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ON A SYSTEM OF COUPLED CAHN-HILLIARD EQUATIONS

ANDREA DI PRIMIO1, MAURIZIO GRASSELLI2

Abstract

We consider a system which consists of a Cahn-Hilliard equation coupled with a Cahn-Hilliard-Oono equation

in a bounded domain of Rd, d = 2, 3. This system accounts for macrophase and microphase separation in

a polymer mixture through two order parameters u and v. The free energy of this system is a bivariate

interaction potential which contains the mixing entropy of the two order parameters and suitable coupling

terms. The equations are endowed with initial conditions and homogeneous Neumann boundary conditions

both for u, v and for the corresponding chemical potentials. We first prove that the resulting problem is

well posed in a weak sense. Then, in the conserved case, we establish that the weak solution regularizes

instantaneously. Furthermore, in two spatial dimensions, we show the strict separation property for u and

v, namely, they both stay uniformly away from the pure phases ±1 in finite time. Finally, we investigate the

long-time behavior of a finite energy solution showing, in particular, that it converges to a single stationary

state.

Keywords. Systems of Cahn-Hilliard equations, singular potentials, well-posedness, regularization, strict sep-
aration property, convergence to equilibrium, global and exponential attractors.

1 Introduction

Cahn-Hilliard type equations are extensively used to model phase separation phenomena which occur in many
different contexts (see, for instance, [23] and references therein). The prototypical example in this regard is
represented by phase separation processes taking place in binary alloys, as originally proposed in [5]. Here we
are interested in the theoretical analysis of a system of Cahn-Hilliard equation coupled with a Cahn-Hilliard-
Oono equation proposed in [3] to describe the dynamics of certain polymer blends. In that framework, a
mixture consisting of a diblock copolymer and a homopolymer (see [19] for detailed definitions) is taken into
consideration. From the phenomenological point of view, two distinct, but simultaneous phase separation
processes take place. On one hand, the so-called macrophase separation occurs between the homopolymer and
the copolymer. As a consequence, the diblock copolymer is confined in a region assuming typically a spherical
or ellipsoidal shape. On the other hand, the microphase separation involves the two blocks of the copolymer,
creating regions characterized by the prevalence of one or the other. The two processes generate strikingly
regular patterns, which have recently been experimentally investigated as well as analyzed numerically (see,
e.g., [3, 4, 21, 22] and their references).

In order to introduce the system we indicate by Ω ⊂ R
d, d = 2, 3 a bounded, open, connected and sufficiently

smooth domain. Then, we denote with u(x, t) and v(x, t) the relative concentration differences of the phases in
the macrophases and the microphase at point x ∈ Ω at time t, respectively, while the corresponding chemical
potentials are instead denoted by µ(x, t) and ϕ(x, t). Let T > 0 be a given final time and ε2u, ε

2
v, σ be three

positive real parameters. The system reads as follows (see [3])





∂u

∂t
= ∆µ in Ω × (0, T ),

µ = −ε2u∆u +
∂F

∂u
(u, v) in Ω × (0, T ),

∂v

∂t
+ σ

(
v −

1

|Ω|

∫

Ω

v0 dx

)
= ∆ϕ in Ω × (0, T ),

ϕ = −ε2v∆v +
∂F

∂v
(u, v) in Ω × (0, T ),

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω × (0, T ),

∂µ

∂n
=

∂ϕ

∂n
= 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

v(·, 0) = v0 in Ω,

(1.1)

where |Ω| denotes the d-dimensional Lebesgue measure of Ω and the bivariate potential density F is the sum of
three contributions, namely

F (u, v) =
(u2 − 1)2

4
+

(v2 − 1)2

4
+ C(u, v), (1.2)
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where the coupling term C(u, v) is given by

C(u, v) = αuv + βuv2 + γu2v. (1.3)

Here the coupling coefficients α, β, γ are three given real parameters. In the present work we are interested to
provide a theoretical analysis of Problem (1.1) by replacing the double well potentials in (1.2) with the ther-
modynamically relevant potentials characterized by the mixing entropy densities. More precisely, we consider
Problem (1.1) with

F (u, v) = S(u; θu, θ0,u) + S(v; θv, θ0,v) + C(u, v), (1.4)

where

S(r, θr, θ0,r) =
θr
2

[(1 + r) log(1 + r) + (1 − r) log(1 − r)] −
θ0,r
2

r2, r ∈ (−1, 1), (1.5)

with 0 < θr < θ0,r and r = u or r = v. Here θr and θ0,r represent the absolute temperature and the critical
temperature under which the separation processes take place, respectively. We recall that S is known as singular
potential (or Flory–Huggins potential, see [11, 17], cf. also [16]). We point out that the regular double well
potentials in (1.2) are just convenient approximations of S but they do not ensure that u and v take their values
in the physical range [−1, 1].

It is worth recalling that ε2u, ε
2
v, σ, as well as the coupling coefficients, have a physical interpretation in the

framework of polymer blends. For instance, the quantities εu and εv are proportional to the thickness of the
propagating fronts of each component, and are therefore linked to the rapidity of variation of u and v in the
interface region (see [3] for the details).

Problem (1.1) entails the conservation of the total mass of both the order parameters. Indeed, setting

f :=
1

|Ω|

∫

Ω

f dx,

for any Lebesgue-integrable function f , then we get

{
u(t) = u0,

v(t) = v0,
(1.6)

for any t ≥ 0. However, this might not always be the case. Indeed, if we consider the Cahn-Hilliard-Oono
equation for v in the following general form (see, e.g., [14] and references therein)

∂v

∂t
+ σ (v − c) = ∆ϕ in Ω × (0, T ),

for some prescribed c ∈ (−1, 1), one obtains

v(t) = c + e−σt(v0 − c),

implying that two possible scenarios may arise. In the conserved case, the quantity v is constant and equal
to c = v0, whereas in the so-called off-critical case, i.e. c 6= v0, v(t) converges exponentially fast to c as t
approaches infinity. As we shall see, this is not a small detail from the theoretical viewpoint (cf. [14]).

We also note that the conserved case can be seen as the gradient flow of the free energy

ΨΩ(u,∇u, v,∇v) =

∫

Ω

(
ε2u

|∇u|2

2
+ ε2v

|∇v|2

2
+ F (u, v)

)
dx+ σ

∫

Ω

∫

Ω

(v(x) − v0)G(x, y)(v(y) − v0) dydx, (1.7)

which is known as Ohta-Kawasaki functional (see, for instance, [9, 18, 26] and references therein for regular
potentials). In (1.7), G denotes the Green function associated to the negative Laplace operator with homoge-
neous Neumann boundary conditions. We recall that the Cahn-Hilliard-Oono equation with singular potential
has recently been analyzed in [14] while its coupling with the Navier-Stokes system has been studied in [24] (see
also their references for the regular potential case). Instead, only numerical simulations are available so far for
Problem (1.1). Our goal is to extend the analysis done in [14] to the present problem. As we shall see, this is
not a straightforward task because of the coupling term (1.3).

Plan of the paper. In Section 2, we introduce some notation and the functional setting. Section 3 is devoted
to introduce a weak formulation of our problem in the off-critical case and to state its well-posedness whose
proof is given in Section 4. The regularization properties in the conserved case are analyzed in Section 5, while
Section 6 is devoted to establish, in the conserved case, the strict separation property of both the macrophase
and the microphase in dimension two. In Section 7 we analyze the longtime behavior of weak solutions in the
conserved case. In particular, we show that any weak solution converges to a single stationary state.
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2 Notation and functional setting

Throughout all this work, given any pair of positive integers k, p, we denote by W k,p(Ω) the Sobolev space of
Lp(Ω) functions with distributional derivatives of order less or equal to k also in Lp(Ω). This space is endowed
with the classical norm ‖ · ‖Wk,p(Ω). For any choice of k ∈ N, Hk(Ω) := W k,2(Ω) is a Hilbert space with respect
to the scalar product

(f, g)Hk :=
∑

|s|≤k

(Dsf,Dsg),

for any f, g ∈ Hk(Ω). We recall the Hilbert triplet

V := H1(Ω) →֒ H := L2(Ω) →֒ V ∗ := H1(Ω)∗,

with dense, continuous and compact injections (in both two and three spatial dimensions). Here H1(Ω)∗ denotes
the topological dual space of H1(Ω). The three spaces V,H, V ∗ are endowed with the norms ‖ · ‖V , ‖ · ‖, ‖ · ‖V ∗ ,
respectively. In particular, ‖ · ‖ denotes the classical L2-norm (possibly for functions taking values in R

d),
whereas

‖u‖2V = ‖u‖2 + ‖∇u‖2

for every u ∈ V . Finally, ‖ · ‖V ∗ is the standard operator norm in a dual space. From here onwards, the scalar
products inducing said norms are denoted as (·, ·)·, accordingly. The duality between a (real) Banach space
X and its topological dual X∗ is denoted by 〈·, ·〉. We now recall some well-known and useful results. Let us
introduce the spaces

V0 := {u ∈ V : u = 0}, V ∗
0 :=

{
L ∈ V ∗ : L :=

1

|Ω|
〈L, 1〉 = 0

}
,

where 〈·, ·〉 denotes the pairing between V ∗ and V . Let us consider the linear operator

A : V → V ∗, u 7→

(
v 7→

∫

Ω

∇u · ∇v dx

)
,

whose restriction to V0 is an isomorphism between V0 and its topological dual V ∗
0 . The inverse operator

N := A−1 is well defined. This operator, by definition, satisfies

NAu = u, ANL = L ∀u ∈ V0, ∀L ∈ V ∗
0 , (2.1)

so that N is the inverse of the negative Laplace operator with homogeneous Neumann conditions. The following
result is useful and straightforward to prove.

Proposition 2.1. Let A and N be defined as above. Then, the following identities hold

(i) 〈Au,NL〉 = 〈L, u〉, ∀ u ∈ V0, L ∈ V ∗
0 ;

(ii) 〈L1,NL2〉 = (∇(NL1),∇(NL2)), ∀ L1, L2 ∈ V ∗
0 .

Concerning the choice of suitable norms on V0 and V ∗
0 , we define

‖L‖∗ := ‖∇(NL)‖ =
√
〈L,NL〉

on V ∗
0 , where the second equality is due to Proposition 2.1-(ii), and

‖L‖2−1 := ‖L− L‖2∗ + |L|2

on V ∗. Finally, we state the following

Proposition 2.2. The norm ‖ · ‖∗ is an equivalent norm in V ∗
0 , while the norm ‖ · ‖−1 is an equivalent norm

in V ∗ (with respect to the usual operator norms).

3 Weak formulation and well-posedness

In this section we first introduce the weak formulation of (1.1) in the more general off-critical case, namely, the
third equation is replaced by

∂v

∂t
+ σ (v − c) = ∆ϕ in Ω × (0, T ),

3



for some known constant c ∈ (−1, 1). More precisely, we consider the following (formal) initial and boundary
value problem 




∂u

∂t
= ∆µ in Ω × (0, T ),

µ = −ε2u∆u +
∂F

∂u
(u, v) in Ω × (0, T )

∂v

∂t
+ σ (v − c) = ∆ϕ in Ω × (0, T ),

ϕ = −ε2v∆v +
∂F

∂v
(u, v) in Ω × (0, T ),

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω × (0, T ),

∂µ

∂n
=

∂ϕ

∂n
= 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

v(·, 0) = v0 in Ω.

(3.1)

The main goal of this section is to state and prove the well-posedness of the weak formulation of (3.1) which is
given by

Definition 3.1. Let u0, v0 ∈ V be such that F (u0, v0) ∈ L1(Ω) and u0, v0 ∈ (−1, 1). Let c ∈ (−1, 1). A weak
solution to Problem (3.1) is a pair (u, v) enjoying the following properties:

(i) u ∈ L∞([0, T ];V ) ∩ L2([0, T ];H2(Ω)) ∩ L∞(Ω × (0, T ));

(ii) v ∈ L∞([0, T ];V ) ∩ L2([0, T ];H2(Ω)) ∩ L∞(Ω × (0, T ));

(iii) du
dt ∈ L2([0, T ];V ∗);

(iv) dv
dt ∈ L2([0, T ];V ∗);

(v) µ = −ε2u∆u + dF
du ∈ L2([0, T ];V );

(vi) ϕ = −ε2v∆v + dF
dv ∈ L2([0, T ];V );

(vii) |u(x, t)| < 1 for a.a. (x, t) ∈ Ω × (0, T );

(viii) |v(x, t)| < 1 for a.a. (x, t) ∈ Ω × (0, T );

(ix) (u, v) solves the system






〈
∂u

∂t
, s

〉
+ (∇µ,∇s) = 0 ∀ s ∈ V, a.e. in (0, T ),

〈
∂v

∂t
, w

〉
+ σ(v − c, w) + (∇ϕ,∇w) = 0 ∀ w ∈ V, a.e. in (0, T );

(x) ∂u
∂n

= 0 a.e. in ∂Ω × (0, T );

(xi) ∂v
∂n

= 0 a.e. in ∂Ω × (0, T );

(xii) u(0) = u0 a.e. in Ω;

(xiii) v(0) = v0 a.e. in Ω.

Remark 3.1. From Definition 3.1, thanks to the fact that u, v ∈ L2([0, T ];V ) and their time derivatives belong
to L2([0, T ];V ∗), we directly infer that u, v ∈ C0([0, T ];H).

Remark 3.2. Let T > 0 be arbitrary. On account of the L∞(Ω × (0, T ))-regularity of each phase, it holds that
u, v ∈ L∞([0, T ];Lp(Ω)) for each p ≥ 1. In particular, the function mapping t 7→ ‖u(t)‖L∞ (same for v) is
measurable and essentially bounded (see [13, Rem. 3.3]).

Let us define now the energy functional

ΨΩ(u, v) =
ε2u
2
‖∇u‖2 +

ε2v
2
‖∇v‖2 +

∫

Ω

F (u, v) dx. (3.2)

The well-posedness result is

4



Theorem 3.1. Let u0, v0 ∈ V be such that F (u0, v0) ∈ L1(Ω) and u0, v0 ∈ (−1, 1). Let c ∈ (−1, 1) be given.
Then, Problem (3.1) has a unique finite energy solution. Moreover, the following energy inequality holds

ΨΩ(u(t), v(t)) +
1

2

∫ t+1

t

(
‖∇µ(τ)‖2 + ‖∇ϕ(τ)‖2

)
dτ ≤ ΨΩ(u0, v0)e−σt + C (3.3)

for any t ≥ 0, where C is a positive constant depending on all the parameters of the problem. Furthermore,
given R ≥ 0, T > 0 and m ∈ (0, 1] such that |c| ≤ m, there exists a constant K = K(m,R, T ) such that,
for any solutions (u1, v1), (u2, v2) on [0, T ] originating from the initial conditions (u01, v01), (u02, v02) satisfying
ΨΩ(u0i, v0i) ≤ R and |u0i|, |v0i| ≤ m for i = 1, 2, the continuous dependence estimate

‖u1(t) − u2(t)‖V ∗ + ‖v1(t) − v2(t)‖V ∗ +

(∫ T

0

‖u1(t) − u2(t)‖2V dt

) 1
2

+

(∫ T

0

‖v1(t) − v2(t)‖2V dt

) 1
2

≤ K(‖u01 − u02‖V ∗ + ‖v01 − v02‖V ∗ + |u01 − u02|
1
2 + |v01 − v02|

1
2 ) (3.4)

holds for every t ∈ [0, T ] and entails the uniqueness of a weak solution.

Remark 3.3. Elliptic arguments yield higher regularity for u and v. Indeed, on account of [15, (3.11)], we can
also deduce u, v ∈ L4([0, T ];H2(Ω)). Also, recalling [1, Thm. 6], we can prove that u, v ∈ L2([0, T ];W 2,r(Ω)),
where r = 6 if d = 3 or r ∈ (1,∞) if d = 2.

4 Proof of Theorem 3.1

The proof is split into four steps. First we introduce a convenient approximation of the potential F which is
crucial in order to establish the existence of a weak solution. This is obtained in the second step through a
suitable Galerkin scheme. The final two steps are devoted to prove the global energy inequality (3.3) and the
continuous dependence estimate (3.4).

4.1 Approximating the bivariate potential

Recalling (1.5), we set

Ŝ(r; θr) =
θr
2

[(1 + r) log(1 + r) + (1 − r) log(1 − r)] , r ∈ (−1, 1). (4.1)

We point out that Ŝ is meant to be extended by (right or left) continuity at the endpoints and then over the
whole real line with value Ŝ(r) = +∞ whenever |r| > 1. It is well known that the function Ŝ has the following
elementary properties:

(i) Ŝ is real analytic in (−1, 1), and in particular belongs to C4((−1, 1)), where Cp(I) denotes the set of
(classically) k-times-continuously differentiable functions over an interval I when p > 0, and the set of
continuous functions over I when p = 0;

(ii) there exists a constant k > 0 such that Ŝ(4)(u; θu) and Ŝ(4)(v; θv) are non-decreasing in (−1,−1 + k) and
non-increasing in (1 − k, 1);

(iii) there holds
lim

r→−1+
Ŝ′(r) = −∞; lim

r→1−
Ŝ′(r) = +∞;

(iv) there holds
Ŝ′′(r; θu) ≥ θu > 0; Ŝ′′(r; θv) ≥ θv > 0, ∀ r ∈ (−1, 1);

(v) there exists c > 0 and ǫ0 > 0 such that

Ŝ(4)(r; θu) ≥ c; Ŝ(4)(r; θv) ≥ c, ∀ r ∈ (−1,−1 + ǫ0] ∪ [1 − ǫ0, 1);

(vi) there exists ǫ1 > 0 such that, for each k = 0, 1, 2, 3, 4, and for each j = 0, 1,





Ŝ(k)(r; θr) ≥ 0 ∀ r ∈ [1 − ǫ1, 1),

Ŝ(2j+2)(r; θr) ≥ 0 ∀ r ∈ (−1,−1 + ǫ1],

Ŝ(2j+1)(r; θr) ≤ 0 ∀ r ∈ (−1,−1 + ǫ1],

in both cases r = u and r = v, where Ŝ(0) := Ŝ.
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Remark 4.1. In the sequel, Ŝ(r; θr) will denote any function satisfying the above mentioned properties. Of
course, (4.1) is an admissible choice.

The aim of this first step is to introduce a suitable regular (i.e. with no singularities over the whole plane R
2)

approximation of F (i.e. of Ŝ), dependent on a positive real (small) parameter δ in such a way that the original
potential is recovered in the limit δ → 0+. To this end, we introduce a family of regular potentials based upon
the fourth-order Taylor expansion of Ŝ (see [12]). Fixed any sufficiently small δ ∈ (0, 1), let Ŝδ : R → R be a
globally defined approximation of the singular part of the function S given by

Ŝδ(r) =





4∑

i=0

Ŝ(i)(−1 + δ)

i!
[r − (−1 + δ)]i if r ≤ −1 + δ,

Ŝ(r) if |r| ≤ 1 − δ,
4∑

i=0

Ŝ(i)(1 − δ)

i!
[r − (1 − δ)]i if r ≥ 1 − δ.

(4.2)

Accordingly, we set

Sδ(u; θu, θ0,u) := Ŝδ(u; θu) −
θ0,u

2
u2, Sδ(v; θv, θ0,v) := Ŝδ(v; θv) −

θ0,v
2

v2, (4.3)

and
Fδ(u, v) := Sδ(u; θu, θ0,u) + Sδ(v; θv, θ0,v) + C(u, v). (4.4)

From now on the dependence on the absolute and the critical temperatures in S, Ŝ and their regular approxi-
mations will be omitted. Here below we state and prove a result on the coercivity of Fδ which will be helpful
in the next subsection.

Proposition 4.1. Fδ ∈ C4(R2) for any sufficiently small δ ∈ (0, 1). Furthermore, there exists δ0 ∈ (0, 1) and
two positive constants k1, k2 independent of δ such that

Fδ(u, v) ≥ k1(u4 + v4) − k2 ∀ u, v ∈ R, δ ∈ (0, δ0].

Proof. We slightly adapt the proof of [12, Lemma 1]. Without loss of generality, let us first consider u ≥ 0.
With reference to properties (v) and (vi), fix δ < δ0 := min(ǫ0, ǫ1). Then, given a value of u, one and only one
of the following cases applies.

∗ 0 ≤ u ≤ 1 − δ In this range, Ŝδ(u) = Ŝ(u) ≥ 0. Given any k1, k2 > 0, then one has

k1u
4 − k2 ≤ k1 − k2

thus, provided that k2 ≥ k1, the right hand side is negative, yielding

Ŝδ(u) ≥ k1u
4 − k2. (4.5)

∗ 1 − δ < u < 1 Owing to properties (v) and (vi), one has

Ŝδ(u) ≥
1

24
Ŝ(4)(1 − δ)[u− (1 − δ)]4 ≥

c

24
[u− (1 − δ)]4 ≥ 0,

and thus one argues similarly to get (4.5).

∗ u ≥ 1 From properties (v) and (vi) one easily proves

Ŝδ(u) ≥
1

24
Ŝ(4)(1 − δ)[u − (1 − δ)]4 ≥

c

24
(u− 1)4 ≥

c

48
u4 − k,

so that we get k1 = c
48 and k2 ≥ k = k(c).

As far as the case u < 0 is concerned, a very similar reasoning can be carried out, so that, in conclusion,

Ŝδ(u) ≥ k1u
4 − k2 ∀ u ∈ R, (4.6)

for a fixed k1 and k2 ≥ k = k(c), provided that δ is sufficiently small. This, of course, lets us deduce that

Ŝδ(u) + Ŝδ(v) ≥ k1(u4 + v4) − k2 ∀ u, v ∈ R, (4.7)

6



for any sufficiently small δ. Finally, we consider the polynomial term. Owing to the elementary inequality
x ≥ −|x| and the Young inequality,

C(u, v) −
θ0,u

2
u2 −

θ0,v
2

v2 = αuv + βuv2 + γu2v −
θ0,u

2
u2 −

θ0,v
2

v2 ≥

≥ −
θ0,u

2
u2 −

θ0,v
2

v2 − |α|

(
u2

2
+

v2

2

)
−

(
|β|

3
+

2|γ|

3

)
|u|3 −

(
2|β|

3
+

|γ|

3

)
|v|3.

Let λ > 0 be arbitrary. Then, there exists a constant K = K(λ) such that

C(u, v) −
θ0,u

2
u2 −

θ0,v
2

v2 ≥ −λ(u4 + v4) −K(λ) ∀ u, v ∈ R, (4.8)

where K(λ) is a constant depending only on the choice of λ. In particular, if λ < k1, then, up to redefinition of
constants, then (4.7) and (4.8) imply the thesis.

Remark 4.2. Proposition 4.1 shows why (4.2) is particularly convenient in this context. Indeed if we chose a
more elegant approximation like, for instance, the one in [13] then we were not able to control the growth of
the interaction polynomial C(u, v).

4.2 Existence

Let δ ∈ (0, 1) be sufficiently small. Consider an approximation of Problem (3.1) with Fδ defined by (4.4) in
place of F , namely 




∂u

∂t
= ∆µ in Ω × (0, T ),

µ = −ε2u∆u +
∂Fδ

∂u
(u, v) in Ω × (0, T ),

∂v

∂t
+ σ(v − c) = ∆ϕ in Ω × (0, T ),

ϕ = −ε2v∆v +
∂Fδ

∂v
(u, v) in Ω × (0, T ),

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω × (0, T ),

∂µ

∂n
=

∂ϕ

∂n
= 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

v(·, 0) = v0 in Ω.

(4.9)

The weak formulation of Problem (4.9) is similar to the one for Problem (3.1), provided that µ and ϕ are now
computed using Fδ instead of F . In particular, we have






〈
∂u

∂t
, s

〉
+ (∇µ,∇s) = 0 ∀ s ∈ V, a.e. in (0, T ),

〈
∂v

∂t
, w

〉
+ σ(v − c, s) + (∇ϕ,∇w) = 0 ∀ w ∈ V, a.e. in (0, T ).

We now establish the existence of a weak solution to this approximating problem by means of a Galerkin scheme.
In the following, for any m ∈ N, m ≥ 1, we denote with (ηm, wm) ∈ R×H the (countably many) eigencouples

of the Neumann–Laplace operator, namely the relation

−∆wm = ηmwm

holds for any positive integer m. We recall that the set of eigenvectors is an orthonormal basis in H and an
orthogonal basis in V . Let m ∈ N, m ≥ 1 and set Wm := span(w1, ..., wm). Consider the projection of the weak
form of Problem (4.9) on Wm, namely find um, vm : [0, T ] → Wm so that





〈
∂um

∂t
, s

〉
+ (∇µm,∇s) = 0 ∀ s ∈ Wm, a.e. in (0, T ),

µm = Πm

(
−ε2u∆um +

∂Fδ

∂u
(um, vm)

)
a.e. in (0, T ),

〈
∂vm
∂t

, w

〉
+ σ(vm − c, w) + (∇ϕm,∇w) = 0 ∀ w ∈ Wm, a.e. in (0, T ),

ϕm = Πm

(
−ε2v∆vm +

∂Fδ

∂v
(um, vm)

)
a.e. in (0, T ),

um(0) = u0,m in Ω,

vm(0) = v0,m in Ω,

(4.10)
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where Πm : H → Wm is the projector onto the finite-dimensional space Wm. We denote the coordinates of um

and vm with respect to the chosen basis of Wm as

um(t) =

m∑

k=1

um,k(t)wk; vm(t) =

m∑

k=1

vm,k(t)wk,

where um,k and vm,k are real-valued functions from [0, T ] for any value of m and 1 ≤ k ≤ m. As usual in
Galerkin schemes, we now take in (4.10) s = wi and w = wj , as i, j vary from 1 to m, yielding, after some
manipulations,





dum,i

dt
+ ε2uη

2
i um,i + ηi

(
Πm

(
∂Fδ

∂u
(um, vm)

)
, wi

)
= 0 ∀ i = 1, ...,m, a.e. in (0, T ),

dvm,j

dt
+ (σ + ε2vη

2
j )vm,j − σc wj + ηj

(
Πm

(
∂Fδ

∂v
(um, vm)

)
, wj

)
= 0 ∀ j = 1, ...,m, a.e. in (0, T ),

um(0) = u0,m in Ω,

vm(0) = v0,m in Ω,

namely a Cauchy initial value problem consisting of 2m ordinary differential equations in the unknowns
um,k, vm,k, for k = 1, ...,m. In order to have a better understanding of the differential problem above, we
restate it in vectorial form. Let Um and Vm denote the vectors of functions whose components are um,k and
vm,k, respectively. Let also U0,V0 denote the real coordinates of u0,m and v0,m with respect to the eigenvector
basis, accordingly. Then, we have





d

dt

[
Um

Vm

]
= F̃δ

([
Um

Vm

])
a.e. in (0, T ),

[
Um

Vm

]
(0) =

[
U0

V0

]
,

(4.11)

where the function F̃δ : Rm × R
m ∼= R

2m → R
2m has the form

F̃δ

([
x

y

])
= L

[
x

y

]
+ Nδ

([
x

y

])
+ b

and in turn, L is a diagonal real 2m × 2m matrix, while Nδ : R2m → R
2m is a nonlinear function depending

on the potential approximation parameter δ and b ∈ R
2m is a constant real vector. In light of the Cauchy-

Lipschitz theorem, system (4.11) has a unique solution (Um,Vm) ∈ C1([0, T ∗
m];R2m) on the maximal interval

[0, T ∗
m] where T ∗

m ∈ (0, T ]. We now show that the approximating (local) solution satisfies an energy inequality
itself. Let us consider the approximated energy functional

Ψδ
Ω(u, v) = ε2u

‖∇u‖2

2
+ ε2v

‖∇v‖2

2
+

∫

Ω

Fδ(u, v)dx.

Then, consider (4.10) and pick as test functions s = µm, w = ϕm while testing the equations for the chemical
potentials by ∂tum := ∂um

∂t
and ∂tvm := ∂vm

∂t
, respectively. From the four resulting equations, owing to the fact

that, by definition of orthogonal projection,

(x− Πm(x), w) = 0 ∀x ∈ H, w ∈ Wm, (4.12)

one deduces the energy equality

d

dt
Ψδ

Ω(um, vm) + σ(vm − c, ϕm) + ‖∇µm‖2 + ‖∇ϕm‖2 = 0. (4.13)

Observe now that

σ(vm − c, ϕm) = σ

(
vm − c,Πm

(
−ε2v∆vm +

∂Fδ

∂v
(um, vm)

))
= σ

(
vm − c,−ε2v∆vm +

∂Fδ

∂v
(um, vm)

)
,

since vm − c ∈ Wm. Indeed, let us remind that all constant functions on Ω belong to Wm for any m ≥ 1, since
w1 ≡ 1 is the first eigenfunction of the Neumann–Laplace operator. Therefore, we get

σ(vm − c, ϕm) = σε2v‖∇vm‖2 + σ

(
vm − c,

∂Fδ

∂v
(um, vm)

)

= σε2v‖∇vm‖2 + σ

(
vm − c, Ŝ′

δ(vm) − θ0,vvm +
∂C

∂v
(um, vm)

)
. (4.14)
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Observe now that differentiating (4.2) twice yields

Ŝ′′
δ (r) =





2∑

i=0

Ŝ(i+2)(−1 + δ)

i!
[r − (−1 + δ)]i if r ≤ −1 + δ,

Ŝ′′(r) if |r| ≤ 1 − δ,
2∑

i=0

Ŝ(i+2)(1 − δ)

i!
[r − (1 − δ)]i if r ≥ 1 − δ,

therefore Ŝδ is convex (see properties (iv), (v), (vi)) provided δ is sufficiently small (i.e. δ < min(ǫ0, ǫ1)). Hence
we infer that ∫

Ω

Ŝδ(vm) dx ≤

∫

Ω

Ŝ′
δ(vm)(vm − c) dx +

∫

Ω

Ŝδ(c) dx

or, equivalently, ∫

Ω

Ŝ′
δ(vm)(vm − c) dx ≥

∫

Ω

Ŝδ(vm) dx−

∫

Ω

Ŝδ(c) dx. (4.15)

Moreover, we observe that

Q(um, vm) := (vm − c)

(
−θ0,vvm +

∂C

∂v
(um, vm)

)
(4.16)

is an algebraic polynomial of degree 3. Thus, on account of (4.14)-(4.15), from (4.13) we deduce

d

dt
Ψδ

Ω(um, vm) + σε2v‖∇vm‖2 + ‖∇µm‖2 + ‖∇ϕm‖2 + σ

∫

Ω

Q(um, vm) dx ≤

∫

Ω

Ŝδ(c) dx. (4.17)

Recalling now Proposition 4.1, we can find K(k1, |Ω|, σ) > 0 such that
∣∣∣∣
∫

Ω

σQ(um, vm) dx

∣∣∣∣ ≤
∫

Ω

k1(u4
m + v4m) dx + K(k1, |Ω|, σ). (4.18)

Let us redefine the potential approximation by adding the constant k2 appearing in Proposition 4.1, namely

F̃δ(u, v) = Fδ(u, v) + k2,

so that the very same result entails

F̃δ(u, v) ≥ k1(u4 + v4) ∀ u, v ∈ R. (4.19)

Accordingly, we set

Ψ̃δ
Ω(u, v) =

ε2u
2
‖∇u‖2 +

ε2v
2
‖∇v‖2 +

∫

Ω

F̃δ(u, v)dx,

in order to have a positive (and coercive) energy functional. Exploiting (4.18) and (4.19) in (4.17), jointly with
∫

Ω

F̃δ(um, vm) dx ≤ Ψ̃δ
Ω(um, vm),

we obtain

d

dt
Ψ̃δ

Ω(um, vm) + σε2v‖∇vm‖2 + ‖∇µm‖2 + ‖∇ϕm‖2 ≤ Ψ̃δ
Ω(um, vm) +

∫

Ω

Ŝδ(c) dx + K. (4.20)

It is straightforward to see that the constant at right hand side is independent of the Galerkin parameter m.
An application of the Gronwall lemma yields the energy inequality

Ψ̃δ
Ω(um(t), vm(t)) ≤ Ψ̃δ

Ω(u0,m, v0,m)et + K (4.21)

for some K > 0 independent of m (the constant K is redefined without relabeling it). The bound implies that
the approximating solutions are well defined on the whole [0, T ]. Integrating (4.20) over [0, t], t ∈ (0, T ], and
using (4.21), we eventually get

Ψ̃δ
Ω(um(t), vm(t)) +

∫ t

0

‖∇µm(τ)‖2 + ‖∇ϕm(τ)‖2 dτ ≤ K1Ψ̃δ
Ω(u0,m, v0,m)eT + K2, ∀ t ∈ [0, T ], (4.22)

for some positive constants K1,K2 independent of m. Existence can now be recovered through (4.22). Indeed,
we can first pass to the limit in the Galerkin scheme to obtain the existence of a solution to the regularized
problem (see, e.g. [24, Sec. 3]). Then we use uniform estimates with respect δ to get the existence of a weak
solution letting δ go to 0 along a suitable sequence (see, for instance, [15, Sec. 3] for the details).
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4.3 Proof of (3.3)

We can now take advantage of the bounds (vii) and (viii) (see Definition 3.1) which hold for any given T > 0.
Indeed, consider (ix) in Definition 3.1 and choose s = µ, w = ϕ. Then test the equations for the chemical
potentials (see (v)-(vi) in Definition 3.1) by du

dt and dv
dt , respectively. From the four resulting equations, we

deduce the energy identity (see, e.g., [28, Lemma 4.1])

d

dt
ΨΩ(u, v) + (σ(v − c), ϕ) + ‖∇µ‖2 + ‖∇ϕ‖2 = 0. (4.23)

Observe that

(σ(v − c), ϕ) = (σ(v − c),−ε2v∆v +
∂F

∂v
(u, v)) =

= (σ(v − c),−ε2v∆v) + (σ(v − c), Ŝ′(v)) + (σ(v − c),−θ0,vv + αu + 2βuv + γu2).

(4.24)

Then testing the equation for the chemical potential µ in (1.1) by σ(u− u0), we get

(σ(u − u0), µ) = (σ(u − u0),−ε2u∆u +
∂F

∂u
(u, v)) =

= (σ(u − u0),−ε2u∆u) + (σ(u − u0), Ŝ′(u)) + (σ(u − u0),−θ0,uu + αv + βv2 + 2γuv).

(4.25)

The terms in (4.24) can be treated as follows (similar considerations hold for (4.25)).

∗ The first term satisfies
(σ(v − c),−ε2v∆v) = σε2v‖∇v‖2,

after an integration by parts, and exploiting the boundary conditions for v.

∗ The second term is treated exploiting the convexity of the singular part Ŝ, namely
∫

Ω

Ŝ(v) dx ≤

∫

Ω

Ŝ′(v)(v − c) dx +

∫

Ω

Ŝ(c) dx,

or, equivalently, ∫

Ω

Ŝ′(v)(v − c) dx ≥

∫

Ω

Ŝ(v) dx−

∫

Ω

Ŝ(c) dx.

∗ The third term is treated noticing that, for instance,

v(−θ0,vv + αu + 2βuv + γu2) = C(u, v) + βuv2 − θ0,vv
2.

Collecting all the resulting terms obtained from (4.24) and (4.25), we get

(σ(v − c), ϕ) ≥
1

2
σε2v‖∇v‖2 +

∫

Ω

σŜ(v) − σ
θ0,v
2

v2 dx +

∫

Ω

σC(u, v) + σβuv2 − σ
θ0,v
2

v2 dx

−

∫

Ω

σŜ(c) + σc(−θ0,vv + αu + 2βuv + γu2) dx,

(σ(u − u0), µ) ≥
1

2
σε2u‖∇u‖2 +

∫

Ω

σŜ(u) − σ
θ0,u

2
u2 dx +

∫

Ω

σC(u, v) + σγu2v − σ
θ0,u

2
u2 dx

−

∫

Ω

σŜ(u0) + σu0(−θ0,uu + αv + βv2 + 2γuv) dx.

Let us now turn back to the energy identity (4.23) and add to both sides the quantity (σ(u−u0), µ). Exploiting
the above inequalities, we find

d

dt
ΨΩ(u, v) + σΨΩ(u, v) + ‖∇µ‖2 + ‖∇ϕ‖2 ≤ (σ(u − u0), µ) +

∫

Ω

P (u, v) dx,

where P (u, v) is a polynomial function of u and v. With u and v satisfying (see Remark 3.2)

ess sup
t∈[0,T ]

‖u(t)‖L∞ ≤ 1, ess sup
t∈[0,T ]

‖v(t)‖L∞ ≤ 1, (4.26)

and observing that, thanks to Poincaré, Young and Cauchy-Schwarz inequalities,

(σ(u − u0), µ) = (σ(u − u0), µ− µ) ≤ K(1 + u0)2 +
1

2
‖∇µ‖2,

for some positive constant K, we get, on any time interval (0, T ), the inequality

d

dt
ΨΩ(u, v) + σΨΩ(u, v) +

1

2
‖∇µ‖2 + ‖∇ϕ‖2 ≤ C,

for some positive constant C depending only the parameters of the problem, including the domain and the
initial conditions. Then, the estimate follows from the Gronwall lemma.
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4.4 Proof of (3.4)

We adapt the argument of [14] to the present case. In this subsection Ci, i ∈ N, stands for a positive con-
stant depending only on the parameters of the problem (possibly including Ω and T ). Let us recall that
u01, v01, u02, v02 ∈ V are such that F (u01, v01), F (u02, v02) ∈ L1(Ω) and u01, v01, u02, v02 ∈ (−1, 1). In particu-
lar, there exists m ∈ (0, 1] such that

u01, v01, u02, v02 ∈ (−m,m). (4.27)

Furthermore, let R > 0 be a positive initial energy bound, i.e.

max{ΨΩ(u01, v01),ΨΩ(u02, v02)} ≤ R. (4.28)

Let us consider the weak formulations of Problem (3.1) with initial data (u0i, v0i), i = 1, 2. We know that they
admit at least a finite energy solution, say, (ui, vi). Set now

u = u1 − u2, v = v1 − v2,

µ = µ1 − µ2, ϕ = ϕ1 − ϕ2,

u0 = u01 − u02, v0 = v01 − v02.

Then, we formally have




∂u

∂t
= ∆µ in Ω × (0, T ),

µ = −ε2u∆u +
∂F

∂u
(u1, v1) −

∂F

∂u
(u2, v2) in Ω × (0, T ),

∂v

∂t
+ σv = ∆ϕ in Ω × (0, T ),

ϕ = −ε2v∆v +
∂F

∂v
(u1, v1) −

∂F

∂v
(u2, v2) in Ω × (0, T ),

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω × (0, T ),

∂µ

∂n
=

∂ϕ

∂n
= 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

v(·, 0) = v0 in Ω.

(4.29)

We are now in a position to prove the stability result for Problem (3.1). Firstly, let us point out that the weak
formulation of Problem (4.29) reads





〈
∂u

∂t
, s

〉
+ (∇µ,∇s) = 0 ∀ s ∈ V, a.e. in (0, T ),

〈
∂v

∂t
, w

〉
+ σ(v, w) + (∇ϕ,∇w) = 0 ∀ w ∈ V, a.e. in (0, T ).

Choosing s = N (u− u) and w = N (v − v) as test functions, we obtain






1

2

d

dt
‖u− u‖2∗ + (µ, u− u) = 0 a.e. in (0, T ),

1

2

d

dt
‖v − v‖2∗ + σ‖v − v‖2∗ + (ϕ, v − v) = 0 a.e. in (0, T ),

where we have used Proposition 2.1 and
〈
∂u

∂t
,Nu

〉
=

1

2

d

dt
‖u‖2∗ a.e. in (0, T ), ∀ u ∈ H1([0, T ], V ∗

0 ). (4.30)

Next, recalling the definition of the ‖ · ‖−1 norm, we find





1

2

d

dt
‖u‖2−1 + (µ, u − u) = 0, a.e. in (0, T ),

1

2

d

dt
‖v‖2−1 + σ‖v‖2−1 + (ϕ, v − v) = 0 a.e. in (0, T ),

(4.31)

on account of the equations for the total masses

d|u|2

dt
= 0 a.e. in (0, T ),

1

2

d|v|2

dt
+ σ|v|2 = 0 a.e. in (0, T ).
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The remaining scalar products are managed as follows. For the sake of brevity, we only show how to handle the
one appearing in the first equation of (4.31). Substituting the expression for µ (see (4.29)), we get

(µ, u− u) = ε2u‖∇u‖2 +

(
∂F

∂u
(u1, v1) −

∂F

∂u
(u2, v2), u

)
−

(
∂F

∂u
(u1, v1) −

∂F

∂u
(u2, v2), u

)
,

and thus we arrive at (see (1.3)-(1.5))

(µ, u − u) = ε2u‖∇u‖2 +
(
Ŝ′(u1) − Ŝ′(u2), u

)
−
(
Ŝ′(u1) − Ŝ′(u2), u

)

+

(
∂P3

∂u
(u1, v1) −

∂P3

∂u
(u2, v2), u

)
−

(
∂P3

∂u
(u1, v1) −

∂P3

∂u
(u2, v2), u

)
,

where P3 is a third-degree polynomial function such that
(
∂P3

∂u
(u1, v1) −

∂P3

∂u
(u2, v2), u1 − u2

)

=
(
−θ0,u(u1 − u2) + α(v1 − v2) + β(v21 − v22) + 2γ(u1v1 − u2v2), u1 − u2

)

≥ −C1‖u‖
2 − C2‖v‖

2.

(4.32)

Indeed, we have
(α(v1 − v2), u1 − u2) ≥ −C3‖v‖

2 − C4‖u‖
2 (4.33)

by the Cauchy-Schwarz and Young inequalities, whereas

(β(v21 − v22), u1 − u2) = (β(v1 − v2)(v1 + v2), u1 − u2) ≥ −C5‖v‖
2 − C6‖u‖

2, (4.34)

and finally

(2γ(u1v1 − u2v2), u1 − u2) = (2γu1(v1 − v2) + 2γv2(u1 − u2), u1 − u2) ≥ −C7‖v‖
2 − C8‖u‖

2 (4.35)

where in (4.34) and (4.35) we have also exploited the essential boundedness of u1, v1, u2 and v2 (see (4.26)).
Bound (4.32) follows from (4.33)-(4.35). Moreover, using the essential boundedness once more, we have

∣∣∣∣
(
∂P3

∂u
(u1, v1) −

∂P3

∂u
(u2, v2), u

)∣∣∣∣ ≤ 2|Ω|(|α| + |β| + 2|γ|)|u|, a.e. in [0, T ].

Finally, from the convexity of Ŝ, it also holds that
(
Ŝ′(u1) − Ŝ′(u2), u

)
≥ θu‖u‖

2.

Taking the obtained results into account and arguing similarly for (ϕ, v − v), from (4.31) we infer














1

2

d

dt
‖u‖2

−1
+ ε2u‖∇u‖2 + θu‖u‖2 ≤ C9(‖u‖2 + ‖v‖2 + |u|) +

(

Ŝ′(u1)− Ŝ′(u2), u
)

a.e. in (0, T ),

1

2

d

dt
‖v‖2

−1
+ σ‖v‖2

−1
+ ε2v‖∇v‖2 + θv‖v‖2 ≤ C10(‖u‖2 + ‖v‖2 + |v|) +

(

Ŝ′(v1)− Ŝ′(v2), v
)

a.e. in (0, T ).

(4.36)

Thanks to Proposition 2.1, for any k, ω > 0 we can find C = C(ω, k) > 0 such that

k‖u‖2 ≤ ω‖∇u‖2 + C3‖u‖
2
−1. (4.37)

In particular, adding together the two inequalities in (4.36), multiplying the result by two, and choosing ω = 1
2ε

2
u

(resp. 1
2ε

2
v) and using (4.37), we deduce

d

dt
(‖u‖2−1 + ‖v‖2−1) + C11(‖u‖2V + ‖v‖2V ) ≤ C12(‖u‖2−1 + ‖v‖2−1 + |u| + |v|)

+ 2
(
Ŝ′(u1) − Ŝ′(u2), u

)
+ 2

(
Ŝ′(v1) − Ŝ′(v2), v

)
a.e. in (0, T ). (4.38)

We are only left to deal with the remaining scalar products. Indeed, for instance, we easily notice that
(
Ŝ′(u1) − Ŝ′(u2), u

)
≤
(
‖Ŝ′(u1)‖L1 + ‖Ŝ′(u2)‖L1

)
|u|,

suggesting the necessity of a uniform estimate for the L1-norm of Ŝ′. We recall a well-known property of any
singular potential satisfying the properties listed at the beginning of Subsection 4.1 namely (see [25], see also
[12])

‖Ŝ′(ui)‖L1 ≤ Q(|ui|)
[
1 + (Ŝ′(ui) − Ŝ′(ui), ui − ui)

]
, i = 1, 2,
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where Q(·) is an increasing function. Then, it is straightforward to prove that there exists a constant C > 0
such that

(Ŝ′(ui) − Ŝ′(ui), ui − ui) ≤ C(‖∇µi‖ + 1), i = 1, 2,

implying also that
‖Ŝ′(ui)‖L1 ≤ Q(m)(1 + ‖∇µi‖), i = 1, 2,

for a possibly redefined increasing function Q(·). Therefore, thanks to the dissipative estimate, the control

∫ T

0

(
‖Ŝ′(u1(t))‖L1 + ‖Ŝ′(u2(t))‖L1

)
dt ≤ C13 (4.39)

holds. Of course, arguing similarly, one also gets

‖Ŝ′(vi)‖L1 ≤ R(m)(1 + ‖∇ϕi‖),

where, again, R(·) is an increasing function, and

∫ T

0

(
‖Ŝ′(v1(t))‖L1 + ‖Ŝ′(v2(t))‖L1

)
dt ≤ C14. (4.40)

Thus an application of the Gronwall lemma yields

‖u(t)‖2−1 + ‖v(t)‖2−1 +

∫ T

0

‖u(t)‖2V + ‖v(t)‖2V dt ≤ C15(‖u0‖
2
−1 + ‖v0‖

2
−1)eC16T + C15(|u0| + |v0|)e

C16T .

Therefore, recalling Proposition 2.2, we find inequality (3.4). We stress that the proof of continuous dependence
in the conserved case c = v0 is essentially the same, except the third equation in (4.29) reads

∂v

∂t
+ σ(v − v0) = ∆ϕ, in Ω × (0, T )

and the squared mean satisfies
d|v|2

dt
= 0,

almost everywhere in (0, T ).

5 Regularization properties

Here we consider the conserved case and we show that any weak solution regularizes in finite time. The extension
of these results to the off-critical case does not seem straightforward because of the fact that, due to the presence
of the coupling term (1.3), we cannot use the Galerkin scheme to achieve higher-order estimates on the time
derivatives (compare with the single Cahn-Hilliard-Oono equation in [14]). This forces us to use difference
quotients in time (see, e.g., [15]) but this argument does not work apparently in the off-critical case (see (5.5)
below).

As we shall see, these regularization effects are crucial for the investigation of the longtime behavior. The
higher-order estimates are obtained working directly on the weak solution instead of using once more the Galerkin
scheme (cf. [14]). This is due to the fact that the approximated potential Fδ is not uniformly controlled from
below because of the coupling term. More precisely, we make use of of the difference quotients in time. More
precisely, for any function f : [0, T ] → X , X being any real Banach space, for any h > 0 and any t ≥ 0, we set

∂h
t f :=

f(t + h) − f(t)

h
.

Our first regularity result is given by

Proposition 5.1. Let the assumptions of Theorem 3.1 hold. Then, for every ξ > 0, there exists a constant
K > 0 depending on the all parameters of the problem such that

‖∂tu‖L∞([ξ,t];V ∗) + ‖∂tv‖L∞([ξ,t];V ∗) + ‖∂tu‖L2([t,t+1];V ) + ‖∂tv‖L2([t,t+1];V ) ≤ K (5.1)

for every t ≥ ξ.
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Proof. Observe first that the difference quotients of the weak solutions satisfy the following system of equations

{
〈(∂h

t u)t, s〉 + (∇∂h
t µ,∇s) = 0 ∀ s ∈ V, a.e. in (0, T ),

〈(∂h
t v)t, w〉 + σ(∂h

t v, w) + (∇∂h
t ϕ,∇w) = 0 ∀ w ∈ V, a.e. in (0, T ),

(5.2)

which can be obtained from the weak formulation. The different quotients of the chemical potentials, in turn,
enjoy the equations





∂h
t µ = −ε2u∆∂h

t u +
1

h

(
∂F

∂u
(u(t + h), v(t + h)) −

∂F

∂u
(u(t), v(t))

)
a.e. t ≥ 0,

∂h
t ϕ = −ε2v∆∂h

t v +
1

h

(
∂F

∂v
(u(t + h), v(t + h)) −

∂F

∂v
(u(t), v(t))

)
a.e. t ≥ 0.

(5.3)

Taking the mass conservation into account, we have

∂h
t u = ∂h

t v = 0,

or, equivalently,
∂h
t u, ∂

h
t v ∈ V0.

Let us choose as test functions s = N∂h
t u and w = N∂h

t v. Exploiting Proposition 2.1 and (4.30), we get





1

2

d

dt
‖∂h

t u‖
2
∗ + (∂h

t µ, ∂
h
t u) = 0 a.e. in (0, T ),

1

2

d

dt
‖∂h

t v‖
2
∗ + σ‖∂h

t v‖
2
∗ + (∂h

t ϕ, ∂
h
t v) = 0 a.e. in (0, T ).

(5.4)

Note that in the off-critical case we would have

∂h
t v = e−σt(v0 − c)

e−σh − 1

h
. (5.5)

Thus we should take w = N (∂h
t v − ∂h

t v) and the resulting additional term (∂h
t ϕ, ∂

h
t v) seems hard to handle.

We now deal with the remaining scalar products. Consider, for instance, the scalar product in the first
equation of (5.4). We have

(∂h
t µ, ∂

h
t u) =

(
∂h
t u,−ε2u∆∂h

t u +
1

h

(
∂F

∂u
(u(t + h), v(t + h)) −

∂F

∂u
(u(t), v(t))

))
,

and an integration by parts yields (see (4.32))

(∂h
t µ, ∂

h
t u) = ε2u‖∇∂h

t u‖
2 +

1

h

(
∂h
t u, Ŝ

′(u(t + h)) − Ŝ′(u(t))
)

+
1

h

(
∂h
t u,

∂P3

∂u
(u(t + h), v(t + h)) −

∂P3

∂u
(u(t), v(t))

)
.

Note that the second term on the right hand side is non-negative. Furthermore, there holds

∂P3

∂u
(u(t + h), v(t + h)) −

∂P3

∂u
(u(t), v(t)) = −θ0,u(u(t + h) − u(t)) + α(v(t + h) − v(t)) + β(v2(t + h) − v2(t))

+ 2γ(u(t + h)v(t + h) − u(t)v(t)).

The nonlinear terms can be treated as in Subsection 4.4. In particular, note that

β(v2(t + h) − v2(t)) = β(v(t + h) − v(t))(v(t + h) + v(t)),

and that, by adding and subtracting 2γu(t)v(t + h), we obtain

2γ(u(t + h)v(t + h) − u(t)v(t)) = 2γv(t + h)(u(t + h) − u(t)) + 2γu(t)(v(t + h) − v(t)).

Therefore, in light of Remark 3.2 and using repeatedly Young’s inequality, we find

(∂h
t µ, ∂

h
t u) ≥ ε2u‖∇∂h

t u‖
2 − θ0,u‖∂

h
t u‖

2 −
|α|

2
‖∂h

t u‖
2 −

|α|

2
‖∂h

t v‖
2 − |β|‖∂h

t u‖
2 − |β|‖∂h

t v‖
2

− 3|γ|‖∂h
t u‖

2 − |γ|‖∂h
t v‖

2.
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Thus there exist K1,K2 > 0 independent of h such that,

(∂h
t µ, ∂

h
t u) ≥ ε2u‖∇∂h

t u‖
2 −K1‖∂

h
t u‖

2 −K2‖∂
h
t v‖

2. (5.6)

Similarly, we obtain
(∂h

t ϕ, ∂
h
t v) ≥ ε2v‖∇∂h

t v‖
2 −K3‖∂

h
t u‖

2 −K4‖∂
h
t v‖

2. (5.7)

for some positive constants K3,K4 also independent of h. Adding (5.6) and (5.7) together, and exploiting (4.37)
we get

(∂h
t µ, ∂

h
t u) + (∂h

t ϕ, ∂
h
t v) ≥

ε2u
2
‖∇∂h

t u‖
2 +

ε2v
2
‖∇∂h

t v‖
2 −K5‖∂

h
t u‖

2
∗ −K6‖∂

h
t v‖

2
∗, (5.8)

with K5,K6 > 0 and independent of h. Summing up, from (5.4), thanks to (5.8), we deduce the inequality

1

2

d

dt
‖∂h

t u‖
2
∗ +

1

2

d

dt
‖∂h

t v‖
2
∗ + K7‖∂

h
t u‖

2
V + K8‖∂

h
t v‖

2
V ≤ K5‖∂

h
t u‖

2
∗ + |K6 − σ|‖∂h

t v‖
2
∗, (5.9)

which holds almost everywhere in (0,+∞), with K7,K8 > 0 independent of h. In (5.9), the Poincaré-Wirtinger
inequality has also been used. On account of

‖∂h
t u‖L2([t,t+1];V ∗) ≤ ‖∂tu‖L2([t,t+1+h];V ∗), ‖∂h

t v‖L2([t,t+1];V ∗) ≤ ‖∂tv‖L2([t,t+1+h];V ∗), (5.10)

the uniform Gronwall lemma and Proposition 2.2 give

‖∂h
t u‖L∞([ξ,t];V ∗) + ‖∂h

t v‖L∞([ξ,t];V ∗) + ‖∂h
t u‖L2([t,t+1];V ) + ‖∂h

t v‖L2([t,t+1];V ) ≤ K9,

for every t ≥ ξ. The constant K9 depends on the parameters of the problem but is independent of h and thus
a passage to the limit h → 0+ entails (5.1).

The following result is about spatial regularity of the order parameters (cf. [15]).

Proposition 5.2. Let the assumptions of Theorem 3.1 hold. Then, for every ξ > 0, there exists a constant
K > 0 depending on the all parameters of the problem such that

‖u‖L∞([ξ,t];H2(Ω)) + ‖v‖L∞([ξ,t];H2(Ω)) ≤ K (5.11)

for any t ≥ ξ.

Proof. Recalling (ix) in Definition 3.1. Then pick s = N (µ− µ) and w = N (ϕ− ϕ). Owing to Proposition 2.1,
we obtain (derivatives with respect to time are here denoted with ∂t for simplicity)

{
〈∂tu,N (µ− µ)〉 + (µ, µ− µ) = 0

〈∂tv,N (ϕ − ϕ)〉 + σ(v − v0,N (ϕ− ϕ)) + (ϕ, ϕ− ϕ) = 0
(5.12)

almost everywhere in (0,+∞). Observe that

(µ, µ− µ) = ‖µ− µ‖2, (ϕ, ϕ− ϕ) = ‖ϕ− ϕ‖2,

since (c, µ− µ) = (c, ϕ− ϕ) = 0 for any c ∈ R. Furthermore, we have

|〈∂tu,N (µ− µ)〉| ≤ ‖∂tu‖∗‖N (µ− µ)‖V0 , (5.13)

with ‖v‖2V0
:= 〈Av, v〉 for any v ∈ V0. Hence we get

|〈∂tu,N (µ− µ)〉| ≤ ‖∂tu‖∗‖N (µ− µ)‖V0

≤ K1‖∂tu‖V ∗‖µ− µ‖

≤
1

2
‖µ− µ‖2 + K2‖∂tu‖

2
V ∗ ,

for some positive constants K1 and K2. Here Young’s inequality has been used. Arguing similarly, we find

|〈∂tv,N (ϕ − ϕ)〉| ≤ ‖∂tv‖∗‖N (ϕ− ϕ)‖V0

≤ K1‖∂tv‖V ∗‖ϕ− ϕ‖

≤
1

4
‖ϕ− ϕ‖2 + K3‖∂tv‖

2
V ∗ .
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Also, we have

σ|(v − v0,N (ϕ− ϕ))| ≤ K4‖v − v0‖
2 +

1

4
‖ϕ− ϕ‖2

for some K4 > 0. Adding the two equations in (5.12) together and using the above inequalities, we find

1

2
‖µ− µ‖2 +

1

2
‖ϕ− ϕ‖2 ≤ K2‖∂tu‖

2
V ∗ + K3‖∂tv‖

2
V ∗ + K4‖v − v0‖

2, (5.14)

which entails (see (3.2), (3.3), and Proposition 5.1)

‖µ− µ‖L∞([ξ,t];H) + ‖ϕ− ϕ‖L∞([ξ,t];H) ≤ K5 ∀ t ≥ ξ,

for some positive constant K5. Consider now the nonlinear Neumann problem





−ρ∆g + Ŝ′(g) = f in Ω,
∂g

∂n
= 0 on ∂Ω,

(5.15)

where f = µ− ∂P3

∂u
(u, v), ρ = ε2u or f = ϕ− ∂P3

∂v
(u, v), ρ = ε2v. Then, recalling [15, Lemma 7.1] and Remark 3.2,

(5.11) follows.

Taking advantage of the previous results, a further regularity can be proven (cf. [15]), namely,

Proposition 5.3. Let the assumptions of Theorem 3.1 hold. Let 1 ≤ p ≤ 6 if d = 3, and 1 ≤ p < +∞ if d = 2.
Then, for every ξ > 0, there exists a constant K > 0 depending on the all parameters of the problem (including
p) such that

‖µ‖L∞([ξ,t];V ) + ‖ϕ‖L∞([ξ,t];V ) + ‖u‖L∞([ξ,t];W 2,p(Ω)) + ‖v‖L∞([ξ,t];W 2,p(Ω)) ≤ K

for every t ≥ ξ. Furthermore, there exists L > 0, also depending on the all parameters of the problem (including
p), such that ∥∥∥∥

∂F

∂u
(u, v)

∥∥∥∥
L∞([ξ,t];Lp(Ω))

+

∥∥∥∥
∂F

∂v
(u, v)

∥∥∥∥
L∞([ξ,t];Lp(Ω))

≤ L

for every t ≥ ξ.

Proof. In this proof K denotes a generic positive constant depending at most on the all parameters of the
problem (including p). Let us recall that (see Subsection 3.4)

‖Ŝ′(u)‖L1 ≤ K(1 + ‖∇µ‖), ‖Ŝ′(v)‖L1 ≤ K(1 + ‖∇ϕ‖).

Observe that
‖µ‖V ≤ ‖µ− µ‖V + ‖µ‖V = ‖µ− µ‖V + |Ω|

1
2 |µ|.

Moreover, testing the equation for µ with the characteristic function χΩ, we get (see Remark 3.2)

|Ω||µ| =

∣∣∣∣
(
∂F

∂u
(u, v), 1

)∣∣∣∣ ≤
∣∣∣
(
Ŝ′(u), 1

)∣∣∣+

∣∣∣∣
(
∂P3

∂u
(u, v), 1

)∣∣∣∣ ≤ ‖Ŝ′(u)‖L1 + K.

From the previously mentioned inequalities, we then deduce

|µ| ≤ K(1 + ‖∇µ‖), |ϕ| ≤ K(1 + ‖∇ϕ‖).

Fix any ξ > 0 and t ≥ ξ. Let us pick s = µ and w = ϕ in the weak formulation given in Definition 3.1-(ix),
getting on one hand

‖∇µ‖2 = −〈∂tu, µ〉,

Making use of Proposition 5.1 and applying Young’s inequality we have that

‖∇µ‖2 = |〈∂tu, µ〉| ≤ ‖∂tu‖V ∗‖µ‖V ≤ C(1 + ‖∇µ‖) ≤ C +
1

2
‖∇µ‖2

almost everywhere in [ξ, t]. Therefore ∇µ ∈ L∞([ξ, t];H).
On the other hand, a similar argument, still thanks to Proposition 5.1 jointly with the Young inequality, yields

‖∇ϕ‖2 = −〈∂tv, ϕ〉 − σ(v − v0, ϕ) ≤ ‖∂tv‖V ∗‖ϕ‖V + C‖v − v0‖‖ϕ‖V ≤ C(1 + ‖∇ϕ‖) ≤ C +
1

2
‖∇ϕ‖2,
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and thus we conclude that
‖µ‖L∞([ξ,t];V ) + ‖ϕ‖L∞([ξ,t];V ) ≤ K.

Recalling (5.15), thanks to [15, Lemma 7.4] and Remark 3.2, we also learn that

‖u‖L∞([ξ,t];W 2,p(Ω)) + ‖v‖L∞([ξ,t];W 2,p(Ω)) ≤ K,

and
‖Ŝ′(u)‖L∞([ξ,t];Lp(Ω)) + ‖Ŝ′(v)‖L∞([ξ,t];Lp(Ω)) ≤ K.

We also know that (see Remark 3.2)
∥∥∥∥
∂P3

∂u
(u, v)

∥∥∥∥
L∞([ξ,t];Lp(Ω))

+

∥∥∥∥
∂P3

∂v
(u, v)

∥∥∥∥
L∞([ξ,t];Lp(Ω))

≤ K.

This concludes the proof.

Remark 5.1. It is easy to check that indeed, for any ξ > 0,

µ(t), ϕ(t) ∈ H2(Ω), ∀ t ≥ ξ.

Thus, the weak solutions are indeed strong, i.e., they satisfy the equations of (1.1) almost everywhere in
Ω × (ξ,+∞).

6 The strict separation property in two dimensions

In the investigation of Cahn-Hilliard type equations, a very interesting issue concerns the so-called strict sepa-
ration property, that is, the order parameter stays uniformly away from the pure phases ±1. In other words,
entropy always prevails to a certain degree. The validity of this property for Cahn-Hilliard equations with
constant mobility has been proven so far in the two-dimensional case only (see [25], see also [14]). Here we
show that, in two dimensions, the strict separation property holds both for the macrophase and the microphase.
More precisely, for any time t0 > 0, there exist ωu, ωv ∈ (0, 1) depending on t0, such that, for all t ≥ t0,

‖u(t)‖L∞ ≤ 1 − ωu, ‖v(t)‖L∞ ≤ 1 − ωv

Our basic assumption is (cf. [14])

Assumption A. The singular part of the potential Ŝ satisfies

|Ŝ′′(r)| ≤ eC|Ŝ′(r)|+C , ∀ r ∈ (−1, 1)

and is such that Ŝ′′ is convex.

Remark 6.1. The logarithmic potential (4.1) satisfies Assumption A.

We establish the strict separation property by adapting a method developed in [14] (see also [15, 25]). Let us
firstly prove some preliminary results.

Lemma 6.1. Suppose d = 2. Let the hypotheses of Theorem 3.1 and Assumption A hold. Then, for every
1 ≤ p < +∞ there exists a positive constant C (depending also on p) such that

‖Ŝ′′(u)‖L∞(ξ,t;Lp(Ω)) + ‖Ŝ′′(v)‖L∞(ξ,t;Lp(Ω)) ≤ C,

for every t ≥ ξ.

Proof. Consider the semilinear Neumann problem (5.15). Choosing, as performed in the proof of Proposition
5.3, f = µ− ∂P3

∂u
and ρ = ε2u, then, owing to Assumption A, [15, Lemma 7.4] entails

‖Ŝ′′(u)‖Lp ≤ C(1 + eC‖µ−
∂P3
∂u

‖2
V ).

Thanks to Remark 3.2 and Proposition 5.3, observing that

∇
∂P3

∂u
= α∇v + 2βv∇v + 2γu∇v + 2γv∇u,

on account of (3.2) and (3.3), it is straightforward to conclude that there exists a constant C1, depending on
all the parameters of the problem, p and ξ > 0, such that

‖Ŝ′′(u(t))‖Lp ≤ C1 ∀ t ≥ ξ.

Hence, we get
‖Ŝ′′(u)‖L∞(ξ,t;Lp(Ω)) ≤ C1.

A similar bound holds for Ŝ′′(v), choosing f = ϕ− ∂P3

∂v
and ρ = ε2v.
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We can now gain higher regularity for the temporal derivatives of u and v as well as for the chemical potentials.
Indeed we have

Lemma 6.2. Suppose d = 2. Let the hypotheses of Theorem 3.1 and Assumption A hold. Then, for any ξ > 0,
there exists a positive constant C, depending on all the parameters of the problem and ξ, such that

‖∂tu‖L∞(2ξ,t;H) + ‖∂tv‖L∞(2ξ,t;H) + ‖µ‖L∞(2ξ,t;H2(Ω)) + ‖ϕ‖L∞(2ξ,t;H2(Ω)) ≤ C,

for every t ≥ 2ξ.

Proof. We work with difference quotients as in the proof of Proposition 5.1. In this proof C will stand for a
generic positive constant depending on the parameters of the problem but independent of t and h > 0. Choosing
s = ∂h

t u and w = ∂h
t v in (5.2) yields






1

2

d

dt
‖∂h

t u‖
2 + (∇∂h

t µ,∇∂h
t u) = 0 a.e. t ≥ 0,

1

2

d

dt
‖∂h

t v‖
2 + σ‖∂h

t v‖
2 + (∇∂h

t ϕ,∇∂h
t v) = 0 a.e. t ≥ 0.

(6.1)

Integrating by parts the first equation we obtain (see (5.3))

(∇∂h
t µ,∇∂h

t u) = −(∂h
t µ,∆∂h

t u) = ε2u‖∆∂h
t u‖

2 −
1

h

(
Ŝ′(u(t + h)) − Ŝ′(u(t)),∆∂h

t u
)

−
1

h

(
∂P3

∂u
(u(t + h), v(t + h)) −

∂P3

∂u
(u(t), v(t)),∆∂h

t u

)
.

Arguing as in Proposition 5.1, we deduce that
∣∣∣∣
1

h

(
∂P3

∂u
(u(t + h), v(t + h)) −

∂P3

∂u
(u(t), v(t)),∆∂h

t u

)∣∣∣∣ ≤ C
(
‖∇∂h

t u‖
2 + ‖∇∂h

t v‖
2
)

The singular term is treated exploiting the convexity of Ŝ′′, owing to Assumption A. In particular, arguing as
in [14, Lemma 5.2], we can prove that

∣∣∣∣
1

h

(
Ŝ′(u(t + h)) − Ŝ′(u(t)),∆∂h

t u
)∣∣∣∣ ≤ C

(
‖Ŝ′′(u(t + h))‖2L3 + ‖Ŝ′′(u(t))‖2L3

)
‖∂h

t u‖
2
L6 +

ε2u
2
‖∆∂h

t u‖
2.

Thanks to the Sobolev embedding H1(Ω) →֒ L6(Ω) and to the Poincaré inequality it is possible to infer that

‖∂h
t u‖

2
L6 ≤ C‖∇∂h

t u‖
2 ≤ C‖∂h

t u‖‖∆∂h
t u‖,

where the last inequality follows from the Cauchy–Schwarz inequality after an integration by parts. Collecting
the results, owing also to Young’s inequality, we end up with

1

2

d

dt
‖∂h

t u‖
2 +

1

4
‖∆∂h

t u‖
2 ≤ C

[(
‖Ŝ′′(u(t + h))‖4L3 + ‖Ŝ′′(u(t))‖4L3

)
‖∂h

t u‖
2 + ‖∇∂h

t u‖
2 + ‖∇∂h

t v‖
2
]
, (6.2)

almost everywhere in (0,+∞). Arguing similarly, we deduce

1

2

d

dt
‖∂h

t v‖
2 + σ‖∂h

t v‖
2 +

1

4
‖∆∂h

t v‖
2 ≤ C

(
‖Ŝ′′(v(t + h))‖4L3 + ‖Ŝ′′(v(t))‖4L3

)
‖∂h

t v‖
2

+ C
(
‖∇∂h

t u‖
2 + ‖∇∂h

t v‖
2
)
, (6.3)

almost everywhere in (0,+∞). Setting now

Y (t) := ‖∂h
t u‖

2 + ‖∂h
t v‖

2,

W (t) := C
(

1 + ‖Ŝ′′(u(t + h))‖4L3 + ‖Ŝ′′(u(t))‖4L3 + ‖Ŝ′′(v(t + h))‖4L3 + ‖Ŝ′′(v(t))‖4L3

)
,

and adding (6.2) and (6.3) together, we get the differential inequality (see also (3.2) and (3.3))

1

2

d

dt
Y (t) +

1

4
‖∆∂h

t u‖
2 +

1

4
‖∆∂h

t v‖
2 ≤ W (t)Y (t), a.e. t ≥ 0. (6.4)

By virtue of Lemma 6.1, we have ∫ t+1

t

W (τ) dτ ≤ C, ∀ t ≥ ξ. (6.5)
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Thus, recalling (5.10), an application of the uniform Gronwall lemma and passage to the limit as h → 0+ entail
that, for any ξ > 0,

‖∂tu‖L∞(2ξ,t;H) + ‖∂tv‖L∞(2ξ,t;H) ≤ C,

for every t ≥ ξ. A comparison argument in the evolution equations of Problem (1.1) yields

‖∆µ‖L∞(2ξ,t;H) + ‖∆ϕ‖L∞(2ξ,t;H) ≤ C.

The elliptic regularity theory and Proposition 5.3 allow us to get the wanted bound.

We can now prove the strict separation property for both u and v.

Proposition 6.1. Suppose d = 2. Let the hypotheses of Theorem 3.1 and Assumption A hold. Then, for every
ξ > 0 there exist ωu, ωv ∈ (0, 1) such that

‖u(t)‖L∞ ≤ 1 − ωu, ‖v(t)‖L∞ ≤ 1 − ωv,

for all t ≥ 2ξ.

Proof. Arguing on the nonlinear Neumann problem (5.15) as in [15, Lemma 7.2] we infer that

‖Ŝ′(u)‖L∞ + ‖Ŝ′(v)‖L∞ ≤ C1

(
‖µ‖L∞ + ‖ϕ‖L∞ +

∥∥∥∥
∂P3

∂u
(u, v)

∥∥∥∥
L∞

+

∥∥∥∥
∂P3

∂v
(u, v)

∥∥∥∥
L∞

)
.

Owing to Lemma 6.2, the right hand side is uniformly bounded. Thus the strict separation follows from the
properties of Ŝ′.

Remark 6.2. It is now straightforward to prove that u, v also belong to L∞(2ξ, t;H4(Ω)) (see [14, Cor. 5.1]).
Thus, via a bootstrap method, provided the boundary of Ω and the potential F are smooth, we can prove that
u and v are as smooth as we want (see [14, Rem. 5.2]).

7 Longtime behavior

The main result of this section is the convergence of any finite energy weak solution to a single equilibrium.
We will adapt the method exploited in [2] for a single Cahn-Hilliard equation. We shall need the regularization
properties of weak solutions. Therefore we suppose c = v0 (i.e., conserved case). Moreover, without loss of
generality, we can take u0 = v0 = 0 (see Remark 7.3). Let us restate our (formal) problem in the following
equivalent form 




∂u

∂t
= ∆µ in Ω × (0, T ),

µ = −ε2u∆u +
∂F

∂u
(u, v) in Ω × (0, T ),

∂v

∂t
= ∆ϕ̃ in Ω × (0, T ),

ϕ̃ = −ε2v∆v +
∂F

∂v
(u, v) + σNv in Ω × (0, T ),

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω × (0, T ),

∂µ

∂n
=

∂ϕ

∂n
= 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

v(·, 0) = v0 in Ω.

(7.1)

Thanks to the conservation of mass, the problem can be viewed as the gradient flow generated by the Ohta-
Kawasaki functional (1.7). Thus the phase v satisfies a Cahn-Hilliard system in which the chemical potential ϕ̃
incorporates the reaction term as a nonlocal term. The resulting energy functional associated with (7.1) is

Ψ̃Ω(u, v) = ΨΩ(u, v) +
σ

2
‖v − v‖2∗.

Therefore, recalling (4.23) and the fact that c = v0 = 0, we now have the energy identity

d

dt
Ψ̃Ω(u, v) + ‖∇µ‖2 + ‖∇ϕ̃‖2 = 0 (7.2)
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which clearly shows the dissipative nature of the above problem and it is very helpful to investigate the longtime
behavior of its solutions. Let us introduce the Hilbert triplet

V0 →֒ H0
∼= H∗

0 →֒ V ∗
0 ,

where H0 denotes the subspace of L2(Ω) functions with null spatial average. The notion of equilibrium or
stationary solution is given by

Definition 7.1. A pair (u∞, v∞) ∈ H2(Ω)2 is a stationary solution to (7.1) if





−ε2u∆u∞ +
∂F

∂u
(u∞, v∞) = µ∞, in Ω,

−ε2v∆v∞ +
∂F

∂v
(u∞, v∞) + σN (v∞ − v0) = ϕ̃∞ in Ω,

∂u∞

∂n
=

∂v∞
∂n

= 0 on ∂Ω,

u∞ = u0, v∞ = v0,

(7.3)

where µ∞, ϕ̃∞ ∈ R.

In the following, all Banach spaces X2, where X is a real Banach space, are considered to be normed with
the standard Euclidean norm. Let us consider the set

Z := {(u, v) ∈ V 2
0 : Ψ̃Ω(u, v) < +∞},

and define the operators S(t) : Z → Z, acting as follows

S(t)(u0, v0) = (u(t;u0), v(t; v0)) ≡ (u(t), v(t)), t ≥ 0.

Note that Z is a complete metric space with respect to the metric induced by the norm in V 2
0 .

First of all, let us state the following

Lemma 7.1. The energy identity

Ψ̃Ω(u(t), v(t)) +

∫ t

0

(
‖∇µ(τ)‖2 + ‖∇ϕ̃(τ)‖2

)
dτ = Ψ̃Ω(u0, v0) (7.4)

holds for any t ≥ 0.

Proof. We just need to integrate (7.2) with respect to time over [0, t].

Lemma 7.1 entails that S(t)(u0, v0) ∈ Z for any t ≥ 0. Moreover, we have S(·)(u0, v0) ∈ C0([0,+∞);Z). Also,
we can prove that S(t) ∈ C0(Z;Z) (see [14, Prop. 6.1]). Thus (Z,S(t)) is a (dissipative) dynamical system.
Given (u0, v0) ∈ Z, we define the ω-limit set ω(u0, v0) as

ω(u0, v0) := {(u∞, v∞) ∈ H2r(Ω)2 ∩ Z : ∃{tn}n∈N ր +∞ such that (u(tn), v(tn)) → (u∞, v∞) in H2r(Ω)2},

for r ∈ [1/2, 1). For any ξ > 0, Proposition 5.2 entails that the orbits {(u(t), v(t))}t≥ξ are relatively compact
in H2r(Ω)2 for r ∈ [1/2, 1). Thus, we conclude that ω(u0, v0) is a non-empty connected subset of Z, and
furthermore, by definition, ω(u0, v0) is a compact subset of H2r(Ω)2 for every r ∈ [1/2, 1) and

dist(S(t)(u0, v0), ω(u0, v0)) → 0 as t → +∞

in the H2r-sense (see [2]). Next, we prove a second preliminary result.

Lemma 7.2. The functional Ψ̃Ω(u, v) is a strict Lyapunov functional for S, namely energy is conserved only
along constant trajectories.

Proof. Lemma 7.1 implies that if Ψ̃Ω(S(t)(u0, v0)) = Ψ̃Ω(u0, v0) for all t > 0, then ∇µ(t) = ∇ϕ(t) ≡ 0 for every
t > 0. Thus S(t)(u0, v0) = (u0, v0) for every t ≥ 0.

Let E denote the set of stationary points of S, namely

E := {(u0, v0) ∈ Z : S(t)(u0, v0) = (u0, v0) for all t ≥ 0}.

As a consequence of Lemma 7.2, we can prove that ω(u0, v0) ⊂ E (see [6, Theorem 9.2.7]). Following [2], we
can further characterize the set of stationary points E as the set of stationary solutions, namely

E = {(u, v) ∈ H2(Ω)2 ∩ Z : (u, v) is a stationary solution}.

We now state a (strict) separation property for stationary solutions which follows by adapting the proof of [2,
Proposition 6.1].
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Proposition 7.1. Let r ∈ (d/4, 1). For every f = (f1, f2) ∈ E there exist two constants M1,M2 such that

−1 < M1 ≤ f1(x), f2(x) ≤ M2 < 1,

for all x ∈ Ω. Furthermore, there exist two constants K1,K2, independent of f , such that

−1 < K1 ≤ f1(x), f2(x) ≤ K2 < 1,

for all f = (f1, f2) ∈ ω(u0, v0) and x ∈ Ω.

We recall that, by compactness of the ω-limit set in H2r(Ω), with r ∈ (d/4, 1), there exists an open set U1

covering ω(u0, v0) such that
−1 < K1 − ǫ < f1(x), f2(x) < K2 + ǫ < 1,

for every f = (f1, f2) ∈ U1 and some ǫ > 0 independent of f . Moreover, U1 attracts the trajectories of the
system, since ω(u0, v0) does. Along the lines of [2], it is possible to redefine the free energy F . Indeed, let
Qǫ := [K1 − ǫ,K2 + ǫ]2 and set

Freg(s1, s2) = F (s1, s2)χQǫ
(s1, s2) + G(s1, s2)χQC

ǫ
(s1, s2),

where G(s1, s2) is chosen in such a way to extend F outside Qǫ with C3(R2) regularity and bounded derivatives

up to order three. Accordingly, we introduce the regularized energy functional Ψ̃Ω,reg : V 2
0 → R

Ψ̃Ω,reg(u, v) = ε2u
‖∇u‖2

2
+ ε2v

‖∇v‖2

2
+

∫

Ω

Freg(u, v)dx +
σ

2
‖v − v‖2∗. (7.5)

Then we have

Lemma 7.3. Let (u∞, v∞) ∈ ω(u0, v0). Then (u∞, v∞) is a critical point of Ψ̃Ω,reg.

Proof. Recalling the definition of the ‖ · ‖∗ norm, we calculate the first Fréchet derivative of Ψ̃Ω,reg, namely,

〈
Ψ̃′

Ω,reg(u, v), (h, k)
〉

= ε2u

∫

Ω

∇u · ∇h dx + ε2v

∫

Ω

∇v · ∇k dx +

∫

Ω

∇Freg(u, v) · (h, k) dx + σ

∫

Ω

N (v)k dx,

for (u, v), (h, k) ∈ V 2
0 . Integrating by parts the first two terms and expanding the third one, we get

〈
Ψ̃′

Ω,reg(u∞, v∞), (h, k)
〉

=

∫

Ω

(
−ε2u∆u∞ +

∂Freg

∂u
(u∞, v∞)

)
h dx

+

∫

Ω

(
−ε2v∆v∞ +

∂Freg

∂v
(u∞, v∞) + σN (v∞)

)
k dx = 0,

since every point in the ω-limit set is a stationary solution and lies in Qǫ for all x ∈ Ω (we recall that h = k = 0
for all (h, k) ∈ V 2

0 ).

We now show that Ψ̃Ω,reg is twice continuously Fréchet differentiable.

Lemma 7.4. The second Fréchet derivative of Ψ̃Ω,reg is well defined and Ψ̃′′
Ω,reg(u, v) : V 2

0 → L(V 2
0 , (V

2
0 )∗) is

given by

〈Ψ̃′′
Ω,reg(u, v)(w, z), (h, k)〉 = ε2u

∫

Ω

∇w · ∇h dx + ε2v

∫

Ω

∇z · ∇k dx

+

∫

Ω

(w, z)D2Freg(u, v) · (h, k) dx + σ

∫

Ω

N (z)k dx,

for all (u, v), (w, z), (h, k) ∈ V 2
0 . Moreover, Ψ̃′′

Ω,reg is continuous.

Proof. We focus on the nonlocal term, since the computation of both the linear and nonlinear terms is straight-
forward (it suffices to expand up to order 1 the partial derivatives of Freg). Moreover, since all derivatives
of the regularized potential are uniformly bounded up to order three, then also continuity is an immediate
consequence. Let H : V0 → V ∗

0 be defined as

〈H(v), k〉 = σ

∫

Ω

N (v)k dx, v, k ∈ V0.

Notice that H is linear and continuous, since the operator N is. Therefore, we have that arbitrary Fréchet
derivatives of H exist, and they are all constant (and therefore continuous), namely:

H ′ : V0 → L(V0, V
∗
0 ), H ′(v) = H, ∀ v ∈ V0.

Moreover, notice that any variation of H ′ vanishes, therefore H ′′ ≡ 0 (as an operator H ′′ : V0 → L(V0;L(V0, V
∗
0 ))),

and all higher-order derivatives are zero as well. In fact, H ∈ C∞(V0, V
∗
0 ). The proof is complete.

21



Let us now introduce the linear operator A : V 2
0 → (V 2

0 )∗ defined as follows (see Section 2)

〈A(u, v), (h, k)〉 = ε2u〈Au, h〉 + ε2v〈Av, k〉, (u, v), (h, k) ∈ V 2
0 .

Notice that the bilinear form a : V 2
0 × V 2

0 → R defined by a((u, v), (h, k)) := 〈A(u, v), (h, k)〉 is continuous and
symmetric by the properties of A and its inverse N . Moreover, endowing V0 with the classical H1-seminorm,

〈A(u, v), (u, v)〉 = ε2u〈Au, u〉 + ε2v〈Av, v〉 = ε2u‖∇u‖2 + ε2v‖∇v‖2 ≥ min(ε2u, ε
2
v)‖(u, v)‖2V 2

0
,

for all (u, v) ∈ V 2
0 , and thus coercivity holds as well. The corresponding operator A has therefore a nonempty

resolvent set.
The following lemmas are helpful in order to avoid notational ambiguities in the following.

Lemma 7.5. Let X be a real Banach space. The space (X∗)2 = X∗ ×X∗ is isomorphic to (X2)∗ = (X ×X)∗.
Moreover, the function I : (X∗)2 → (X2)∗ acting as

〈I(L,M), (w, s)〉 := 〈L,w〉 + 〈M, s〉, (L,M) ∈ (X∗)2, (w, s) ∈ X2

is an isomorphism. Consequently, if we identify H0 and its dual, the identification H2
0
∼= (H2

0 )∗ ∼= (H∗
0 )2 is

admissible.

Proof. The linearity of I is easily checked and follows from the linearity of its arguments. Assume that

〈I(L,M), (w, s)〉 := 〈L,w〉 + 〈M, s〉 = 0

for all (w, s) ∈ X2. Testing on couples of functions in X2 of the kind (0, s), (w, 0), for arbitrary w, s ∈ X
immediately yields that both L and M must be the null operator in X∗. Therefore, I is injective. Let now
P ∈ (X2)∗. Since, by linearity,

〈P, (w, s)〉 = 〈P, (w, 0)〉 + 〈P, (0, s)〉 =: 〈Pw , w〉 + 〈Ps, s〉, (w, s) ∈ X2,

where the definitions of Pw, Ps are clear from the equality above, if Pw, Ps ∈ X∗, then the operator I is also
surjective since the right hand side would equal 〈I(Pw , Ps), (w, s)〉. The linearity of Pw, Ps comes from the
linearity of P . As for continuity, recalling that we endow the product spaces with the respective standard
Euclidean norms,

‖Pw‖X∗ = sup
‖w‖X=1

|〈P, (w, 0)〉| ≤ sup
‖w‖X=1

‖P‖(X2)∗‖(w, 0)‖X2 = sup
‖w‖X=1

‖P‖(X2)∗‖w‖X = ‖P‖(X2)∗ ,

proving that Pw ∈ X∗. An analogous proof works for Ps. Thus, the operator I is invertible and we are only
left to prove its continuity. Indeed,

‖I(L,M)‖(X2)∗ = sup
‖(w,s)‖

X2=1

|〈I(L,M), (w, s)〉| = sup
‖(w,s)‖

X2=1

|〈L,w〉| + |〈M, s〉|

by the triangle inequality, and furthermore, by continuity of L and M

sup
‖(w,s)‖

X2=1

|〈L,w〉| + |〈M, s〉| ≤ sup
‖(w,s)‖

X2=1

‖L‖X∗‖w‖X + ‖M‖X∗‖s‖X

≤ max (‖L‖X∗, ‖M‖X∗) sup
‖(w,s)‖

X2=1

(‖w‖X + ‖s‖X) ,

and, since all norms are equivalent in R
2, we deduce that there exists C > 0 independent of L,M,w and s such

that
‖I(L,M)‖(X2)∗ ≤ max (‖L‖X∗ , ‖M‖X∗) sup

‖(w,s)‖
X2=1

(‖w‖X + ‖s‖X) ≤ C(‖L‖2X∗ + ‖M‖2X∗)
1
2 ,

and the first part of the statement is proved. As for the second part of the statement, we consider the case
X = H0. First of all notice that the Hilbert triplet setting lets us identify the set H0 with its dual space H∗

0 .
Observe that the Riesz isometry R2 between H2

0 and its dual is defined by

〈R2(w, s), (h, k)〉 := 〈Rw, h〉 + 〈Rs, k〉, (w, s), (h, k) ∈ H2
0 ,

where R denotes the Riesz map between H0 and its dual, then we can also identify H2
0 and its dual, and

moreover, in this case, after identification,

R2(w, s) = I(Rw,Rs) → (w, s) = I(w, s),

and thus we also deduce that I is the identity map (as expected).
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Lemma 7.6. Let A2 be the part of A in H2
0 , namely

A2 : D(A2) → H2
0 ,

where the domain D(A2) := {(w, s) ∈ V 2
0 : A(w, s) ∈ H2

0}. Furthermore, let

A2 : E(A2) → H0

denote the part in H0 of the operator A defined in Section 2 with domain E(A2). Then D(A2) = E(A2)×E(A2).

Proof. The inclusion E(A2)×E(A2) ⊂ D(A2) holds, since if (w, s) ∈ E(A2)×E(A2), then by definition w, s ∈ V0

are such that Aw,As ∈ H0. Therefore, owing to Lemma 7.5, the equality

A(w, s) = I(Aw,As) = (Aw,As) ∈ H2
0

holds in the H2
0 -sense. Conversely, let now (w, s) ∈ D(A2). Then,

A(w, s) = I(Aw,As) ∈ H2
0 ⇒ Aw,As ∈ H0 ⇒ Aw,As ∈ E(A2),

and the statement is proved.

Remark 7.1. As customary, from Lemma 7.6 we also know that

D(A2) =

{
(u, v) ∈ H2(Ω)2 :

∂u

∂n
=

∂v

∂n
= 0 a.e. on ∂Ω

}
.

Lemma 7.7. Let (u, v) ∈ V 2
0 and let (w, z) ∈ ker Ψ̃′′

Ω,reg(u, v). Then (w, z) ∈ D(A2).

Proof. If (w, z) belongs to the kernel of Ψ̃′′
Ω,reg, then

〈Ψ̃′′
Ω,reg(u, v)(w, z), (h, k)〉 = ε2u

∫

Ω

∇w · ∇h dx + ε2v

∫

Ω

∇z · ∇k dx

+

∫

Ω

(w, z)D2Freg(u, v) · (h, k) dx + σ

∫

Ω

N (z)k dx = 0,

for every choice of (h, k) ∈ V 2
0 . Expanding the third integral and separating variables we obtain the following

equality (we omit the dependence of the partial derivatives on (u, v) for the sake of clarity):

〈
ε2uAw +

(
∂2Freg

∂u2
+

∂2Freg

∂u∂v

)
w, h

〉
=

〈
−ε2vAz −

(
∂2Freg

∂v2
+

∂2Freg

∂u∂v

)
z − σN z, k

〉
,

for every (h, k) ∈ V 2
0 . Testing on (h, 0), (0, k) ∈ V 2

0 we infer that both functionals must equal the null operator
in V ∗

0 , thus there hold 



Aw = −
1

ε2u

(
∂2Freg

∂u2
+

∂2Freg

∂u∂v

)
w,

Az = −
1

ε2v

[(
∂2Freg

∂v2
+

∂2Freg

∂u∂v

)
z − σN z

]
,

where the equalities are to be intended in the V ∗
0 -sense. However, by uniform boundedness of the derivatives,

and since N z ∈ V0 ⊂ H0, it is easy to notice that both right hand sides are well defined in H0 (we recall that
(w, z) ∈ V 2

0 as well). The statement is proved.

In more than one spatial dimension the set E is usually a continuum. Therefore, one cannot simply take
advantage of the fact that we are dealing with a gradient system. An appropriate tool in this case is a method
based on the so-called  Lojasiewicz-Simon inequality which is given, in our case, by

Proposition 7.2. Let (u0, v0) ∈ Z. Suppose that (u∞, v∞) ∈ ω(u0, v0) and assume that the singular part Ŝ is
real analytic (see Remark 4.1). Then, there exist constants θ ∈ (0, 12 ) and C,̟ > 0 such that

|Ψ̃Ω,reg(w, z) − Ψ̃Ω,reg(u∞, v∞)|1−θ ≤ C‖Ψ̃′
Ω,reg(w, z)‖(V 2

0 )∗ ,

provided that ‖(w, z) − (u∞, v∞)‖V 2 ≤ ̟.
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Remark 7.2. We remark that a necessary requirement is the real analyticity of the nonlinearities. Indeed, we
recall that even for C∞ nonlinearities there are counterexamples (see, for instance, [27]). Also, we recall that it
might happen that θ = 1

2 but this depends on the possible hyperbolic nature of the stationary states (see, e.g.,
[7, Cor. 3.13]).

Proof. By Lemma 7.6 and Remark 7.1, as well as Sobolev embedding, we have that D(A2) →֒ L∞(Ω)2. Note
that both operators A and A2 have compact resolvents in (V 2

0 )∗ and H2
0 , respectively. Moreover, it follows

by Proposition 7.1 that any (u∞, v∞) ∈ ω(u0, v0) is uniformly bounded, and thus the operators Ψ̃′′
Ω,reg and its

restriction to D(A2) are bounded perturbations of A and A2, respectively. Thus, arguing as in [8, Proposition

6.6], the space ker Ψ̃′′
Ω,reg(u∞, v∞) is a finite-dimensional subspace of D(A2) (owing also to Lemma 7.7). Also,

the range rg Ψ̃′′
Ω,reg(u∞, v∞) is closed in (V 2

0 )∗ and the range rg Ψ̃′′
Ω,reg(u∞, v∞)

∣∣∣
D(A2)

is closed in H2
0 . We want

to apply [7, Corollary 3.11]. First of all, notice that, by Lemma 7.3, any point in the ω-limit set is a stationary
point of the energy functional. Adopting the same notation as in [7], we set X := D(A2) ⊂ V 2

0 , Y := H2
0 ,

W := (V 2
0 )∗. Moreover, let us denote by Π∗ : (V 2

0 )∗ → (V 2
0 )∗ the orthogonal projector onto ker Ψ̃Ω,reg(u∞, v∞).

By Lemma 7.7, Π∗(X) ⊂ X , and, furthermore, Π∗(Y ) ⊂ Y . Moreover, the energy functional has the form

Ψ̃Ω,reg(u, v) =
1

2
〈A(u, v), (u, v)〉 +

σ

2
〈v,Nv〉 +

∫

Ω

Freg(u, v) dx,

and since F is analytic in Qǫ, then the Fréchet derivative Ψ̃′
Ω,reg is real analytic (as an operator between Banach

spaces) in a neighborhood of (u∞, v∞) in X . We conclude the result using [7, Corollary 3.11].

We can now state and prove the convergence to a single stationary state.

Theorem 7.1. Let Ŝ be real analytic in (−1, 1). Let (u0, v0) ∈ V 2
0 such that F (u0, v0) ∈ L1(Ω). Consider the

trajectory (u(t), v(t)) = S(t)(u0, v0). Then there exists (u∞, v∞) ∈ E such that

lim
t→+∞

(u(t), v(t)) = (u∞, v∞), in H2r(Ω)2,

for all r ∈ (0, 1). Moreover, there exists C > 0, depending also on θ, such that, for all t ≥ 0,

‖(u(t), v(t)) − (u∞, v∞)‖(V ∗

0 )2 ≤ C(1 + t)−
θ

1−2θ . (7.6)

Proof. The LaSalle’s invariance principle and Proposition 7.1 entail that

Ψ̃Ω,reg(u, v)
∣∣∣
ω(u0,v0)

= Ψ̃Ω(u, v)
∣∣∣
ω(u0,v0)

≡ Ψ̃∞,

for some Ψ̃∞ ∈ R. By compactness of ω(u0, v0), we can consider an open cover U2 formed by a finite number
of sufficiently small balls, namely

ω(u0, v0) ⊂ U2 :=

N⋃

i=1

B̟i
((ui, vi)),

for some N ∈ N, (ui, vi) ∈ V 2
0 for i = 1, . . . , N and radii ̟i > 0 satisfying

max
1≤i≤N

̟i ≤ ̟,

where ̟ is the one appearing in Proposition 7.2. Notice that Proposition 7.2 holds in each of the balls, and
since they are a finite number, we can extract uniform constants C > 0, θ ∈ (0, 12 ] such that

|Ψ̃Ω,reg(w, z) − Ψ̃∞|1−θ ≤ C‖Ψ̃′
Ω,reg(w, z)‖(V 2

0 )∗ , (w, z) ∈ U. (7.7)

Observe that also U2 attracts the trajectory of the dynamical system. Thus (u(t), v(t)) ∈ U2 for every t ≥ t2.
Analogously, if t1 is such that (u(t), v(t)) ∈ U1 for every t ≥ t1, we consider the trajectory starting from the
time instant t♯ := max(t1, t2), so that (u(t), v(t)) ∈ U1 ∩ U2 ⊃ ω(u0, v0) for all t ≥ t♯. In this way,

(u(t, x), v(t, x)) ∈ Qǫ, ∀t ≥ t♯, ∀x ∈ Ω.

Let us consider the functional H : [t♯,+∞) → R defined by

H(t) = (Ψ̃Ω,reg(u(t), v(t)) − Ψ̃∞)θ
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Then, a straightforward computation, jointly with the differential form of Lemma 7.1 and 7.7, entail that

−
d

dt
H(t) = −θ(Ψ̃Ω,reg(u(t), v(t)) − Ψ̃∞)θ−1 d

dt
Ψ̃Ω,reg(u(t), v(t)) ≥ Cθ

‖∇µ(t)‖2 + ‖∇ϕ̃(t)‖2

‖Ψ̃′
Ω,reg(u(t), v(t))‖(V 2

0 )∗

. (7.8)

Next, we consider the quantity ‖Ψ̃′
Ω,reg(u(t), v(t))‖(V 2

0 )∗ . By definition,

‖Ψ̃′
Ω,reg(u(t), v(t))‖(V 2

0 )∗ = sup
‖(h,k)‖

V 2
0
=1

|〈Ψ̃′
Ω,reg(u(t), v(t)), (h, k)〉|.

Recalling the computations in Lemma 7.3 and the fact that (u(t), v(t)) ∈ U1, the right hand side equals

sup
‖(h,k)‖

V 2
0
=1

∣∣∣∣
∫

Ω

(
−ε2u∆u(t) +

∂F

∂u
(u(t), v(t))

)
h dx +

∫

Ω

(
−ε2v∆v(t) +

∂F

∂v
(u(t), v(t)) + σN (v(t))

)
k dx

∣∣∣∣

= sup
‖(h,k)‖

V 2
0
=1

∣∣∣∣
∫

Ω

µ(t)h dx +

∫

Ω

ϕ̃(t)k dx

∣∣∣∣

= sup
‖(h,k)‖

V 2
0
=1

∣∣∣∣
∫

Ω

(
µ(t) − µ(t)

)
h dx +

∫

Ω

(
ϕ̃(t) − ϕ̃(t)

)
k dx

∣∣∣∣

≤ C sup
‖(h,k)‖

V 2
0
=1

‖∇µ(t)‖‖h‖ + ‖∇ϕ̃(t)‖‖k‖

≤ C max(‖∇µ(t)‖, ‖∇ϕ̃(t)‖) sup
‖(h,k)‖

V 2
0
=1

(‖h‖ + ‖k‖)

≤ C (‖∇µ(t)‖ + ‖∇ϕ̃(t)‖) ,

for some C > 0, possibly different from the one above. We also used the Poincaré-Wirtinger and the triangle
inequalities, as well as the equivalence of all norms in R

2. Therefore from (7.8) we deduce

−
d

dt
H(t) ≥ C

‖∇µ(t)‖2 + ‖∇ϕ̃(t)‖2

‖∇µ(t)‖ + ‖∇ϕ̃(t)‖
≥

C

2
(‖∇µ(t)‖ + ‖∇ϕ̃(t)‖) ,

and an integration on [t♯,+∞) yields that ∇µ, ∇ϕ̃ ∈ L1([t♯,+∞), H0). By comparison in the evolution equa-
tions, we also have ∂tu, ∂tv ∈ L1([t♯,+∞), V ∗

0 ). Therefore, the limit

lim
t→+∞

(u(t), v(t)) = (u∞, v∞)

holds in the V ∗
0 -sense and, by compactness of the ω-limit set, also in the H2r-sense, for all r ∈ (0, 1). The fact

that (u∞, v∞) ∈ E follows from the characterization of the stationary points of S.

We have Ψ̃∞ = Ψ̃Ω,reg(u∞, v∞). Observe that, thanks to (7.1), we have

‖(u(t), v(t)) − (u∞, v∞)‖(V ∗

0 )2 ≤ C

∫ +∞

t

‖(ut(τ), vt(τ))‖(V ∗

0 )2 dτ

≤ C

∫ +∞

t

‖(∇µ(τ),∇ϕ̃(τ))‖ dτ ≤ CH(t), (7.9)

for all t ≥ t♯. From (7.4) and (7.8) we deduce

d

dt
H(t) + θH(t)

θ−1
θ

d

dt
Ψ̃Ω,reg(u(t), v(t)) =

d

dt
H(t) + θH(t)

θ−1
θ

(
‖∇µ(t)‖2 + ‖∇ϕ̃(t)‖2

)
= 0.

On the other hand, using again (7.7), we get

CH(t)
2(1−θ)

θ ≤
(
‖∇µ(t)‖2 + ‖∇ϕ̃(t)‖2

)
, ∀ t ≥ t♯,

so that
d

dt
H(t) + θCH(t)

1−θ
θ ≤ 0, ∀ t ≥ t♯. (7.10)

From (7.9) and (7.10) we deduce the wanted estimate rate (7.6) (see [31, Cor. 6.3.3]).
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Remark 7.3. If the initial conditions do not have null spatial average, that is, for instance, u0 = m1 and v0 = m2

for some m1,m2 ∈ (−1, 1), then we can always reformulate the problem in order to have zero mean and argue
as above. Indeed, setting ũ := u−m1 and ṽ := v−m2, we have ũ, ṽ ∈ V0, and the pair (ũ, ṽ) solves the problem






∂ũ

∂t
= ∆µ in Ω × (0, T ),

µ = −ε2u∆ũ +
∂F

∂u
(ũ + m1, ṽ + m2), in Ω × (0, T ),

∂ṽ

∂t
= ∆ϕ̃ in Ω × (0, T ),

ϕ̃ = −ε2v∆ṽ +
∂F

∂v
(ũ + m1, ṽ + m2) + σN ṽ in Ω × (0, T ),

∂ũ

∂n
=

∂ṽ

∂n
= 0 on ∂Ω × (0, T ),

∂µ

∂n
=

∂ϕ

∂n
= 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

v(·, 0) = v0 in Ω.

Therefore, replacing the nonlinearity F with F̃ (s1, s2) := F (s1 + m1, s2 + m2), we recover the structure of
Problem (7.1). Notice that this change does not affect the regularity of the nonlinear term.

Remark 7.4. On account of Proposition 5.3, using the general theory, one can prove that the dynamical system
(Z,S(t)) has a connected global attractor bounded in H4(Ω)2 if d = 2 (see Remark 6.2) or W 2,6(Ω)2 if d = 3 (see
[14, Thm. 6.1]). This attractor coincides with the unstable manifold of E since S(t) has a Lyapunov function
on Z. If d = 2 then the separation property allows us to establish the existence of an exponential attractor (see
[14, Thm. 6.1] and related remarks).

8 Concluding remarks and future issues

The analysis of regularity and its implications in the off-critical case remains an open issue. As we pointed

out in Section 5, because ∂h
t v is no longer zero (see (5.5)) we are unable to carry out the proof of the crucial

Proposition 5.1 as we did. A different strategy might be required. Taking the hydrodynamic effects into account
could be another challenging issue (see, for instance, [24] and its references) as well as replacing the standard
Cahn-Hilliard equation with its nonlocal counterpart (see [13] and references therein). We also recall that
some models of surfactants are represented by coupled Cahn-Hilliard equations (see [20], cf. also [30] and its
references for the numerical approximations) possibly with hydrodynamic effects (see, e.g., [10] and references
therein). The present approach could be extended to these models. Indeed they are characterized by regular
potentials so that one cannot ensure that the local concentrations take their values in the physical range. As
a consequence, one cannot guarantee that the total free energy is bounded from below. Instead, we believe
that taking mixing entropies as we did here can led us to establish physically meaningful theoretical results.
This choice might also help to design alternative numerical schemes (compare with the penalization argument
introduced in [29]). Concerning the longtime behavior, the existence of an exponential attractor, which entails
the finite-dimensionality of the global attractor, cannot be extended easily to the case d = 3 since no (global)
separation property is known. However, one might try to use the argument devised in [25, Sec.5], a sort of
“local” separation property.
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