1WI
MRI-T2WI

15 SVM JD
DSI
Error

81%
88.9%
21.74%

Sundaresan (2019)104 Lesion segmentation Brain lesions MRI-T1WI
MRI-T2WI
MRI-FLAIR

60 Supervised
learning
LOCATE

DSI 70%

Praveen (2018)105 Segmentation of ische-
mic stroke lesion

Brain lesion MRI 28 SAE
SVM

DSI
Sp
Acc
Se

94.3%
96.8%
90.4%
92.4%

Remedios (2019)106 Segmentation of brain
injury

Brain injury CT … 3 ANN DSI
PCC

64% 87%
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Segmentation is also used to evaluate deep surgical planning tar-
gets for DBS. Park et al.107 developed DL semantic segmentation-
based DBS targeting. A Fully Convolutional Neural Network (FCNN)
was used to ensure margin identification by semantic segmentation,
proving that the accuracy of DL-based semantic segmentation may
surpass that of previous methods.

Segmentation is used to evaluate deep surgical planning targets
for epilepsy treatment. Hadar et al.108 implemented automated seg-
mentation through the Corrective Learning Network (CLNet) method.
It demonstrates the clinical utility of automated segmentation in the
Temporal Lobe Epilepsy (TLE) MR imaging pipeline prior to surgical
resection and suggests that further investigation into CLNet-assisted
MRI reading could improve clinical outcomes.

Segmentation is used to assess cerebrovascular reconstruction. Li
et al.109 implemented a novel intensity and shape-based Markov statis-
tical modeling for complete cerebrovascular segmentation. To regular-
ize the individual data processes, the Markov regularization parameter
is automatically estimated by using a ML algorithm. This method
obtained satisfying results in visual and quantitative evaluation. The
proposed method is capable of accurate cerebrovascular segmentation.
Lee et al.110 suggested a fully automated segmentation via unsuper-
vised classification with fuzzy c-means clustering to analyze the
Arteriovenous Malformation (AVM) nidus on T2-weighted. The auto-
mated segmentation algorithm was able to achieve classification of the
AVM nidus components with relative accuracy.

Human connectome research has attained growing interest in neu-
roscience.18,111 Computational methods, particularly graph theory-
based methods, have recently played an important role in understanding
the architecture of brain connectivity because of their notable ability to
describe complex brain systems.22 Although the graph theoretical
approach can generally be applied to either functional or structural con-
nectivity patterns, to date, most articles have concentrated on resting-
state functional connectivity. In this context, there has been an increas-
ing trend to identify biological markers for the characterization of vari-
ous brain disorders, including either cognitive impairments or
pathological alterations.30 Connectivity features alone offer promising
diagnostic biomarkers, even if several studies apply feature selection and
ranking techniques in order to reduce their complexity. Graph-theory

derived metrics and high-level network organization have also been
considered as valuable biomarkers and widely used in several studies.111

Concerning the classification of brain disorders, during the last
decade, several conventional studies focus on binary classification
tasks.112–126 They primarily seek to discriminate between patients and
Healthy Control (HC), as well as separating patients into different
sub-groups according to the different stages of brain disorder progres-
sion. However, recent studies have also drawn their attention to multi-
class classification problems.

Table VII presents a summary of recent studies concerning brain
network-based classification tasks. Among various brain disease and
disorders, Alzheimer’s disease, autism, and schizophrenia have been
the most studied in recent years.127–137 However, several studies are
also focused on Parkinson’s disease, Multiple Sclerosis, and Tourette
Syndrome, among others.138–148

Among ML approaches based on classical ML algorithms, a wide
range of classifiers has been applied in the classification of brain disor-
ders. The SVM is so far the most popular method, as also observed in
earlier reviews.18,30

Many studies are related to schizophrenia, bipolar disorder,
autism spectrum disorder, attention, AD, and MCI. Kazeminejad and
Sotero,149 for example, used graph theoretical metrics of fMRI-based
functional connectivity of patients with autism and HC, to inform a
SVM. They achieved state-of-the-art results (accuracy 96%), also
observing that measures of centrality provide the highest contribution.
Lei et al.150 analyzed topological properties of patients with schizo-
phrenia, comparing them with HC. Connectome-wide connectivity
allowed single subject classification of patients and HC (average accu-
racy 81%) better than both whole-brain images and graph-based met-
rics. However, the SVM is also widely used in other brain connectivity
analysis applications. Sacc�a et al.32 used functional connectivity to
train the SVM, along with various ML algorithms, to distinguish MS
patients and HC. Feature selection was performed to identify the most
important variables. The SVM and RF achieved the best results
(85.7%). In Ref. 151, the SVM was used to classify patients with
Tourette syndrome. They observed successful performance in children
and adults separately, which, however, did not generalize across age
groups, suggesting that connectivity characteristics are age specific.

TABLE VI. (Continued.)

First author (year of
publication) Clinical aim

Pathology/
anatomical area Type of data Dataset AI method(s)

Benchmark
measure Results

Park (2019)107 Segmentation for DBS Parkinson’s
disease

MRI-T2WI 102 FCNN DSI
Acc
JD

90.2%
90.4%
81.3%

Hadar (2018)108 Hippocampal segmen-
tation in temporal lobe

epilepsy

Epilepsy MRI-T1WI 47 CLNet DSI 85%

Li (2020)109 Cerebrovascular
segmentation

Cerebral artery MRI-T1WI 109 HMM DSI 93%

Lee (2019)110 AVM identification
and quantification

Cerebral artery MRI-T2WI 39 Fuzzy C-Means DSI
Se
Sp

79.5%
73.5%
85.5%

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 4, 041503 (2020); doi: 10.1063/5.0011697 4, 041503-18

VC Author(s) 2020

 01 July 2024 13:57:03

https://scitation.org/journal/apb


TABLE VII. Connectivity information: details on the clinical aim, pathology/anatomical area, type of data, dataset, AI method, benchmark measure, and results.

First author (year of
publication)

Connectivity information Clinical aim
Pathology/

anatomical area Type of data Dataset
AI

method(s)
Benchmark
measure Results

Nielsen (2020)151 Tourette syndome
analysis

Neurological
disease

FC 202 SVM Acc 71%

Hirshfeld-Becker (2019)114 Depression diagnosis Neurological
disease

FC
(longitudinal)

68 SVM Acc
Se
Sp

92%
90%
93%

Liu (2019)115 Depression diagnosis Neurological
disease

FC 85 LR Acc
Se
Sp

AUC

77%
84%
72%
87%

Shao (2019)116 Bipolar disorder
classification

Neurological
disease

FC
(longitudinal)

200 SVM Acc
Se
Sp

78.13%
82%
75%

DSouza (2019)117 HiV-associated disor-
der analysis

Neurological
disease

FC 29 AdaBoost Acc
AUC

79%
84%

Ju (2019)154 AD diagnosis Alzheimer’s disease FC 170 DNN Acc
Se
Sp

AUC

86.47%
92%
81%
91%

Li (2019)76 AD diagnosis Alzheimer’s disease FC 26 292 SVM Acc
Se
Sp

AUC

84.6%
92%
79%
0.80

Li (2019)118 MCI diagnosis Alzheimer’s disease FC 73 DNN Acc
Se
Sp

80.82%
81%
81%

Song (2019)132 AD diagnosis Alzheimer’s disease FC 30 KNN Acc
Se
Sp

AUC

96%
94%
1%
98%

Wada (2019)155 AD vs dementia
classification

Alzheimer’s disease FC 48 CNN Acc
Pr
Rec

73%
78%
73%

Qureshi (2019)157 AD progression
analysis

Alzheimer’s disease FC 133 CNN Acc
Sp
Se

92%
95%
70%

Nguyen (2019)34 Dementia diagnosis Alzheimer’s disease FC 95 ELM Acc
Se
Sp
PPV
NPV

89.92%
87%
84%
94%

87.40%
Peraza (2019)131 AD diagnosis Alzheimer’s disease SC 78 SVM Acc

Se
Sp

AUC

89.07%
79%
99%
78%

Kam (2019)35 MCI diagnosis Alzheimer’s disease FC 49 CNN Acc
Se
Sp
PPV
NPV

73.85%
74%
74%

74.38%
73.79%
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TABLE VII. (Continued.)

First author (year of
publication)

Connectivity information Clinical aim
Pathology/

anatomical area Type of data Dataset
AI

method(s)
Benchmark
measure Results

Wang (2019)119 AD diagnosis Alzheimer’s disease SC
(multimodal)

211 LR Acc1

Acc1

Acc1

97%
83%
97%

Azarmi (2019)120 MS diagnosis MS FC 20 SVM Acc
Se
Sp

95%
0.88%
100%

Sacca (2019)32 MS diagnosis MS FC 37 SVM RF Acc
Se
Sp
PPV
NPV

85.7%
100%
67%
60%
100%

Lisowska (2019)121 Dementia diagnosis Dementia SC 84 SVM Acc
Se
Sp

AUC

76.88%
67%
78%
76%

Wang (2019)122 Autism diagnosis Autism spectrum
disorder

FC 1112 Sparse
MVTC

Acc
Se
Sp

AUC

73%
79%
64%
72%

Kazeminejad (2019)149 Autism classification Autism spectrum
disorder

FC 816 SVM Acc
Se
Sp

95%
97%
95%

Payabvash (2019)31 Autism diagnosis Autism spectrum
disorder

SC 47 RF Acc
Sp
PPV

75.3%
97%
81.5%

Yamagata (2019)123 Autism diagnosis Autism spectrum
disorder

FC 60 LR Acc
AUC

75%
78%

Khosla (2019)158 Autism diagnosis Autism spectrum
disorder

FC 387
389
213
163

CNN Acc
AUC

100%
77%

Song (2019)124 Autism diagnosis Autism spectrum
disorder

FC 39 LDA Acc
Pr
Rec

82.08%
81%
81%

Dekhil (2019)125 Autism diagnosis Autism spectrum
disorder

FC 185 RF Acc
Se
Sp

AUC

81%
85%
79%
0.82

Wang (2019)126 Autism diagnosis Autism spectrum
disorder

FC 531 SVM Acc
Se
Sp

90.60%
91%
91%

Kalmady (2019)153 Schizophrenia
diagnosis

Schizophrenia FC 174 Ensemble
Learner

Acc
Se
Sp
Pr

87%
80%
93%
92%

Lei (2019)150 Schizophrenia
diagnosis

Schizophrenia FC 747 SVM Acc 81.74%

Li (2019)127 Schizophrenia Schizophrenia FC 148 LDA Acc 76.34%
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TABLE VII. (Continued.)

First author (year of
publication)

Connectivity information Clinical aim
Pathology/

anatomical area Type of data Dataset
AI

method(s)
Benchmark
measure Results

diagnosis
Qureshi (2019)156 Schizophrenia

diagnosis
Schizophrenia FC 144 CNN Acc

AUC
98.09%
99%

Phang (2019)128 Schizophrenia
diagnosis

Schizophrenia FC
(multimodal)

84 CNN Acc
Se
Sp
Pr

90.37%
91% 90%
92%

Deng (2019)129 Schizophrenia
diagnosis

Schizophrenia SC 125 RF Acc
Se
Sp

AUC

71%
67%
75%
79%

Zhao (2019)130 Schizophrenia
diagnosis

Schizophrenia FC SC 283 SVM Acc
Se
Sp

91.75%
91%
93%

Rangaprakash (2019)139 Neurotrauma analysis Brain injury FC 87 SVM Acc 81.4%
Rubbert (2019)134 Parkinson’s disease

diagnosis
Parkinson’s disease FC 89 LR Acc

Sp
Se

76.2%
72%
81%

Baggio (2019)135 Parkinson’s disease
diagnosis

Parkinson’s disease FC 151 SVM Acc
Se
Sp

77.17%
80%
77%

Pena-Nogales (2019)136 Parkinson’s disease
progression analysis

Parkinson’s disease SC 51 LR Acc
Se
Sp

AUC

84%
91%
77%
89%

Bharath (2019)137 Epilepsy diagnosis Epilepsy FC 132 SVM Acc
Se
Sp

97.5%
100%
94%

Nielsen (2019)140 Brain maturity
prediction

Other FC 122 SVM
Multivariate
Analysis

IGV 57%

Zhigalov (2019)141 Attentional state
classification

Other FC 24 SVM Acc1

Acc2

Acc3

62%
62%
55%

Brauchli (2019)142 Absolute pitch
identification

Other FC 100 SVM Acc 71.75%

Fede (2019)143 Alcohol use severity
classification

Other SC FC 59 24 Linear
Regression

IGV -

Weis (2019)152 Gender classification Other FC 434 410 941 SVM Acc 70.33%
Bidelman (2019)144 Age-related hearing

loss prediction
Other FC 32 SVM Acc

AUC
DSC

85.7%
88%
86%

Wetherill (2019)145 Nicotine use disorder
identification

Other FC 216 SVM Acc
AUC

88.1%
93%

Chen (2019)33 Fatigue identification Other FC 16 SVM Acc
Pr
Se
FAR

94.4%
94%
95%
5.7%
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Weis et al.152 employed the SVM to assess how accurately participant’s
sex can be classified based on spatially specific resting state brain
connectivity.

Ensemble methods, such as RF or boosted trees, are also a more
popular choice in most applications since they yield much better pre-
diction performance. In Ref. 31, the authors used tract-based connec-
tivity metrics from structural connectome to classify children with
Autistic Spectrum Disorder (ASD). A high level of accuracy was
achieved (75%), also observing reduced density of connection edges in
the posterior white matter tracts of children with ASD. In Ref. 153,
functional connectivity, along with regional activities over a wide range
of different parcellation schemes, was used as input for an ensemble
ML algorithm. They outperformed earlier ML models built for diag-
nosing schizophrenia using rs-fMRI.

DL methods have attracted increasing interest in various areas and
have also been applied in the classification of brain disorders. Ju et al.154

used DL with a functional brain network and clinical relevant text infor-
mation to make early diagnosis of AD. Specifically, a targeted autoen-
coder is built to distinguish HC from MCI. The study revealed
discriminative brain network features and provided a reliable classifier
for AD detection (Accuracy 86%, AUC 0.91). In Ref. 155, a six layer
CNNwas trained using structural connectivity to classify among patients
with AD, Dementia, and HC. A 3D-CNN architecture was used in Ref.
156 for the automated discrimination of schizophrenia based on 3D-
ICA based functional connectivity networks, achieving promising results
(Accuracy 98%, AUC 0.99). A similar approach was proposed in
Ref. 157 for AD detection. A 3D-CNN approach was also used in the
study by Khosla et al.158 for autism classification. An ensemble learning
strategy to combine the predictions from models trained on connectivity
data extracted using different parcellation schemas was proposed. They
observed how ensemble learning with stochastic parcellations outper-
forms atlas-based models (Accuracy: 72%, AUC: 0.77).

As a final remark, it is worth mentioning the role that graph-
based DL models have been playing in recent years. These specific
deep convolutional neural network architectures, designed for network

structures (such as connectomes), feature meaningful interpretations
in terms of network topology and have been successfully experimented
in different domains, such as prediction of neurodevelopmental out-
comes in preterm infants,159 AD progression,160 and Multiple
Sclerosis classification,161 among others. These methods paved the
way for more interpretable operations of structured data.

Thus, given these latest results, both classical ML algorithms and
DL techniques are effective for diagnosis; notably, high performances
can be reached even in the presence of limited datasets. In addition,
hybrid approaches also provided remarkable results and can represent
an interesting solution, as they can combine the advantages of each
group of methods and try to compensate weaknesses of methods with
strength points from the other methods.

B. Surgical treatment

18 studies considered AI in surgical treatment. This includes sur-
gical candidate selection, trajectory planning, and target definition
with intra-operative segmentation of anatomical structures and locali-
zation of stimulation zones for Parkinson’s disease, epilepsy, and gen-
eral neurosurgery. CT, MRI, EHR, IUS, and HSI data were used as
input features for the development of the prediction algorithm. Results
of the distributions for pathology, AI methods, and types of data for
surgical treatment are reported in Fig. 6.

As reported in Table VIII, AI was also useful to identify patients
who are potentially eligible for surgery as reported in the review of
Senders et al.1 Wissel et al.162 validated a NLP application that uses pro-
vider notes to assign epilepsy surgery candidacy scores. Currently, NLP
represents the state-of-the-art approach for surgical candidate selection,
with a specificity of 80% and a sensitivity of 77%. NLP is an AI method
for analyzing the unstructured text; an electronic health record-integrated
NLP application can accurately assign surgical candidacy scores to
patients in a clinical setting. The application learned to assign weights to
key words and phrases without needing to incorporate a priori domain
knowledge. Anyway, although this method may help find patients faster
or more comprehensively, its direct effect on surgical outcomes is

TABLE VII. (Continued.)

First author (year of
publication)

Connectivity information Clinical aim
Pathology/

anatomical area Type of data Dataset
AI

method(s)
Benchmark
measure Results

Al-Zubaidi (2019)146 Metabolic state
classification

Other FC 24 SVM Acc
Se
Sp

81%
89%
83%

Shen (2019)133 Chronic low back pain
analysis

Other FC 160 37 SVM Acc1

Se1

Sp1

Acc2

Se2

Sp2

79.3%
83%
74%
67%
72%

Chriskos (2020)147 Sleep state
classification

Other FC 23 CNN Acc Rec 99.85%
100%

Feng (2019)148 Prediction of disposi-
tional worry

Other SC 59 LR RMSE p 13.65%
<0.005
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unknown. Future work should include evaluating the effect of alerting
physicians of patients’ surgical candidacy scores. As reported in Table IX,
AI methods were used for target definition using intra-operative segmen-
tation and localization of stimulation zones within the brain.

1. Intra-operative segmentation

In intra-operative segmentation for general neurosurgery, Nitsch
et al.163 presented a robust and fully automatic neural-network-based
segmentation of central structures of the brain on B-mode IUS. In
Intra-operative segmentation for DBS, Valsky et al.164,165 showed the
feasibility of real-time ML classification of striato-pallidal borders and
Subthalamic Nucleus (STN) to assist neurosurgeons during DBS sur-
gery. ML algorithms enable real-time Globus Pallidus (GP) and STN
navigation systems to potentially shorten the duration of electrophysi-
ological mapping of borders, while ensuring correct border detection.
Thus, the ANN represents the state-of-the-art approach for intra-
operative segmentation, reaching accuracies of 88%. Compared to a
previous method for which a Random Forest classifier was trained
with handcrafted features, the Dice coefficient could be increased by
0.14 and the Hausdorff distance is reduced by 7mm.

2. Localization of stimulation zones within the brain

AI methods were also used for brain lesion and Parkinson patients
to localize the stimulation zone and estimate the volume of activated tis-
sue as previously reported in other reviews.1,166 Regarding brain lesion
stimulation zones, Ieong et al.167 presented a supervised ML method to
obtain associations between EEG and fNIRS modalities to improve pre-
cision and localization in assessing neurovascular signals in the prefron-
tal cortex in opiate addiction patients. Regarding Parkinson’s disease
stimulation zone, Wang et al.168 described a functional localization
method in the brain. A cubic SVM was used to train the spike pattern
recognition model for functional localization with an accuracy of 10% in
normal monkey, and the evaluation of the trained model demonstrated
a reasonably excellent recognition accuracy of 99.5%. Weighted KNNs
showed a better performance of accuracy (94.5%) of spike pattern recog-
nition for functional localization than the cubic SVM. These two
works169,170 demonstrated that the 7T-ML method is highly consistent
with microelectrode-recording data. This method provides a reliable and
accurate patient-specific prediction for targeting the STN. Khosravi
et al.171 suggested an unsupervised ML technique to localize the STN
during DBS surgery. Bermudez et al.172 used a patch-based convolu-
tional neural network to classify a stimulation coordinate as having a
positive reduction in symptoms during surgery.

Regarding epilepsy stimulation zones, Cimbalnik et al.173 applied
a SVM model for accurate localization of the epileptogenic tissue. The
tissue under the iEEG electrodes, classified as epileptogenic, was
removed in 17/18 excellent outcome patients and was not entirely
resected in 8/10 poor outcome patients. The overall best result was
achieved in a subset of 9 excellent outcome patients with the area
under the ROC¼ 0.95. Bharath et al.137 proposed a SVM to identify
and validate the possible existence of the resting state. This approach
could classify individuals with epilepsy with 97.5% accuracy, 100%
sensitivity, and 94.4% specificity. Thus, given the last results, the SVM
represents the state-of-the-art approach for localization of stimulation
zones within the brain. In this context, SVMmodels combine multiple
features from rsfMRI epilepsy networks to localize epileptic zones.

FIG. 6. Distribution of general applications for surgical treatment, in the brain care
literature, related to target definition and trajectory definition. From top: pathology,
AI method and type of data.
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Interestingly, looking at these results, one can think that other brain
networks could also carry disease-sensitive information about epilepsy,
as previously illustrated for diagnosis.

As reported in Table X, AI methods were used for the preopera-
tive trajectory definition as reported in the review of Senders et al.29 AI
in general neurosurgery can be used for assisting the surgeon preoper-
atively for the definition of an optimal trajectory. Briefly, usually, the

algorithm aims are to minimize the intra-cerebral catheter length and
drilling angle from orthogonal to skull, while maximizing the distance
from critical structures. Villanueva-Naquid et al.174 proposed that the
use of a GA drastically reduces the computational cost. Liu et al.175

used a vector-model-supported optimization for brain tumor surgery.
With this approach, there was a significant reduction in the median
planning time, a 40% reduction from 3.7 to 2.2 h. Segato et al.176

TABLE VIII. Surgical candidate selection: details on the clinical aim, pathology/anatomical area, type of data, dataset, AI method, benchmark measure, and results.

First author (year of publication) Clinical aim
Pathology/anatomical

area
Type of
data Dataset

AI
method(s)

Benchmark
measure Results

Surgical candidate selection
Wissel (2019)162 Candidate selection Epilepsy EHR 4211 NLP

SVM
AUC
Se
Sp

80%
77%

TABLE IX. Target definition: details on the clinical aim, pathology/anatomical area, type of data, dataset, AI method, benchmark measure, and results.

First author
(year of
publication) Clinical aim

Pathology/
anatomical area

Type of
data Dataset AI method(s)

Benchmark
measure

Results
intra-operative
segmentation

Intra-operative Segmentation
Nitsch (2019)163 Segmentation of

central ultrasound
images

Neurosurgery IUS MRI 18 ANN DSI
HDD

88%
5.21mm

Valsky (2019)164 Segmentation of
striato borders

Parkinson’s disease MER 42 HMM … …

Valisky
(2017)165

Discrimination
between the STN

and SN

Parkinson’s disease CT MRI 46 SVM pFDR
Time

<0.05%
–98%

Localization of epileptic zones within the brain
Ieong (2019)167 localization of

lesion due to opiate
Brain lesion EEG fNIRS 19 SVM

GBM
ANN

PCC 55%

Wang (2019)168 Functional
localization

Parkinson’s disease MER 1 K-means
SVM
KNN

Acc 96%

Shamir
(2019)169

Visualize STN Parkinson’s disease MRI 16 RF Acc 93%

Kim (2019)170 Visualize STN Parkinson’s disease MRI 80 RF CMD
MSD
DSI
Acc

1.25mm
0.57mm
64%
89%

Khosravi
(2019)171

Visualize STN Parkinson’s disease MER 50 K-means Acc 80%

Bermudez
(2019)172

Localization of the
optimal stimulation

zone

Parkinson’s disease MRI 187 CNN AUC 67%

Cimbalnik
(2019)173

Localization of epi-
leptic foci

Epilepsy EEG 9 SVM AUC <95%

Bharath
(2019)137

Localization epi-
lepsy network

Epilepsy MRI-T1WI 42 SVM Acc
Sp
Se

97.5%
94.4%
100%
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presented a GA that drastically reduces the number of trajectories to
analyze, speeding up the preoperative planning procedure for DBS in
Parkinson patients. In three works,165,177,178 two ML approaches, RF
and linear regression, were investigated to predict composite ablation
scores and determine entry and target point combinations that maxi-
mize ablation for Laser Interstitial Thermal Therapy (LITT). RF and
linear regression predictions had a high correlation with the calculated
values in the test set for both methods.

C. Intra-operative assistance

As reported in Table XI, two studies considered AI in intra-
operative assistance. This includes modeling of tissue deformation for
brain tumor. MRI data ware used as input features for the develop-
ment of the prediction algorithm. Results of the distributions for
pathology, AI methods, and type of data for diagnosis are reported in
Fig. 7.

In modeling the tissue deformation for brain tumor surgery,
Sharma et al.93,179 developed a ML approach to detect and model

tissue deformation with classification of soft and hard tissues so that
the tissues having the risk of future problems can also be recognized.
Tonutti et al.180 presented a real-time soft tissue deformation compu-
tation method. A brain tumor was used as the subject of the deforma-
tion model. Once trained, the models can predict the deformation of
the tumor in real-time with relative positional errors below 0.3mm.
The SVRmodels perform better than the ANNs, with positional errors
for SVR models reaching under 0.2mm. Thus, given the last results,
SVR represents the state-of-the-art approach for modeling the tissue
deformation. SVR is a nonparametric technique to perform regression
using support vectors through supervised learning. It is based on the
kernel machine class of algorithms that uses a similarity function
between pairs of data. The goal of the training is to find a function that
is as flat as possible, yet deviating from the target data by not more
than a chosen value for each point in the training set. Nevertheless,
although this method is able to model the tissue deformation using
data based on pre-operative anatomical geometry, this means that the
deformation model cannot be updated once topological changes occur

TABLE X. Trajectory definition: details on the clinical aim, pathology/anatomical area, type of data, dataset, AI method, benchmark measure, and results.

First author
(year of publication) Clinical aim

Pathology/
anatomical

area Type of data Dataset AI method(s)
Benchmark
measure Results

Trajectory definition
Villanueva (2018)174 Risk assessment for trajec-

tory planning
Neurosurgery CT MRI 1 GA Risk

Time
2347
–98%

Liu (2017)175 Planning stereotactic
radiotherapy

Brain tumor CT MRI 46 SVM pFDR
Time

<0.05%
–98%

Valisky (2017)165 Discrimination between
the STN and SN

Parkinson’s
disease

CT MRI 46 SVM pFDR
Time

<0.05%
–98%

Segato (2019)176 Curvilinear DBS Parkinson’s
disease

MRI-T1WI DTI CT 10 GA MSD
mSD

þ145%
þ25%

Li (2019)177 Computer-assisted
planning

Epilepsy MRI-T1WI CT 10 RF
Linear regression

PCC 70%

Vakharia (2019)178 Trajectory planning for
lasers

Epilepsy MRI-T1WI 95 RF
Linear regression

Risk
Length
Angle
MSD

1.1%
93.5mm
28.8�

6.7mm

TABLE XI. Intra-operative assistance: details on the clinical aim, pathology/anatomical area, type of data, dataset, AI method, benchmark measure, and results.

First author (year of publication) Clinical aim

Pathology/
anatomical

area
Type of
data Dataset

AI
method(s)

Benchmark
measure Results

Modeling of tissue deformation
Sharma (2019)179 Modeling of tissue

deformation
Brain tumor MRI 4 SVR PSNR

MSE
FRDD
Acc

17.31%
1240mm
54% 80%

Tonutti (2019)180 Modeling of tissue
deformation

Brain tumor MRI 1 ANN
SVR

MSE
Error
Time

0.11mm2

0.3mm
3.1 s
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during the intervention. This is an issue shared by the majority of
computational methods in surgery: high accuracy can only be reached
if the exact conformation of the anatomy is known at any given time.
The proposed method, however, can be expanded to simulate a wide

range of surgical scenarios and actions also using intra-operative imag-
ing and knowledge of the preoperative plan.

D. Postoperative assessment

As reported in Table XII, nine studies considered AI in postoper-
ative assessment. This includes prediction of postoperative patient out-
comes for brain lesion, brain injury, brain tumor, neurological
disorder, and general neurosurgery. CT, MRI, and EHR data were
used as input features for the development of the prediction algorithm.
Results of the distributions for pathology, AI methods, and type of
data for surgical treatment are reported in Fig. 8. DL techniques can
be used for testing the informativeness of neurosurgical operative
reports for predicting the duration of the postoperative stay in a hospi-
tal.29 Shabo et al.181 applied a RNN to the word-embedded texts in
EHR. Results prove the potential utility of narrative medical texts as a
substrate for decision support technologies in neurosurgery. In two
works,182,183 six and seven ML algorithms, respectively, were applied
to construct Transsphenoidal Surgery (TSS) response prediction mod-
els. The ML models showed good discrimination ability and calibra-
tion, with the highest levels of accuracy and specificity. The presented
models were significantly better than some conventional models.

AI can be applied to investigate risk factors and predicting com-
plications in treatments used for the treatment of neurological disor-
ders such as DBS and Dilated Cardiomyopathy (DCM). A work of
Farrokhi et al.184 reports results obtained via supervised learning algo-
rithms achieving high discrimination performance when predicting
any complication. Merali et al.185 applied a supervised ML approach
to develop a classification model to predict the individual patient out-
come after surgery for DCM. The best performing predictive model
used a RF structure and had an average AUC of 0.70, a classification
accuracy of 77%, and a sensitivity of 78% when evaluated on a testing
cohort that was not used for model training.

AI methods can be used for predicting the inpatient Length of
Stay (LOS) after the brain tumor surgery overall survival time.
Muhlestein et al.186 implemented an ML ensemble model to pre-
dict LOS with good performance on internal and external valida-
tion, which yields clinical insights that may potentially improve
patient outcomes. Nie et al.187 presented a multi-channel architec-
ture of a 3D CNN for DL and a SVM to generate the prediction of
the overall survival time. The experimental results demonstrate
that this multi-model, multi-channel deep survival prediction
framework achieves an accuracy of 90.66%, outperforming all the
competing methods.

AI can be applied to investigate risk factors and predicting com-
plications in treatments used for the treatment of brain lesion such as
ischemic stroke. Hilbert et al.188 proposed a DL approach for predict-
ing outcomes of acute ischemic stroke patients using CT angiography
images. The model outperformed the models using traditional radio-
logical image biomarkers in three out of four cross-validation folds for
functional outcomes (average AUC of 0.71).

AI can also be applied to investigate mortality prediction after
traumatic brain injury. Raj et al.189 used ML-based logistic regression
modeling to create two algorithms able to discriminate between survi-
vors and nonsurvivors with accuracies up to 81% and 84%.

Thus, the CNN represents the state-of-the-art approach for pre-
diction of the postoperative patient outcome with an accuracy of
90.66%, outperforming all the competing methods. With a CNN, a

FIG. 7. Distribution of general applications for intra-operative assistance, in the
brain care literature, related to intra-operative modelling of tissue deformation. From
top: pathology, AI method and type of data.
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hierarchy of appearance features can be synthesized from the low level
to the high level in a layer-by-layer manner. The mapping yields a
highly sophisticated feature representation for the neuroimages, which
is the key advantage of the CNN compared to other machine learning
methods. The CNN has shown superior performance in numerous
visual object recognition and image classification studies. However,
although this method may help to predict postoperative assessment,
limited clinical information can bring to a weak clinical model in some
cases. To improve the results of this method, it is highly suggested to
include in future works other features such as some from pre-surgical
imaging, treatment ways, patient statuses before and after surgery,
genetic information, and molecular indicators.

VIII. DISCUSSION

AI algorithms have increasingly caught, in recent years, the atten-
tion of many researchers in the neuroscience field. ML, in particular,
has been used for finding ways to increase quality and precision of
diagnosis and peri-operational decision-making, in order to improve
neurosurgical treatments. In this work, a systematic review of recent
applications of AI in brain care was presented. Four main categories
have been found and analyzed both quantitatively and qualitatively,
namely, diagnosis, surgical treatment, intra-operative assistance, and
postoperative assessment.

Concerning diagnosis, CNNmodels are widely adopted. However,
despite DL architectures having been demonstrated to be able to
achieve excellent results, they present several drawbacks that need to be

taken into account. One of the most difficult issues to address is the
large amount of data to minimize overfitting and improve performan-
ces. However, obtaining them might not be trivial. Several works face
this issue by designing proper frameworks that are able to achieve excel-
lent results even using relatively limited amounts of data,78,191 training
from incomplete data,192 and by the adoption of semi-supervised and
unsupervised techniques.190 These algorithms, indeed, remain a black
box in terms of the bases on top of which the predictions are generated
from the input data. For this reason, “explainability” will be a crucial
part of the development of new algorithms and many research studies
follow this direction. To this aim, an interesting alternative is repre-
sented by brain connectivity representation of the human brain. Such a
kind of data allows us to represent the brain using mathematical mod-
els, opening remarkable opportunities to study hidden pathological
alterations outside visible objects in conventional images. High perfor-
mance has been achieved using classical ML and DL models for the
diagnosis and interclass classification of several neurodegenerative dis-
eases. An interesting perspective in this sense can be opened by the use
of novel graph-based DL approaches, including graph neural net-
works.193 Notwithstanding, as pointed out in related studies,8 a major
limitation is still the limited sample size, which, however, has started to
be overcame by the availability of public datasets; it is worth to mention
here The Alzheimer’s Disease Neuroimaging Initiative (ADNI)194 and
The Human Connectome Project.195

Concerning surgical treatment, EHR data can be used to select
candidates potentially eligible for surgery. As previously mentioned,

TABLE XII. Prediction assessment: details on the clinical aim, pathology/anatomical area, type of data, dataset, AI method, benchmark measure, and results.

First author
(year of publication) Clinical aim

Pathology/
anatomical area Type of data Dataset AI method(s)

Benchmark
measure Results

Prediction of postoperative patient outcomes
Shabo (2019)181 Postoperative hospitaliza-

tion prediction
Neurosurgery EHR … RNN MAE 2.8 days

Fan (2019)182 TSS response prediction Neurosurgery EHR … GBDT AUC 81%
Liu (2019)183 CD recurrency prediction Neurosurgery EHR 354 RF AUC 0.78%
Farrokhi (2019)184 DBS outcome prediction Neurological

disorders
EHR 501 GBM AUC

Se
Sp
Acc

…

Merali (2019)185 Postoperative outcome
prediction

Neurological
disorders

EHR 757 KNN
RF
SVM

Logistic regression
ANN

AUC
Acc
Se

70%
77%
78%

Muhlestein (2019)186 Postoperative hospitaliza-
tion prediction

Brain tumor EHR 41222 29 ML methods RMSLE 55%

Nie (2019)187 Survival prediction Brain tumor MRI-T1WI
MRI-DTI

68 CNN SVM Acc 90.66%

Hilbert (2019)188 reperfusion prediction Brain lesion CT 1301 RFNN AUC1

AUC2
71%
65%

Raj (2019)189 Mortality prediction Brain injury CT 472 Logistic regression AUC1

AUC2

Acc

67%–81%
72%–84%
81%–84%
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by Wissel et al.,162 an electronic health record-integrated NLP applica-
tion can accurately assign surgical candidacy scores to patients in a
clinical setting. In surgical planning, brain structure demarcation may
be inaccurate; consequently, the exact detection of the target is

difficult, leading to a sub-optimal planning strategy and inadequate
clinical outcomes. Interesting applications in surgical treatment con-
cerning the target identification and involving AI approach are obtain-
ing accurate and automatic real-time target detection with intra-
operative segmentation and localization of epileptic zones. This work
provides neurosurgeons and neurologists with accurate means for
automatic patient-specific targeting of the STN and its sub-regions,
potentially reducing the need for other approaches that may lengthen
the procedure and/or be associated with a higher risk of side effects.53

To assist surgeons for a complete planning procedure, AI techniques
are exploring the definition of an optimal trajectory giving an alterna-
tive to the standard approach such as the graph-based or sampling-
based method. In brief, usually, the algorithm aims are to minimize
the intra-cerebral trajectory length and drilling angle from orthogonal
to skull, while maximizing the distance from critical structures. The
use of ML in this context has allowed quantification of hitherto
unidentified trajectory parameter combinations to be determined177

and the decrease in the time complexity.174

Concerning intra-operative assistance and, in particular, intra-
operative modeling of tissue deformation, accurate reconstruction and
visualization of soft tissue deformation in real time is crucial in image-
guided surgery, particularly in augmented reality applications.180 The
AI approach is able to address the needs of image-guided surgical
systems.

In addition, we found that there is emerging interest in the appli-
cation of AI for postoperative assessment. The accurate prediction of
an individual patient’s tumor response to treatment is a sort of Holy
Grail of oncology.196 Indeed, recent discoveries in molecular medicine
and improvements in clinical treatments have made it now more
important than ever to predict tumor behavior. They have shown that
AI methods can predict tumor behavior with greater accuracy than
traditional statistical methods.175 Mining and advanced analysis of
“big data” in brain care provide the potential not only to perform “in
silico” research but also to provide the predictive model for mortality
prediction, postoperative outcome, postoperative hospitalization, and
DBS outcomes. “On-demand” access to high-performance computing
and large health care databases will support and sustain our ability to
achieve personalized medicine. Unfortunately, these increased
demands of health care providers create greater risks for diagnostic
and therapeutic errors.197 Developing a large database of practice
guidelines requires knowledge-based technologies to create and main-
tain them. Ultimately, what is required is also a way for practicing cli-
nicians to access such guidelines quickly, incorporate them into their
clinical practices, and then submit their own experiences back to the
knowledge base to help improve it.198

Although the potential of AI in brain care is promising, in order
to observe practical benefits in real-world systems, it is critical to delin-
eate some challenges. Data quality, data inconsistency and instability,
and limitations of large size and diversity in support of new studies are
some of the major concerns. To this aim, the research community cre-
ated and populated public repositories and leaderboards to make
resources publicly available and submit new results, implicitly dealing
with medical-related problems such as validation and legal issues.
Kaggle199 and Grand Challenge200 are concrete examples in this direc-
tion. Furthermore, effort is spent to encourage synergy between AI
researchers and nontech users (as clinicians and medical experts). In
this context, a crucial role is played by web platforms aimed at

FIG. 8. Distribution of general applications for postoperative assessment, in the
brain care literature, related to prediction of postoperative patient outcome. From
top: pathology, AI method and type of data.
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collaborative learning paradigm that enables research hospitals and
institutions to collaborate and develop more robust AI algorithms and
collect annotated data. The NVIDIA Clara medical imaging plat-
form,201 the Structured Planning and Implementation of New
Explorations (SPINE)202 project, and the Artificial Intelligence On-
Demand Platform and Ecosystem203 are some examples.

Although impressive results have been reached, some major
hurdles still remain on the road to creation, validation, and deploy-
ment of AI in clinical treatment. While AI may produce powerful
predictions, this abstraction can lead to hesitation in deploying
them. Moreover, the problem of liability emerges about entrusting
AI with medical activities. As clinicians make the final decision or
interpretation, it can be argued that they have the entire responsi-
bility. To close the gap between clinical practice and AI, we would
suggest that future research will concentrate not only on the tech-
nological aspects of the design of ML for clinical applications but
also on the development of ethical and legal systems for the imple-
mentation, validation, and control of AI in clinical care. AI meth-
ods should operate in parallel to and applied by clinicians until
their accuracy and margin of error are considered appropriate and
reasonable, respectively. The rationale such that an error could be
considered “appropriate and reasonable” should also be carefully
considered as a future challenge. In addition, we believe that, along
with many scientists operating in the field, it is strongly recom-
mended that every predictive ML model features the code available
to everyone in order to reduce the black-box nature of ML models,
and the statistical impediments could be identified and solved,
resulting in both a safer and more efficient implementation of AI in
brain care. As a final remark, we suggest here that, as DL techniques
become more and more effective in solving brain related tasks, a
considerable amount of effort should be spent into developing new
ways of interpreting such algorithms. Indeed, this study suggests
that the primary role of AI in the brain will be to assist experts and
clinicians in their duties. For this reason, it is important that
researchers do not focus only on algorithm performance but rather
also on increasing their trustworthiness. In fact, if there are no con-
sistent and reliable neurobiological variations between two groups
of people (e.g., patients vs controls) and even the most advanced
machine-learning algorithms would not be able to differentiate on
an individual basis between such classes, nevertheless, they would
still provide valuable insights.

IX. CONCLUSION

In this study, a general overview of the current literature on AI
methods directly assisting brain care was presented. The use of artifi-
cial intelligence techniques is gradually bringing efficient theoretical
solutions to a large number of real-world clinical problems related to
the brain. Specifically, in recent years, thanks to the accumulation of
relevant data and the development of increasingly effective algorithms,
it has been possible to significantly increase the understanding of com-
plex brain mechanisms. The researchers’ efforts are leading to the crea-
tion of increasingly sophisticated and interpretable algorithms, which
could favor a more intensive use of “intelligent” technologies in practi-
cal clinical contexts.
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NOMENCLATURE

AD Alzheimer’s Disease4,6–9

AI Artificial Intelligence1–5,7,9–11,23–25

ANN Artificial Neural Networks3,5,9,10

ASD Autistic Spectrum Disorder9

AUC Area Under the Curve5,9,11

AVM Arteriovenous Malformation8

CAD Computer Assisted Diagnostic5

CLNet Corrective Learning Network8

CMD Center of Mass Distance5

CNN Convolutional Neural Network3,6,7,9,11,23

CT Computed Tomography1,2,5,8–11

DBS Deep Brain Stimulation3,4,8–11,15,19,24

DCM Dilated Cardiomyopathy11

DL Deep Learning2,3,5–9,11,23–25

DNN Deep Neural Network3

DSI Dice Similarity Index5,7,8

DT Decision Tree3,5

DTI Diffusion Tensor Imaging2,5

EEG Electroencephalography3,5,10

EHR Electronic Health Record3–5,9–11,24

FC Functional Connectivity2,5

FCNN Fully Convolutional Neural Network8

FLAIR Fluid Attenuated Inversion Recovery2

fMRI Functional Magnetic Resonance Imaging2

fNIRS Functional Near-Infrared Spectroscopy5,10

FRDD Fault Rate Dust Detection7

GA Genetic Algorithm5

GAN Generative Adversarial Network6

GBM Gradient Boosting Machine5

GNN Graph Neural Network3

GP Globus Pallidus9

GPU Graphic Processing Unit2

HC Healthy Control8,9

HDD Housdorff Distance5

HMM Hidden Markov Model7

HSI Hyperspectral Imaging2,5,9

ICH Intra-cerebral Hemorrhage6

IUS Intra-operative Ultrasound2,5,9

JC Jaccard Coefficient5

KNN K-nearest Neighbors5,10

LITT Laser Interstitial Thermal Therapy10

LOCATE LOCally Adaptive Threshold Estimation8

LOS Length of Stay11

LRP Layerwise Relevance Propagation6

MAD Mean Absolute Distance
5

MAE Mean Absolute Error
5

MCI Mild Cognitive Impairment
6,8,9

MER Microelectrode Recording
3,5

MI Medical Imaging
1
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ML Machine Learning1–11,23,24

MRI Magnetic Resonance Imaging1–3,5,7–10

mSD min Square Distance5

MSD Mean Square Distance5

MSE Mean Square Error5,7

NLP Natural Language Processing5,9,24

NPV Negative Predictive Value5

PCC Pearson Correlated Coefficient8

PET Positron Emission Tomography1,2,5

PPV Positive Predictive Value5

PSNR Peak Signal-to-Noise Ratio5,7

RF Random Forest3,5,6,8,10,11

RMSE Root Mean Square Error5

RNN Recurrent Neural Network3,11

ROC Receiver Operating Characteristic5,10

rs-fMRI Resting State Functional Magnetic Resonance
Imaging2

SAE Sparse Autoencoder5,8

SC Structural Connectivity2,5

STN Subthalamic Nucleus9,10

SVM Support Vector Machines3,5–11

SVR Support Vector Regression7,10

TLE Temporal Lobe Epilepsy8

TSS Transsphenoidal Surgery11

APPENDIX: SYSTEMATIC REVIEW KEYWORDS

Keywords for the systematic review are provided in Table II.
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