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A B S T R A C T

Triply-Periodic Minimal Surfaces (TPMS) analytical formulation does not provide a direct
correlation between the input parameters (analytical) and the mechanical and morphological
properties of the structure. In this work, we created a dataset with more than one thousand
TPMS scaffolds for the training of Machine Learning (ML) models able to find such correlation.
Finite Element Modeling and image analysis have been used to characterize the scaffolds.
In particular, we trained three different ML models, exploring both a linear and non-linear
approach, to select the features able to predict the input parameters. Furthermore, the features
used for the prediction can be selected in three different modes: i) fully automatic, through a
greedy algorithm, ii) arbitrarily, by the user and iii) in a combination of the two above methods:
i.e. partially automatic and partially through a user-selection. The latter, coupled with the non-
linear ML model, exhibits a median error less than 3% and a determination coefficient higher
than 0.89 for each of the selected features, and all of them are accessible during the design
phase. This approach has been applied to the design of a hydroxyapatite TPMS scaffolds with
prescribed properties obtained from a real trabecular-like hydroxyapatite scaffold. The obtained
results demonstrate that the ML model can effectively design a TPMS scaffold with prescribed
features on the basis of biomechanical, mechanobiology and technological constraints.

1. Introduction

Trauma, diseases and surgical interventions may cause critical-size bone defects which cannot heal spontaneously through the
self-repair process of the bone [1]. Conventional therapy usually involves the use of autograft and allograft; which, however, have
important limitations [2]. Considering that bone is the second most transplanted biological tissue in the world and that the incidence
of the problem is becoming more prevalent in the population, it is imperative to find alternative solutions [3]. Synthetic bone
substitutes, also known as scaffolds, appear to be a promising solution [4,5]. Bone Tissue Engineering (BTE) is a multidisciplinary
field that combines principles from various disciplines to develop innovative approaches for repairing and regenerating bone tissue.
It involves the application of engineering, biology, materials science, and medicine to design and create functional artificial bone
constructs that can replace or stimulate the regeneration of damaged or lost bone [6].

Additive Manufacturing (AM) techniques have been proved to be able to produce scaffolds with complex microstructures
with high accuracy, offering high flexibility in the architectural design of the scaffolds allowing to meet the multi-disciplinary
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requirements for the optimal design of the scaffolds, simultaneously [7]. The design of an effective scaffold is a non-trivial process
that is still far from being consolidated. Load-bearing applications of BTE scaffolds impose particular emphasis on the mechanical
properties [8,9] which may be in contrast with the concurrent need for high porosity and pore interconnectivity.

It is well-known that the scaffold’s geometrical features have an impact on its osteo-integration response. In particular, pore
ize/porosity as well as pore shapes have a direct impact on macroscopic scaffold permeability which is responsible for nutrient
ransport [10]. The superficial strain on the internal walls of the pores may also play a relevant role in determining the mineralization
rocess [11]. Indeed, as bio-mechanical, physical and biological factors are involved, a large number of design variables are
eeded; this implies time-consuming experimental protocols for the in-vitro characterization of the effect of each single design
arameter [12].

The mechanical properties of bio-inspired cellular structures were first investigated in the 80’s [13,14]. These fundamental studies
ased on analytical predictions nourished many recent approaches, based on computational methods, aimed at designing optimal
icrostructures for BTE scaffolds. New scaffold architectures based on Triply-Periodic Minimal Surfaces (TPMS) topology, such as
yroid (G), Schwartz Diamond (D) or Schoen’s Wrapped Package (IWP), have been investigated [15–17]. In contrast to stochastic

tructures, regular porous architectures have more homogeneous stress distribution allowing for a better control of the mechanical
roperties and hence on the long-term performance of the devices [17]. Topology optimization is a powerful tool to achieve optimal
esign meeting multi-objective design criteria [18,19]; however, computational costs increase substantially with the design variables
nd iterations. Machine Learning (ML) techniques offer optimization algorithms that are particularly effective when dealing with
arge datasets providing empirical models also in absence of physics-based models [20].

The application of Artificial Intelligence (AI) in biomaterials design has been growing in recent years, likely due to the proven
ffectiveness of this type of techniques in processing large amount of data, often heterogeneous by nature, achieved in other fields
e.g., Computer Vision). The scaffold design process indeed involves generation of data at different levels of the pipeline. For
xample, the design of the geometrical model of the scaffold usually requires a dataset of images collected through computed
omography or magnetic resonance, then complex algorithms are executed for segmenting the tissue [21], reconstructing the
olume [22], and finally producing the blueprint for 3D printing [23].

In several studies, AI has been employed as a tool for predicting the mechanical and morphometric characteristics of scaffolds
see for instance [24,25]). However, the application of AI techniques to estimate the geometric characteristics of scaffolds based on
pecific physical properties is relatively less explored, with a limited number of projects focusing on this area [26–28].

The aim of this paper is to set up a multidisciplinary optimization tool for the identification of the design of a scaffold based on
PMS topologies exhibiting prescribed mechanical, physical or morphometric target properties. To this purpose, a complete pipeline
or designing ML algorithms is implemented. Using such pipeline, two models with different complexity have been investigated. In
articular, the first model relies on a linear relationship between properties and TPMS design parameters, whereas the second
ncorporates a non-linear function. The performance of linear and non-linear models are compared to select the optimal one.
hen, a variant of the non-linear model with optimization constraints has been tested as well. The ML models are trained by
sing a dataset created by multiple running of the forward problem which, starting from prescribed values of the design variables,
stimates the mechanical, physical and micro-architectural properties by means of the finite element (FE) method and image process
nalyses. The performance of the obtained optimization tool is then tested by prescribing design requirements in terms of preselected
echanical, physical and microarchitectural features comparing the performance of the predicted optimal scaffold architectures with

he prescribed design requirements.

. Materials and methods

.1. Summary of the overall pipeline

The proposed methodology is intended to support the identification of optimal TPMS architectures by leveraging biomechanical
nd morphometric parameters as design requirements. Since a physics-based model linking such parameters and TPMS designs is
urrently not available, we rely on the use of supervised ML to create a functional relationship.

The approach employed is to generate a set of scaffolds through the free parameters of the mathematical formulation of
PMS architectures. The generated scaffolds have been represented by three-dimensional image stacks. Once the three-dimensional
caffolds have been created, FE simulations and image analyses have been executed to solve the forward problem and to provide
list of features for each of the scaffold. Such list contains mechanical, physical and morphometric characteristics. This approach

enerates a dataset with TPMS input parameters paired with the quantified features. Then, a subset of these features has been either
anually or automatically selected as design requirements for the scaffold. Three feature selection schemes will be proposed. A ML
odel has been finally created to predict the optimal TPMS parameters by means of the selected features.

The structure of this section is as follows: the computational tools used to build the above-mentioned dataset (solution of the
orward problem) are introduced with subsections for the definition of the scaffold architecture, the morphometric features, the
ffective pore connectivity and the mechanical analysis; a section will describe the ML algorithm; the last section will describe the
rocedure for the assessment of the performances of the optimization algorithm.
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Fig. 1. Example of a repetitive unit of IWP geometry with its (a) surface obtained using (1) and (b) volume obtained with (2).

2.2. Scaffold design

The scaffolds analyzed in the study are characterized by TPMS geometries. The most common approach to the geometric
description of TPMS surfaces is through the definition of implicit trigonometric functions which defines a sheet network. In this work,
three architectures have been considered: (i) Diamond, (ii) Gyroid and (iii) IWP, which have been defined through the following
implicit functions 𝑓 (𝑥, 𝑦, 𝑧).

The mathematical three-dimensional surface 𝑓 (𝑥, 𝑦, 𝑧) = 0 defining the TPMS are:

𝑓𝐷 = cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + 𝑏

𝑓𝐺 = sin(𝑘𝑥) cos(𝑘𝑦) + sin(𝑘𝑦) cos(𝑘𝑧) + sin(𝑘𝑧) cos(𝑘𝑧) + 𝑏

𝑓𝐼 = 2[cos(𝑘𝑥) cos(𝑘𝑦) + cos(𝑘𝑦) cos(𝑘𝑧) + cos(𝑘𝑧) cos(𝑘𝑥)] − cos(2𝑘𝑥) − cos(2𝑘𝑦) − cos(2𝑘𝑧) + 𝑏

(1)

in which the subscripts 𝐷, 𝐺 and 𝐼 refer to the Diamond, Gyroid and IWP geometry, respectively. When generating scaffolds, a
discrete formulation is employed: 𝑘 = 2𝜋𝑐∕𝑛. Given a cubic cell, 𝑐 represents the number of repetitive units and 𝑛 the voxels per
edge. In this work, 𝑐 = 3 and 𝑛 = 300. The spatial coordinates 𝑥, 𝑦 and 𝑧 are integer numbers from 1 to 𝑛. The solid volume has
been generated by providing a thickness on the above-reported surfaces in a pixel-wise fashion. The pixels belonging to the solid
part are those fulfilling the conditions:

− 𝛿 < 𝑓 (𝑥, 𝑦, 𝑧) < 𝛿 (2)

We consider 𝑏 and 𝛿 as the free TPMS input parameters used to generate the geometries. Fig. 1 shows an example of the mid
surface generated through the implicit trigonometric functions and the corresponding solid scaffold.

The scaffolds have been automatically generated as a stack of binary images through a MATLAB script by setting the parameters
𝑏 and 𝛿. The values of 𝑏 range from 0 to 2 with a step of 0.1, whereas the values of 𝛿 range from 0.4 to 1.5 with a step of 0.05,
as similarly done by [29]. The scaffolds exhibiting entirely empty slices, fully solid slices or pinching off of the surface [30] have
been discarded. In addition, we only considered connected structures on which a connectivity analysis has been carried out. The
scaffolds fulfilling all the previously defined conditions resulted in 1279 designs (321, 475, and 483 designs for Diamond, Gyroid
and IWP, respectively).

2.3. Morphometric analysis

The following morphometric parameters have been calculated from the generated TPMS scaffolds: volumetric fraction (𝜌∗),
Trabecular Thickness (Tb.Th.), Trabecular Spacing (Tb.Sp.), Connectivity (Conn.), Ellipsoid Factor (EF), and the Degree of Anisotropy
(DA). These parameters have been computed by means of the BoneJ plugin of the open-source software ImageJ [31]. Despite
the software has been designed to process bone structures, it offers the functionality to extract such features from any geometry,
hence we used it on our TPMS models. The Tb.Th. and Tb.Sp. parameters have to be intended as wall thickness and pore spacing,
respectively. A Java language macro has been developed with the purpose of sequentially calculating the morphometric parameters
for all scaffolds belonging to the dataset. These analyses have been performed on a Linux machine equipped with 8 𝐶𝑃𝑈𝑠 with a
RAM of 86 GB.

2.4. Permeability analysis

In this study, the hydraulic permeability has been represented by a simplified permeability index: the Effective Pore Connectivity
Index (EPCI). Such index has been obtained by processing the 3D images of each scaffold, and used to estimate permeability in
3
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accordance with the methodology suggested by Sun et al. [32]. Under the assumption of fully saturated porous material, the EPCI
index is calculated by tracking the connectivity of pores within a scaffold. To this purpose, a MATLAB code has been created to
sequentially calculate the EPCI on all scaffolds belonging to the dataset.

2.5. Mechanical properties

The macroscopic mechanical parameters have been computed through FE simulations performed on each scaffold. All FE analyses
ave been carried out on a voxel-type mesh (defined on the three-dimensional matrix described in Section 2.2), where each voxel
orresponds to a linear hexahedron with three-linear shape functions. The multi-grid parallel finite element solver ParOSol has
een used [33]. As microstructured solids exhibiting TPMS micro-architecture are characterized by a macroscopic elastic tensor
ith cubic symmetry (three independent parameters) [29], only two FE simulations have been carried out to fully characterize the
lastic properties: a uniaxial confined tension with prescribed displacement on one face of the cubic macroscopic domain and a pure
acroscopic shear. The boundary conditions used in the two types of simulations are reported below:

⎧

⎪

⎨

⎪

⎩

𝑢𝑥|𝜕𝑉 = 𝑥�̄�
𝑢𝑦|𝜕𝑉 = 0
𝑢𝑧|𝜕𝑉 = 0

;

⎧

⎪

⎨

⎪

⎩

𝑢𝑥|𝜕𝑉 = 𝑦�̄�
𝑢𝑦|𝜕𝑉 = 0
𝑢𝑧|𝜕𝑉 = 0

(3)

here 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 are the cartesian components of the displacement vector, �̄� the macroscopic direct strain, �̄� the macroscopic shear
train, and 𝜕𝑉 the external boundary of the cubic volume 𝑉 defined by the scaffold. The six components of the Cauchy stress tensor
ave been averaged on the cubic macroscopic domain of the scaffold to obtain the components 𝐶𝑖𝑗 of the homogenized stiffness

tensor C. The normalized macroscopic stiffness (�̄�∕𝐸0), the normalized macroscopic shear stiffness (�̄�∕𝐸0) and the macroscopic
Poisson coefficient (�̄�) have been computed as follows:

�̄�
𝐸0

=
𝐶2
11 + 𝐶11𝐶21 − 2𝐶2

21
𝐶21 + 𝐶11

; �̄�
𝐸0

= 𝐶44; �̄� =
𝐶21

𝐶21 + 𝐶11
(4)

where 𝐶11 and 𝐶21 have been obtained from the uniaxial confined tension, whereas 𝐶44 from the pure macroscopic shear.
Furthermore, the Zener ratio (𝛼𝑍 ) has been calculated as an indicator of mechanical anisotropy [34,35].

Normalized macroscopic elastic moduli and shear stiffness have been obtained by using a reference value of the elastic modulus
(1 GPa) and a Poisson coefficient of 0.3 as intrinsic properties of the solid material. The elastic modulus and shear stiffness of
scaffolds can be obtained by multiplying the output of the simulation (�̄�∕𝐸0 and �̄�∕𝐸0), which comes in a normalized form, by the
elastic modulus of the constituent material. In this study, hydroxyapatite has been used as a material of choice for the BTE scaffolds
therefore, an elastic modulus of the material (𝐸0) has been set to 100 GPa [36], to obtain the macroscopic Young modulus (�̄�) and
the macroscopic shear stiffness (�̄�).

The approach based on the Weibull probability model, proposed by Genet et al. [37] has been adopted to obtain the index of
strength (𝐼𝜎) under uniaxial compression. 𝐼𝜎 is associated with a 95% probability of failure and has been calculated for each design
as follows:

𝐼𝜎 =

⎛

⎜

⎜

⎜

⎝

𝑙𝑛
(

1
1−𝑃𝐹

)

1
𝑉𝑒𝑓𝑓

∫𝑉 ‖

‖

⟨𝜺⟩+‖‖
𝑚 𝑑𝑉

⎞

⎟

⎟

⎟

⎠

1
𝑚

⋅ �̄��̄� (5)

where 𝑃 𝐹 is the probability of failure, 𝑉 defines the solid volume of the scaffold, 𝑉𝑒𝑓𝑓 is the reference volume equal to 1 mm3 [37],
is the Weibull modulus (equal to 6.6 [38]); ⟨𝜺⟩+ denotes the positive part of the maximum principal strain. FE analyses have been

un on the same machine reported in Section 2.3.

.6. Machine learning algorithms

.6.1. The dataset
The quantities determined in the forward problem have been rearranged to form a dataset suitable for the ML problem. In

articular, for each 𝑖th geometry generated, 37 features have been stored in the column vector 𝐱𝑖 along with the associated 𝑏𝑖, 𝛿𝑖
nd geometry type 𝑡𝑖. Formally, a dataset has been constructed as the set  = {(𝐱𝑖, 𝑏𝑖, 𝛿𝑖, 𝑡𝑖)}𝑁𝑖=1 where 𝑁 is the total number of
caffolds, equal to 1226. This number is lower than the total number of analyzed scaffolds (1279) since for some of them it was
ot possible to compute the entire set of 37 features (for IWP scaffolds exhibiting a wall thickness equal or below 4 pixels). A brief
escription of the main important features has been reported in Sections 2.3–2.5, whereas the list of all extracted features, along
ith their detailed description, is reported in Table 3 of Supplementary Material.

The dataset has been randomly partitioned into a training set (60%), validation set (20%) and test set (20%). Training set and
alidation set have been used for selecting the most important features, while the test set has been used to compare the performance
f the models ( Table 1). In addition, a subset of 50 random samples has been extracted from the test set for further assessment (see
ection 2.7).
4
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Table 1
Dataset split among training set, validation set and test set. Within each set, the columns display the number and
percentage of scaffolds corresponding to different geometries.
Geometry Training set Validation set Test set

Diamond 203 27.6% 57 23.3% 61 24.9%
Gyroid 285 38.7% 104 42.4% 86 35.1%
IWP 248 33.7% 84 34.3% 98 40.0%

736 100% 245 100% 245 100%

2.6.2. The ML model
ML was used to solve the inverse problem, that is, to determine the design parameters 𝑏, 𝛿 and type of geometry 𝑡 from some of

the scaffold features obtained in the forward problem. The selection of a ML model appropriate for the application to tackle is an
open problem. The model is typically chosen, within a pool of models, as the one with the lowest empirical prediction error. In this
study, we developed and compared three models: one linear model which has served as a baseline for performance comparisons,
and two non-linear models.

Each model comprises three components. The first two components were specifically constructed to predict the 𝑏 and 𝛿 values
based on a certain set of features. The third component was built to predict the geometry type 𝑡 (i.e. Gyroid, Diamond and IWP),
based on the same set of features.

The components of all models could be described as follows:

�̂�𝑖 = 𝑓𝐰𝑏
(𝐱𝑖)

𝛿𝑖 = 𝑔𝐰𝛿
(𝐱𝑖)

Pr(𝑇𝑖 = 𝑡|𝐱𝑖) = sof tmax([ℎ𝐰G
(𝐱𝑖), ℎ𝐰D

(𝐱𝑖), ℎ𝐰I
(𝐱𝑖)]⊺)𝑡, 𝑡𝑖 = arg max

𝑡
Pr(𝑇𝑖 = 𝑡|𝐱𝑖)

(6)

where 𝐱𝑖 is a column vector containing the features of the 𝑖th sample with dimension 𝑃 , 𝐰𝑏, 𝐰𝛿 , 𝐰𝐺, 𝐰𝐷 and 𝐰𝐼 are column vectors
storing the model parameters, �̂�𝑖 and 𝛿𝑖 represent the predicted values and Pr(𝑇𝑖 = 𝑡|𝐱𝑖) is the conditional probability of classifying the
geometry type as 𝑡 conditioned on the feature vector 𝐱𝑖. The number of 𝑃 can vary between 1 and 37, according to the index 𝐽 defined
in Section 2.6.3 and evaluated in Section 3.2. The final prediction for the geometry 𝑡𝑖 has been obtained by that one maximizing
the probability Pr(𝑇𝑖 = 𝑡|𝐱𝑖) across 𝑡 ∈ {G,D, I}. The sof tmax function converts a vector of numbers into another normalized vector
whose elements sum to 1. The value sof tmax(⋅)𝑡 is the 𝑡th component of such normalized vector. The approach for predicting the
geometry type is equivalent to a multinomial logistic regression model. To conclude, the parametric functions 𝑓𝐰𝑏

, 𝑔𝐰𝛿
, ℎ𝐰G

, ℎ𝐰D
and ℎ𝐰I

describe the full model. Each of the three models has its own components and parameter vectors.
The baseline linear model has been defined as follows:

𝑓𝐰𝑏
(𝐱𝑖) = 𝐰⊺

𝑏𝐱𝑖
𝑔𝐰𝛿

(𝐱𝑖) = 𝐰⊺
𝛿𝐱𝑖

ℎ𝐰G
(𝐱𝑖) = 𝐰⊺

G𝐱𝑖
ℎ𝐰D

(𝐱𝑖) = 𝐰⊺
D𝐱𝑖

ℎ𝐰I
(𝐱𝑖) = 𝐰⊺

I 𝐱𝑖

(7)

All functions embed the intercept term into the parameter vectors and by appending a 1 to 𝐱𝑖. We have named this model as L-MOD.
The mathematical formulation of the non-linear model is hard to select when no information about the relationship between

features and outputs are available. Considering the recent results obtained by artificial neural networks (ANN) in other domains, it
may be convenient to investigate on such type of models. However, ANN are considered data-hungry models, hence requiring very
large datasets. In addition, the parameter space of ANN models is typically large (even in the order of billion parameters) but, with
a limited sample size, the risk of overfitting the model becomes very likely. Therefore, considering the size of the dataset at our
disposal, we propose a simplification of a well-known ANN architecture, i.e. the Residual Network (ResNet), which was found very
effective in many different applicative domains. The simplification is meant to adapt the ResNet to our specific problem.

The ResNet architecture comprises a sequence of blocks (composition of mathematical functions) in which each block constructs
a residual output as follows:

𝐨𝛽 = 𝑊𝛽𝐨𝛽−1 + 𝑓𝜃𝛽 (𝐨𝛽−1) (8)

where 𝛽 is the block index, 𝑊𝛽 is a matrix of parameters and 𝑓𝜃𝛽 is a non-linear function parametrized by the 𝜃𝛽 vector. This
function 𝑓𝜃 is typically a convolutional operator followed by a non-linear function such as hyperbolic tangent or sigmoid, suitable
for processing signals and images. In this study, the model took in input, instead of raw images, the list of features. Therefore, we
adapted the ResNet block to process features by removing the convolution operator. In addition, the matrix 𝑊𝛽 and vector 𝜃𝛽 are
usually dense and this makes the number of parameters growing rapidly. To reduce the number of parameters, we used a sparse
representation of ResNet where input features are processed separately from the others using the residual approach. The final model
becomes a linear combination of each feature and a non-linear function applied to it, as follows:

⊺ ⊺
5

𝑦 = 𝑐 + 𝐰1𝐱𝑖 + 𝐰2 tanh(diag(𝐰3)𝐱𝑖 + 𝐰4) (9)
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where 𝑦 represents 𝑏 or 𝛿 depending on the parameter that is being estimated, 𝐰1, 𝐰2, 𝐰3, 𝐰4 (column vectors) and 𝑐 (scalar) are
the parameters of the model, diag(𝐳) builds a diagonal matrix whose entries are the element of a generic vector 𝐳, and tanh(𝐳) is the
hyperbolic tangent applied element-wise to the element of the vector 𝐳. This model was used for predicting both 𝑏 and 𝛿, i.e. 𝑓𝐰𝑏
and 𝑔𝐰𝛿

where 𝐰𝑏 = [𝐰⊺
1,𝐰

⊺
2,𝐰

⊺
3,𝐰

⊺
4, 𝑐]

⊺ and similarly for 𝐰𝛿 . The functions ℎ for predicting the geometry type were kept the same
as for the linear case. We named this model as NL-MOD.

We designed the proposed model to have another major advantage: the additive property. Each feature has its own separate
term in (9). Indeed, it is possible to write 𝑦𝑖 = 𝑐+

∑

𝑘 𝛥𝑦𝑖,𝑘 where each 𝛥𝑦𝑖,𝑘 is the contribution of only the 𝑘th feature. In particular,

𝛥𝑦𝑖,𝑘 = 𝑤1,𝑘𝑥𝑖,𝑘 +𝑤2,𝑘 tanh(𝑤3,𝑘𝑥𝑖,𝑘 +𝑤4,𝑘) (10)

where 𝑤𝑚,𝑘 and 𝑥𝑖,𝑘 are the 𝑘th entry of the vector 𝐰𝑚 (𝑚 from 1 to 4) and 𝐱𝑖, respectively. Each term is composed by an indefinitely
growing linear function of 𝑥𝑖,𝑘 and a non-linear function which may saturate for extreme values of 𝑥𝑖,𝑘, both weighted by the
coefficients 𝑤1,𝑘 and 𝑤2,𝑘. This model is then justified in this context since many biological and physical systems are found to have
this characteristic. In addition, another common property for these systems is that changing the value of a feature is often expected
to affect 𝛥𝑦 in a monotonic fashion.

The suitability of the definition in (10) for our specific application has been verified by implementing a third non-linear model
which has the same mathematical formulation of (9), and adding constraints on the model parameters ensuring the monotonicity
of 𝛥𝑦. This can be achieved by imposing the following set of constraints on the model’s parameters:

{

𝑤3,𝑘 = 0
𝑤1,𝑘 ≥ 0

⋃

{

𝑤3,𝑘 > 0
𝑤1,𝑘 +𝑤2,𝑘 𝑤3,𝑘 ≥ 0

(11)

We named this model as NL-MOD-CON.
Using the dataset at disposal, the parameters of the three models have been obtained by minimizing the mean squared error

(MSE) for both first and second models, and minimizing the MSE with constraints for the third. For the non-linear models, their
parameters have been found using an iterative algorithm with initial conditions set as the coefficients found in the linear case.

2.6.3. Feature selection and model validation
Three different methods have been implemented to select relevant features that will be eventually used to predict 𝑏, 𝛿 and 𝑡

parameters. The first method makes use of a fully data-driven approach by means of the so-called Greedy Feedforward Feature
Selection (GFFS) algorithm [39]. Briefly, it selects features through an iterative approach. At each iteration, the optimal feature is
selected from a list of candidate features. The optimal one is a single variable that is added to the set of selected variables from the
previous iterations. The candidate feature obtaining the optimal performance on the validation set is selected. In addition, candidate
features correlated with any of those already selected are excluded from the training. An absolute value Pearson’s correlation
coefficient of 0.6 was used as a threshold for the eligibility of the candidate feature. Since the objective was to find a single feature
set for both 𝑏 and 𝛿, the performance metric used for selecting a feature, denoted as 𝐽 , is the geometric mean between the 𝑅2

for both outputs (𝐽 =
√

𝑅2
𝑏 ⋅ 𝑅

2
𝛿), computed on the validation set. The optimal number of features has been determined by visual

nspection of 𝐽 across iterations. This feature set has been named Data-Driven Feature Set (DDFS).
The second feature selection scheme is based on domain knowledge. It is worth noting that not all features computed by solving

the forward problem can be easily accessible in practice as a design parameter. To account for this issue, we have manually selected
a list of features that we consider relevant for the problem; they are: the effective stiffness (�̄�), the index of strength (𝐼𝜎), the mean
pore spacing (Tb.Sp. mean), the mean wall thickness (Tb.Th. mean) and the index of permeability (EPCI). This feature set has been
named Domain Knowledge Feature Set (DKFS).

The third feature selection method is a mix of the two previous methodologies. In particular, the DDFS scheme has been used
prescribing in the features selection the first three features of the DKFS scheme. This feature set has been named Mixed Feature Set
(MFS).

2.7. Assessment of performance of the optimization problem

The performance of the models was quantified, on the test set, by means of (i) the 𝑅2
𝑏 value between the predicted �̂� and the

rue values 𝑏 and similarly for 𝑅2
𝛿 ; and (ii) the accuracy of identifying the exact geometry type predicted by the multinomial logistic

egression model, that is the number of correctly classified scaffolds over the total number of samples.
An additional evaluation of the performance for the proposed models has been carried out to quantify the percentage error

etween the design parameters (x𝑖) feeding the ML models and their actual values (x̂𝑖) obtained after generating the scaffolds with
̂, 𝛿 and 𝑡. In order to do so, 50 different scaffolds were randomly selected from the test set, as representative of the whole dataset.

pon the selection, the ML models predicted the optimal �̂� and 𝛿 and 𝑡 for each selected scaffold by using their specific feature set
x𝑖, input feature value in Fig. 2). Then, three-dimensional models of each scaffold have been created and the computational models
escribed in Sections 2.3–2.5 have been used to determine the feature vectors �̂�𝑖 (output feature values in Fig. 2). A Wilcoxon signed
ank test was then used to quantify whether the percentage error between 𝐱𝑖 and �̂�𝑖 had a median value of zero (null hypothesis:
6

edian percentage error is 0, significance level set to 0.05). Fig. 2 depicts the diagram of such pipeline.
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Fig. 2. Diagram for the performance evaluation of the ML models. The percentage errors 𝜖𝑗,𝑖 between the input parameters 𝑥𝑗,𝑖 and computed �̂�𝑗,𝑖 were the
output of the evaluation. The 𝑖th subscript refers to the geometry, whereas the 𝑗th subscript refers to the feature. A compact graphical representation of the
models is depicted as well.

2.8. Design of a hydroxyapatite scaffold with given mechanical and morphological properties

The ML algorithm presented here is now applied in a use case where we find the most suitable TPMS scaffold with a given set of
mechanical and morphological properties. To achieve this result, we take as a reference a trabecular-like hydroxyapatite scaffold that
is fully characterized in terms of mechanical and morphological properties in [40]. The reference scaffold was obtained through a Vat
Photopolymerization printing process followed by a temperature treatment for the sintering ceramic component. The 3D architecture
was obtained by starting with a 3D foam model featuring a trabecular bone-like structure [41]. The aim of this application is
to identify a TPMS scaffold that can be manufactured through Vat Photopolimerization and sintering of hydroxyapatite. Using a
validated numerical model, D’Andrea et al. [40] determined the scaffold’s macroscopic elastic modulus and compressive strength,
which were found to be 7.05 GPa and 3.34 MPa, respectively. The overall porosity was 73%, while the average trabecular thickness
and pore size were 318 μm± 97 μm and 801 μm± 224 μm, respectively. The strength index 𝐼𝜎 was also determined on the trabecular
like hydroxyapatite scaffold and has been found 𝐼𝐻𝐴

𝜎 = 0.89 MPa. In particular, the following set of input parameters was used:
macroscopic stiffness (�̄�), index of strength (𝐼𝜎), mean trabecular thickness (Tb.Th. mean), mean trabecular spacing (Tb.Sp. mean)
and Zener coefficient (𝛼𝑍 ). The five input parameters for the ML algorithm, i.e. the entries of the 𝐱 vector, are:
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(12)

In the previous equation, the values of Tb.Sp. and Tb.Th. are reported in pixels; these correspond to 798 μm and 315 μm by considering
a pixel size in the 3D image of 10.5 μm. The output of the NL-MOD with MFS has been used to identify the architecture (geometry
type 𝑡 and design parameters 𝑏 and 𝛿 which best approximate the features and mechanical properties of the hydroxyapatite scaffold).
After identification of the 5 significant features as described in Section 2.6.3, the following set of input parameters has been used:
macroscopic stiffness (�̄�), index of strength (𝐼𝜎), mean trabecular thickness (Tb.Th.), mean trabecular spacing (Tb.Sp.) and Zener
coefficient (𝛼𝑍 ).

The output of the ML algorithm has been then used to generate a pixel-like 3D image and a 3D FE mesh with cartesian voxel-like
mesh. Morphometric parameters (Tb.Th. and Tb.Sp.) have been extracted from the 3D image, whereas the mechanical properties
(�̄�, 𝐼𝜎 and 𝛼𝑍 ) have been determined through a FE model. These parameters have been then compared with the reference values
of the trabecular-like scaffold. Furthermore, the strength of the newly generated triply periodic scaffold has been also estimated by
means of a FE simulation of the fracture propagation process [42] and compared with that estimated numerically in [40]. Fig. 3
shows the workflow of the process, starting from the trabecular-like scaffold used as a reference and in the end the scaffold design
7

found through the ML algorithm.



Computer Methods in Applied Mechanics and Engineering 423 (2024) 116842S. Ibrahimi et al.
Fig. 3. (a) Trabecular-like scaffold (in blue) and its representative volume element (in orange). The vector of features x was extracted from the representative
volume element; (b) TPMS cube (in orange) and TPMS-based scaffold (in blue). The vector of features �̂� was extracted from the cubic domain. The meaning of
the components of the vectors x and x̂ is the macroscopic stiffness (�̄�), the index of strength (𝐼𝜎 ), the mean pore spacing (Tb.Sp. mean), the Zener (𝛼𝑍 ) and the
mean wall thickness (Tb.Th. mean). The selection of these features has been discussed in Section 4. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

3. Results

3.1. Scaffold architectures and properties

Fig. 4 shows the domain of the design variables 𝑏 and 𝛿 investigated for the Diamond, Gyroid and IWP architectures, respectively.
Each dot corresponds to one specific generated scaffold. The colors of the dots represent the volumetric fraction.

For the IWP the volumetric fraction ranges from 0.1 to 0.4, while Diamond’s and Gyroid’s ones range from 0 to 1. As a
representative example, geometrical and mechanical representations are provided for two scaffolds on the boundary of the input
parameter range (Fig. 4). All three geometries show an anisotropic elastic response with cubic symmetry (i.e. �̄�, �̄� and �̄� are
independent parameters). The Diamond and Gyroid architectures exhibit a higher stiffness along directions trisecting the cartesian
axis in both the analyzed points. This indicates that shear stiffness in the three cartesian planes is always higher than that of an
equivalent isotropic material (�̄� > �̄�

2(1+�̄�) ). The IWP architecture exhibits a dual trend, with the highest elastic moduli aligned along
the trisecting directions (𝑏 = 0 and 𝛿 = 0.4, Fig. 4c, left panel) and the highest elastic modulus along the cartesian directions (𝑏 = 2
and 𝛿 = 1.5, Fig. 4c, right panel).

3.2. ML models

Fig. 5 reports the results of the selected features for the three models, determined by the GFFS algorithm using the 𝐽 metric. Due
to the constraint imposed in the GFFS algorithm for the maximum Pearson’s correlation coefficient allowed, 16 of the 37 features are
selected for L-MOD, while 17 for both NL-MOD and NL-MOD-CON. For L-MOD, 𝐽 spans from 0.24 to 0.58. Regarding the non-linear
models, the range of 𝐽 is between 0.28 and 0.75 for NL-MOD, while 0.26 to 0.62 for NL-MOD-CON. The optimal number of selected
features is 5 as the 𝐽 metric did not change markedly above this number for the three models (Fig. 5). The value of 𝐽 for all the
combinations of features has been reported in Table 4 of Supplementary Materials.

Table 2
𝑅2 and accuracy for the three models and feature selection strategy computed on the test set.

Model DDFS MFS DKFS

𝑅2
𝑏 𝑅2

𝛿 Accuracy 𝑅2
𝑏 𝑅2

𝛿 Accuracy 𝑅2
𝑏 𝑅2

𝛿 Accuracy

L-MOD 0.78 0.35 0.92 0.81 0.36 0.90 0.70 0.32 0.92a

NL-MOD 0.82 0.64 0.99 0.86 0.60 0.95 0.79 0.50 0.92a

NL-MOD-CON 0.76 0.55 0.96 0.83 0.48 0.95 0.62 0.33 0.92a

a It is worth noting that the feature set for the DKFS group was the same across models.

Table 2 reports the 𝑅2 values between 𝑏 and �̂� (𝑅2
𝑏), and 𝛿 and 𝛿 (𝑅2

𝛿). The 𝑅2
𝑏 values range from 0.62 to 0.86, while for 𝑅2

𝛿 , it is
between 0.32 and 0.64. Also, 𝑅2

𝑏 exceeds 𝑅2
𝛿 for all models. For both DDFS and MFS, 𝑅2

𝑏 and 𝑅2
𝛿 are higher for the two non-linear

models with respect to the linear one, while for the DKFS the L-MOD performs slightly better than the NL-MOD-CON for 𝑏.
Accuracy results are presented in Table 2. Accuracies are, in general, ≥ 90%. The lowest accuracy obtained is 90% with MFS of

L-MOD, whereas the highest value is 99% and it is achieved with DDFS of NL-MOD.
8
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Fig. 4. Representation of the volumetric fraction with respect to the design parameters 𝑏 and 𝛿 in the whole design space of (a) Diamond, (b) Gyroid and (c)
IWP. Left and right panels represent the scaffold at its corner and the representation of its stiffness in the space.
9
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Fig. 5. Value of the 𝐽 metric on the validation set for each selected feature and the three models. On the right, the first 5 features of each model have been
reported.

3.3. Additional assessment of performance

Since the performance of NL-MOD on the test set has achieved better performance than NL-MOD-CON (Table 2), the additional
assessment was carried out only for L-MOD and NL-MOD.

The performances of the multinomial logistic regression model have been initially evaluated by considering the number of
properly identified geometries. For the non-linear model with DDFS scheme, all geometries have been correctly identified while
for the linear model with DDFS scheme 44 out of 50 geometries have been precisely classified. In both models incorporating DKFS
scheme, 49 geometries have been accurately identified. In the case of MFS scheme, the linear model has correctly classified 49 out
of 50 geometries, whereas the non-linear model has correctly classified 48 geometry types. All the models correctly classify the IWP
geometry, whereas the misclassification was between the two remaining geometries.

The spider plots in Fig. 6 represent the median, the 25th percentile and the 75th percentile of the percentage error for each
feature used to predict the parameters 𝑏 and 𝛿 across the 50 scaffolds selected from the test set. Generally, for all three feature
selection strategies, the non-linear model exhibits better performances than the linear model in terms of median percentage error
and interquartile range. The model that achieved the lowest median percentage errors and variability across features was NL-MOD
with MFS scheme. In addition, none of these errors were found statistically significantly different than zero, suggesting the presence
of a bias between the tested quantities.

Except for the NL-MOD with DDFS scheme, all other approaches result in the exclusion of scaffolds that featured completely
void or solid slices, as well as those pinching off of the surface. More specifically, for the linear model with DDFS scheme, two
scaffolds are discarded. Similarly, for both the linear and non-linear models with DKFS scheme, one scaffold is discarded. Regarding
the linear and non-linear models with MFS scheme, two and three scaffolds are respectively omitted from the analysis.

3.4. Design of a hydroxyapatite scaffold with given mechanical and morphological properties

The TPMS scaffold displaying the closest features has been found by the NL-MOD with MFS scheme using the input feature
vector provided in Eq. (12). The model predicted a Gyroid structure with 𝑏 = 0.94 and 𝛿 = 0.40. The TPMS scaffold’s macroscopic
stiffness, as determined by the FE method, is 7.06 GPa, as opposed to the hydroxyapatite scaffold’s 7.19 GPa; the TPMS scaffold’s
strength index is 𝐼𝜎 = 1.48 MPa, whereas the input value was 0.89 MPa. The TPMS scaffold’s wall thickness is 215 μm, marginally
less than the input value of 315 μm, but still within the capabilities of Vat Photopolymerization, which can reliably print struts as
small as 100 μm. The TPMS wall spacing has been observed to be 876 μm, while the hydroxyapatite scaffold’s trabecular spacing
measured 798 μm. The trabecular structure was characterized by 𝛼𝑍 = 1.19, whereas the Zener index found in the TPMS scaffold is
𝛼𝑍 = 1.45.

4. Discussion

This study presents a ML method for figuring out the microstructural configuration of a scaffold for BTE with prescribed
features. The ML models were trained using synthetic data produced by the forward model, which is a model with a predetermined
10
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Fig. 6. Median, 25th and 75th percentiles of the percentage errors (%) for each model and feature selection approach. Each axis spans from −50% to +50%. NL
and L stand for non-linear and linear, respectively. The ∗ symbol stands for 𝑝 < 0.05.

microstructural layout that can evaluate specific mechanical and physical characteristics of the scaffolds. A restricted class of
microstructural configurations has been used, confining our study to three different TPMS geometries. More in details, as for
the forward problem, in silico experiments have been carried out to characterize the morphometric, permeability and mechanical
properties of the scaffolds. The objective of this experiment was to create a dataset suitable for the ML problem. In this work,
three ML models and three feature selection schemes have been implemented to determine the input parameters for the design
of a scaffold, creating 9 different tools. The implementation of the GFFS algorithm has allowed the selection of features for the
estimation of the two design parameters (𝑏 and 𝛿), which uniquely identify the architecture of a scaffold for each geometry 𝑡. The
optimal number of features has been selected to 5 given the negligible improvements on 𝐽 (Fig. 5) for a higher number of features.
Moreover, it represents a reasonable trade-off between performance and complexity, since additional features could not be readily
known or accessible during the design phase, as they hold a clear physical and mechanical meaning. Furthermore, Fig. 5 shows that
𝐽 exhibits higher values for the non-linear model. This can be attributed to the inherent complexity of the model itself and not to the
number of model parameters. Indeed, the non-linear model requires 1+4𝑃 coefficients while the linear model only 1+𝑃 parameters.
However, even equipping the linear model with ≈ 4× the number of the features, the 𝐽 metric does not reach the same performance
achieved by the non-linear model, as shown in Fig. 5. We can then conclude that the improvement was mostly associated to the
non-linear component (i.e. the hyperbolic tangent) included in the model, rather than the number of parameters.

The NL-MOD has offered an advantage in terms of flexibility, leading to an improvement in the fitting of data with respect to
both L-MOD and NL-MOD-CON. This improvement is due to the non-linear component introduced, which may create non-monotonic
relationships between the input feature and output 𝑏 and 𝛿. For example, the index of strength in NL-MOD with MFS has been found
to exhibit a non-monotonic relationship with parameters 𝑏 (quantified thanks to the additive property of the model), explaining the
superior performance in this case. Regarding NL-MOD-CON, the introduction of constraints has caused the non-linear model to
behave similar to L-MOD. Since the optimization problems for NL-MOD and NL-MOD-CON set up are non-convex with respect to
their parameters, they suffer from (i) sensitivity to initial conditions; and (ii) potential stop in local optima. This could explain why
NL-MOD-CON has performed worse than L-MOD even with the same set of input features (DKFS column in Table 2).

The additional analysis on the 50 scaffolds has demonstrated that NL-MOD generally outperforms L-MOD across different feature
selection schemes (Fig. 6). However, NL-MOD with DDFS scheme has appeared to be better when compared to the other models
on the test set (Table 2), but the median percentage error has been found statistically significantly different from 0 for 4 out of 5
11
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Fig. 7. Correlation coefficient between the features used to feed the NL-MOD with MFS to generate the scaffolds (input) and the features calculated on the
generated scaffolds (output) for 50 scaffolds of the test set. All the values have been normalized. (a) Macroscopic stiffness (�̄�), (b) Index of strength (𝐼𝜎 ), (c)
mean pore spacing (Tb.Sp. mean), (d) Zener coefficient (𝛼𝑍 ) and (e) mean wall thickness (Tb.Th. mean).

features (Fig. 6). This could be due to overfitting on the dataset, introduced by the GFFS algorithm which maximizes the 𝐽 metric
without considering a possible bias between the tested quantities.

As a representative example, the performances of the NL-MOD with MFS on the test set have been reported in Fig. 7. This model
exhibits a small error and all five features are useful and available in the design phase.

In particular, the stiffness and the index of strength are relevant for the mechanical stability [8,43], the pore spacing is related
to the bone growth [44,45], the wall thickness is related to the printability [36,46] and the Zener coefficient used to control the
mechanical anisotropy [29]. In Fig. 8 the three geometries are reported to show the differences between the scaffolds designed
through ML by using the NL-MOD with MFS and the ones designed during the direct problem. For this example, for each typology
of scaffold we selected the one exhibiting a volumetric fraction between 34% and 36%, namely in the range of volumetric fraction
typically used in BTE applications [47].

A hydroxyapatite TPMS scaffold that can be produced using Vat Photopolymerization printing technology has been designed
using the NL-MOD with MFS. The target features have been selected by considering a trabecular-like scaffold previously analyzed
by some of the Authors in [40]. The characteristics of the triply-periodic scaffold that the ML algorithm identified are in close
proximity to the majority of the target values. Specifically, it was found that the wall/trabecular spacing and macroscopic stiffness
are both within a 10% range. The trabecular thickness is within the technological bounds of Vat Photopolymerization, despite being
about 30% less than the target value. The mismatch in the Zener ratio 𝛼𝑍 is 20% higher than the target value. The strength index
(𝐼𝜎), revealed the largest discrepancy between the target value and the TPMS property; it is 60% higher for the TPMS than for
the trabecular-like structure. While the mismatch is on the safe side, the strength index is noticeably off from the target value.
Although the TPMS scaffold exhibits a thinner wall thickness and similar solid fraction if compared to the trabecular scaffold, finite
element simulations of a uniaxial compression test run on the hydroxyapatite trabecular scaffold and on the TPMS scaffold have
revealed that the macroscopic compressive strength for the TPMS scaffold is 7.5 MPa, while the strength for the trabecular structure is
3.34 MPa [40]. There are multiple explanation to this finding. The wall thickness in the TPMS structure is more uniformly distributed
throughout the scaffold (with a standard deviation which is 10% of the average thickness) if compared to the trabecular scaffold
which, instead, exhibits a standard deviation which is 30% of the average thickness. This implies that the trabecular scaffold has
many weak points (thinner structures) where the fracture is attracted, eventually anticipating the overall failure. Furthermore,
12
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Fig. 8. (a) Diamond, (b) Gyroid, and (c) IWP scaffolds. The blue part represents the common volumetric fraction between the scaffolds obtained during the
direct problem, and the scaffolds produced through ML. The purple part represents the under/over amount of volumetric fraction due to the ML error, being
5%, 3% and 4% for Diamond, Gyroid and IWP, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

volumetric percentage and wall thickness may not be the only factors. The TPMS scaffold, in particular, has more connectivity
(and connectivity density), which may have contributed to the higher strength. As shown in Fig. 9, in the trabecular-like scaffolds,
fractures propagate through the entire thickness of the trabeculae near the interconnections. On the other hand, in TPMS scaffolds,
fractures do not traverse the entire cross-section and are distributed in different locations. This should be attributed to the different
connectivity. The pattern of fractures in TPMS is not ordered because some cracks may propagate while others do not, as stress
concentrates at the tip of the growing fractures, promoting their further growth and resulting in a non-regular pattern. The NL-MOD
with MFS scheme did not select the connectivity as a relevant parameter, but it was selected by the NL-MOD with DDFS scheme.
This suggests that the connectivity is involved in the mechanical performances of scaffolds and further investigations on its role are
needed.

In general, target features may impose competing objectives [48], and the machine learning algorithm aims to achieve a
configuration that involves trade-offs, so this should be taken into account when evaluating the mismatch between the target features
and the TPMS scaffold features identified by the ML algorithm.

Although AI is nowadays broadly used for the prediction of material properties, at the best of our knowledge, only three
studies [26–28] use ML for the prediction of the design parameters starting from the desired scaffold’s properties. Kumar et al. [26]
proposed an artificial neural network trained to estimate the porosity, the number of pores and their shapes using, as design
parameters, the effective thermal conductivity and permeability. Their model was calibrated using about 200 scaffolds with three
different shapes of pores placed within each 3D structure. Zheng et al. [27] trained a 3D conditional generative adversarial network
able to generate Voronoi-like structures using elastic modulus and volumetric fraction as design parameters. The model was trained
using 10 000 scaffolds randomly created, which were then used to calibrate a deep learning model able to generate an endless
number of scaffolds with a single pair of design parameters. Liu et al. [28] proposed a neural network to tackle the forward problem
(predicting the stiffness coefficients from geometry’s parameters) and a regenerative genetic algorithm for the inverse design of a
scaffold (finding geometry’s parameters from the target stiffness coefficients). For the scope, they generated a dataset consisting of
8000 scaffolds with four TPMS geometries (Primitive, Diamond, Gyroid and Octo) with porosities ranging from 50% to 75%. The
scaffolds went through FE simulations for computing the stiffness matrix. The dataset was then used to train the neural network.
The main difference between the three aforementioned models and ours was that Kumar et al. [26] and Zheng et al. [27] used only
two features, and Liu et al. [28] three features, to predict the design parameters, while we showed that the TPMS geometries were
better characterized using five features. It is worth mentioning that in our work, scaffolds have been characterized by properties from
different domains, tackling the task in a multidisciplinary way, thereby a higher number of features is required for its design. Here,
we considered mechanical, morphometric and physical domains altogether. Therefore, five features can be intended a reasonable
quantity for such a complex task.

Solely regarding Zheng et al.’s work [27], they investigated volumetric fractions up to 0.5. As they observed in their study, when
inputting the network with design parameters outside the ranges available in the training set, the generated scaffolds displayed
incorrect geometries. In our case, for the Diamond and Gyroid geometries, and partly for the IWP as well, we considered the whole
range of feasible scaffolds. Despite this should make our models robust to large ranges of design parameters, in general, we do not
expect our ML models to provide meaningful results in case the input features are out of the data space. However, identifying such
cases is challenging. Techniques from the field of Bayesian methods provide confidence levels for the ML predictions. Such levels
can help discarding inputs which were not present in the training set because the confidence would drop significantly. We leave
13
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Fig. 9. Finite element analysis of uniaxial compressive test: (a) trabecular-like scaffold exhibiting the crack pattern in purple; (b) TPMS gyroid scaffold exhibiting
the crack pattern in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

this investigation to future studies. Finally, differently from Zheng et al.’s approach, our models cannot generate multiple scaffolds
with the same design parameters.

In order to limit the computational time, a series of simplifications have been introduced in this study to create the dataset.
Firstly, three repetitive units per edge were considered. This decision results in a slight underestimation of the macroscopic stiffness
(�̄�) by approximately 4% [49]. Secondly, the strength index (𝐼𝜎) has been computed using a probabilistic model [37] and employed
as a substitute for compression strength since fracture simulations are highly time-consuming and cannot be performed on such a
number of scaffolds. Fracture simulations using a voxel-wise mesh can be conducted, modeling the crack nucleation and propagation
to establish a correlation between 𝐼𝜎 and the simulated strength [50]. Thirdly, for permeability analyses a simplified permeability
index was computed, namely EPCI. It has to be considered as a performance index, thereby it is necessary to conduct Computational
Fluid Dynamics (CFD) simulations [51,52] to obtain a correlation between the EPCI and the permeability.

Furthermore, the dataset consists of synthetic data rather than real-world data. The printing process and its resulting manu-
facturing defects on the scaffolds were not taken into account. Geometrical distortion and micro-porosity are the elements that
significantly alter designed scaffolds from printed scaffolds [36,50]. As a result, the data distribution may not accurately represent
the reality. To ensure the practical applicability of ML models, it is crucial to complement synthetic data with real-world data during
model development and validation. This could lead to a more robust ML model and it is left for future investigations.

5. Conclusions

The aim of this paper was to create a new numerical tool for the automatic identification of the microstructure of TPMS scaffolds
which simultaneously satisfies multidisciplinary requirements. In particular, mechanical properties like stiffness and strength,
mechano-biology parameters like pore size and technological constraints like wall thickness are accounted for. To this purpose linear
and non-linear ML models are considered with specific reference to the hydroxyapatite material. The achieved results have shown
that the latter offers a better prediction of design parameters with the warning that input parameters may have conflicting objectives,
the ML models can successfully design a TPMS scaffold with features prescribed based on biomechanical, mechanobiological and
technological constraints. This study represents a significant step forward in the quest for improved bone regeneration therapies
which, however, needs to be further developed. Most notably, a critical component that must be considered in the design of efficient
BTE scaffolds is the ability of the currently available AM processes to build ceramic devices with high fidelity.
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