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Cardiac digital twins provide a physics and physiology informed framework to deliver personalized
medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their
extensive computational costs. Artificial Intelligence-basedmethodscanmake thecreationof fast and
accurate whole-heart digital twins feasible. We use Latent Neural Ordinary Differential Equations
(LNODEs) to learn the pressure-volume dynamics of a heart failure patient. Our surrogate model is
trained from 400 simulations while accounting for 43 parameters describing cell-to-organ cardiac
electromechanics and cardiovascular hemodynamics. LNODEs provide a compact representation of
the 3D-0D model in a latent space by means of an Artificial Neural Network that retains only 3 hidden
layers with 13 neurons per layer and allows for numerical simulations of cardiac function on a single
processor. We employ LNODEs to perform global sensitivity analysis and parameter estimation with
uncertainty quantification in 3 hours of computations, still on a single processor.

Cardiac digital twins integrate physiological and pathological patient-
specific data to monitor, analyze and forecast patient disease progression
and outcomes. High-fidelity multi-scale and anatomically accurate models
are available but require extensive high-performance computing resources
to run, which limit their clinical translation1. Over the past years, these
mathematical models evolved from an electromechanical description of the
human ventricular activity in idealized shapes2,3 and realistic geometries4–7,
while also addressing diseased conditions8–12, to whole-heart function13–18.
Nevertheless, running many electromechanical simulations still entail high
computational costs, hindering the development and application of cardiac
digital twins. The use ofMachine Learning tools, such asGaussianProcesses
Emulators19 and Artificial Neural Networks (ANNs)20,21, allows to create
efficient surrogate models that can be employed in many-query
applications22, such as sensitivity analysis and parameter inference23–25. In
the framework of digital twinning and personalized medicine, bridging the
chasm between the need for a supercomputer26–29 and performing accurate
numerical simulations on a standard computer30–33 would have a tre-
mendous impact on the clinical adoption of computational cardiology.

In thiswork,wedevelop a ScientificMachineLearningmethod tobuild
a comprehensive surrogate model involving both cardiac and

cardiovascular function. Specifically, we train a system of Latent Neural
Ordinary Differential Equations (LNODEs)20,34,35 that learns the pressure-
volume transients of a heart failure patient while varying 43 model para-
meters that describe cardiac electrophysiology, active and passive
mechanics, and cardiovascular fluid dynamics, by employing 400 3D-0D
closed-loop electromechanical training simulations. We design a suitable
loss function that is minimized during the tuning process of the ANN
parameters, which entails small relative errors of LNODEs, i.e., from 2% to
6%, when the number of training samples is small compared to the
dimensionality of the parameter space and the explored model variability.
These LNODEs enable four-chamber heart numerical simulations on a
standard computer by encoding pressure-volume dynamics while spanning
electro-mechano-fluid model parameters throughout the cardiovascular
system. Furthermore, they can be easily trained on a single central proces-
sing unit (CPU).

We use the trained LNODEs to perform global sensitivity analysis
(GSA) and robust parameter estimation with uncertainty quantification
(UQ)23,24. For the former, we observe how model parameters impact the
variability of scalar quantities of interest (QoIs) retrieved from the pressure-
volume time traces, by considering both first-order and high-order
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interactions via Sobol indices36. For the latter, we combine two Bayesian
statistics methods, i.e., Maximum a Posteriori (MAP) estimation and
Hamiltonian Monte Carlo (HMC)34,37,38, where we exploit efficient matrix-
free adjoint-based methods, automatic differentiation and vectorization34.
In particular, we design several test cases where we calibrate tens of model
parameters bymatching the pressure and volume time traces, that are time-
dependent QoIs, coming from 5 unseen 3D-0D numerical simulations for
the trained ANN. GSA and parameter estimation with UQ can be carried
out in 3 hours of computations by using a single core standard laptop.

Results
We display the whole computational pipeline in Fig. 1.
• Top-left: we use a database of Nsims = 405 electromechanical simula-

tions generated by a personalized anatomy four-chamber heart model
from a heart failure patient (see Supplementary Material 1), where we
vary NP ¼ 43 parameters that describe cell, tissue, whole-heart and
cardiovascular system material properties and boundary conditions.
For all the numerical simulations, we run 5 heartbeats in sinus rhythm
and we perform our analysis on the pressure and volume transients of
the last cardiac cycle. We refer to Supplementary Material 2 for all the
details about the four-chamberphysics-basedmathematicalmodel and
the numerical settings of these simulations. All the information
regarding model parameters can be found in Supplementary
Material 3.

• Bottom-left: we employ Ntrain, valid = 400 simulations to tune the
LNODEs hyperparameters. This surrogate model learns the atrial and
ventricular pressure-volume temporal dynamics of the last cardiac
cycle only, while receiving time and model parameters as inputs. We
performK-fold cross validation withK = 10 for the training-validation
splitting. We detail the whole optimization process to get the final
values of the LNODEs hyperparameters in Supplementary Material 4.
We evaluate the accuracy of the trained LNODEs on a testing dataset
consisting of the remaining Ntest = 5 numerical simulations.

• Bottom-right: we employ the trained LNODEs to perform GSA.
• Top-right: we estimate model parameters with UQ on Ntest = 5

numerical simulations by means of the trained LNODEs.

Learning atrial and ventricular pressure-volume loops
Automatic hyperparameters tuning withK-fold cross validation leads to an
optimal ANN architecture comprising 3 hidden layers and 13 neurons per
hidden layer. The optimal number of states is set to Nz = 8, i.e., no latent
variables are selected. This is motivated by the trade-off between the size of
the training setNtrain, valid with respect to the number of parametersNP , i.e.,
a thrifty system of LNODEs with no additional hidden variables zlatent(t) is
selected to avoid overfitting. More details regarding LNODEs training and
hyperparameters tuning are given in Supplementary Material 4.

In Table 1, we report the Normalized Root Mean Square Error
(NRMSE) and R2 coefficients associated with the LA, LV, RA, and RV
pressure-volume time tracesprovidedbyLNODEs.Thesevalues areobtained
by considering a test set comprisedofNtest = 5 electromechanical simulations.
The accuracy obtained by our surrogate model in reproducing the cardiac
outputs is high, manifesting testing errors that approximately range from 2%
to6%for all time-dependentQoIs.ThegoodmatchbetweenmodelsM3D-0D
andMANN is also confirmed by Fig. 2, where atrial and ventricular pressure-
volume traces present a good overlap on the whole testing set.

Global sensitivity analysis
Figure 3 shows the total-effect Sobol indices. We consider a para-
meter to be relevant if the associated Sobol indices are greater than

Fig. 1 | Sketch of the computational pipeline.We perform several 3D-0D closed-
loop four-chamber heart electromechanical simulations. We build an accurate and
efficientANN-based surrogatemodel of thewhole cardiovascular function bymeans
of LNODEs.We carry out GSA to understand how eachmodel parameter influences

different QoIs extracted from the simulated pressure-volume loops. We robustly
estimate many model parameters from time-dependent QoIs. Fully personalized
3D-0D numerical simulations can be performed after parameter calibration
with UQ.

Table 1 | Testing errors and R2 coefficients on the time-
dependent outputs of the trained LNODEs system

Pressure

pLA(t) pLV(t) pRA(t) pRV(t)

M3D-0D vs MANN NRMSE 0.028 0.022 0.022 0.021

R2 99.23 99.82 98.85 99.81

Volume

VLA(t) VLV(t) VRA(t) VRV(t)

M3D-0D vs MANN NRMSE 0.036 0.030 0.054 0.026

R2 99.36 99.50 97.97 99.58
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10−1 for at least one QoI. We notice that, as expected from a phy-
siological point of view, some model parameters are compartmen-
talized, i.e., cell-to-organ level values coming from a certain

compartment of the cardiocirculatory system mostly explain the
variability of QoIs that are specific to that region. Indeed, some
parameters of the CRN-Land model, such as atrial calcium/troponin
complex when 50% of crossbridges are blocked permCRN�Land

50 , atrial
Ca2+-troponin cooperativity TRPNCRN�Land

n and atrial reference Ca2+

sensitivity caCRN�Land
50 , or of the Guccione model, such as atrial

stiffness in the transverse plane batriat , have an important role in
determining atrial behavior. Similar considerations occur for the
ventricular part of the heart, where the most important parameters
are related to the ToRORd-Land model. Nevertheless, it is important
to notice the interplay between some ventricular parameters of the
ToRORd-Land model at the cellular scale, such as ventricular steady-
state duty ratio drToRORd-Land, ventricular calcium/troponin complex
when 50% of crossbridges are blocked permToRORd�Land

50 and ven-
tricular reference Ca2+ sensitivity caToRORd�Land

50 and the atrial func-
tion. This is a particularly interesting insight into cardiac physiology
that can be clearly unraveled using this type of comprehensive sen-
sitivity analysis. We highlight that, as expected, some model para-
meters, such as atrioventricular delay AVdelay, systemic resistance Rsys

and pulmonary resistance Rpulm strongly affect all QoIs, whereas
others, such as the pericardial coefficient kperi, as well as aorta
parameters (length Aol, stiffness kArt), have a minor role in deter-
mining all QoIs.

Finally, we remark that Sobol indices are affected by the amplitude of
the ranges in which the parameters are varied. In particular, the wider the
range associated with a parameter, the greater the associated Sobol indices
will be, as the parameter in question potentially generates greater variability

Fig. 2 | Pressure and volume time transients obtained with model M3D-0D
(dashed lines), compared to those obtained with model MANN (solid lines), on
the testing samples (Ntest= 5). Light blue: LA, orange: LV, blue: RA, green: RV.

Fig. 3 | Total-effect Sobol indices computed by exploitingmodelMANN. For a detailed definition of all model parameters andQoIs, we refer to SupplementaryMaterial 3.
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in the QoI. Therefore, we stress that our results are valid for the specific
ranges we used.

Robust parameter estimation
In the context of parameter calibration, a preliminary GSA allows to
determine the identifiability ofmodel parameters according to the provided
QoIs. Based on the results obtained from global sensitivity analysis, we
design 4 in silico test cases to show the robustness and flexibility of our
parameter calibration process, which is driven by a combined use of MAP
estimation and HMC starting from time-dependent QoIs. In Table 2, we
report the observed pressure-volume time traces and estimated model
parameters for each test case. In T LV and T ventricles, we estimate model
parameters related to the ventricular and cardiovascular function starting
from time-dependent QoIs localized in the ventricles. In T atria, we calibrate
model parameters over the whole cardiac function and cardiocirculatory
network by only considering atrial observations. Finally, we challenge our
surrogate model by taking all cardiac pressures and volumes over time and
by estimating 11 model parameters.

We perform parameter estimation with UQ on Ntest = 5 electro-
mechanical simulations that are unseen by the trained LNODEs. Figure 4
shows some two-dimensional views of the posterior distribution for each
test case and for all Ntest numerical simulations. We notice that the true
parameter values are contained inside the 95% credibility regions. More-
over, by using Bayesian statistics we are able to capture relationships among
model parameters. In particular, in Fig. 4 we consider different pairs of
model parameters for each test case and numerical simulation to maximize
the number of interactions. For instance, pulmonary resistance scaling
factorRpulm and ventricular steady-state duty ratio drToRORd-Land are positively
correlated with systemic resistance scaling factor Rsys and ventricular
reference Ca2+ sensitivity caToRORd�Land

50 , respectively, while ventricular
steady-state duty ratio drToRORd-Land and ventricular referenceCa2+ sensitivity
caToRORd�Land

50 are negatively correlated with fast endocardial layer scaling
factor kFEC and ventricular calcium/troponin complex when 50% of
crossbridges are blocked permToRORd�Land

50 , respectively. We notice that, in
some cases, cell-based atrial and ventricular parameters may be correlated,
as it happens for atrial Ca2+-troponin cooperativity TRPNCRN�Land

n and
ventricular calcium/troponin complex when 50% of crossbridges are
blocked permToRORd�Land

50 , while in most situations, such as with ventricular
steady-state duty ratio drToRORd-Land and atrial Ca2+-troponin cooperativity
TRPNCRN�Land

n , there is no interaction. We also remark that this kind of
relationships may be unraveled among different physical problems. For
instance, this occurs between cardiovascular hemodynamics (systemic
resistance scaling factor Rsys) and the ventricular cell tension model (ven-
tricular steady-state duty ratio drToRORd-Land). The aforementioned interac-
tions amongmodel parameters can be quite interesting and surprising from
a physiological perspective, especially when they involve very different
cardiovascular compartments of this complex multiscale and multiphysics
mathematical model. For the sake of completeness, in Table 3, we report
the identified parameter values of ventricular steady-state duty ratio
drToRORd-Land, systemic resistance scaling factorRsys and pulmonary resistance
scaling factor Rpulm for all test cases, with respect to the first testing simu-
lation. We see that the true values of the parameters are always contained

inside the interval defined by median plus/minus interquartile range. We
refer to Supplementary Material 6 for the tables containing similar results
and comparisons for all test cases (T LV,T ventricles,T atria andT all)with all the
relevant model parameters over the Ntest electromechanical simulations.

Discussion
In this work, we propose a surrogate model based on LNODEs to
learn the pressure-volume temporal dynamics of 3D-0D closed-loop
four-chamber heart electromechanical simulations23. The geometry is
retrieved from a heart failure patient and some functional aspects
have been incorporated in the electromechanical simulations. Spe-
cifically, we get QRS duration from 12-lead electrocardiograms,
ventricle reference tension for active contraction and heart rate, in
order to achieve pressure-volume loops that are consistent with
measured peak pressure and pressure transient duration25. In parti-
cular, starting from 400 numerical simulations, we create an
anatomy-specific surrogate model by leveraging LNODEs. These are
defined by a lightweight feedforward fully-connected ANN contain-
ing 3 hidden layers and 13 neurons per layer. LNODEs retain the
variability of 43 model parameters that describe electrophysiology,
active and passive mechanics, and hemodynamics, both at the cell
level and organ scale, and covering a wide range of pressure and
volume values (see Figures in Supplementary Material 2). Indeed,
LNODEs allows to capture complex dynamics with a small number
of tunable parameters. This paradigm, opposed to large machine
learning models that work in the overparameterization regime, has
proven to be very effective and robust, showing great generalization
properties. Some other examples are given by Latent Dynamics
Networks39 or Liquid Neural Networks40, which are built on top of
LNODEs to account for complex space-time processes exhibiting
abrupt changes by using very simple architectures and small latent
spaces.

The generation of such a comprehensive training dataset poses an
incredible technological challenge itself in the scientific community25, and in
recent years different surrogate models of cardiac electromechanics based
on emulators have been proposed in the literature to provide fast and
accurate evaluations based on computationally expensive physics-based
mathematical models19,25,41–43. These emulators are built on a collection of
pre-computed numerical simulations obtained by sampling the parameter
space, similarly to what has been done in this work. However, they only fit a
static map between model parameters and pointwise QoIs extracted from
the numerical simulations. On the other hand, LNODEs present a higher
representational power, because they encode time dependent electro-
mechanical simulations instead of pointwise QoIs, while also requiring a
smaller amount of data to reach a prescribed accuracy23. This is why this
paper provides a comprehensive surrogate model embracing cardiac and
cardiovascular function.

The choice of 400 numerical simulations for the training of LNODEs
allows to get consistently lowvalidation and testing errors, in the order of 2%
to 6%, even in areas of the parameter space that are sparsely covered by the
training samples (see Figure in Supplementary Material 3). The error
remainswithin these bounds even ifwe increase thedimension of the testing

Table 2 | Summary of the 4 in silico test cases for parameter calibration

Test case Time-dependent QoIs Estimated model parameters

T LV VLV drToRORd-Land, caToRORd�Land
50 , Rsys, Rpulm

T ventricles VLV, VRV drToRORd-Land, caToRORd�Land
50 , permToRORd�Land

50 , Rsys, Rpulm

T atria VLA, VRA drToRORd-Land, permToRORd�Land
50 , caCRN�Land

50 , TRPNCRN�Land
n , gCRN

CaL , b
atria
t , Rsys, Rpulm

T all pLA, pRA, pLV, pRV, VLA, VRA, VLV, VRV drToRORd-Land, permToRORd�Land
50 , caToRORd�Land

50 , caCRN�Land
50 ,CVventricles, TRPNCRN�Land

n , kFEC, gCRN
CaL , b

atria
t ,Rsys,Rpulm

gCRN
CaL : AT conductance of L-type Ca2+ current, TRPNCRN�Land

n : AT Ca2+-troponin cooperativity, caCRN�Land
50 : AT reference Ca2+ sensitivity, batria

t : AT stiffness in the transverse plane, permToRORd�Land
50 : VE

calcium/troponincomplexwhen50%ofcrossbridgesareblocked,drToRORd-Land: VEsteady-stateduty ratio,caToRORd�Land
50 : VE referenceCa2+sensitivity,CVventricles: VEconductionvelocity in thefiber direction,

kFEC: fast endocardial layer scaling factor, Rsys: systemic resistance scaling factor, Rpulm: pulmonary resistance scaling factor, AT: atrial, VE: ventricular.
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set while decreasing the one of the training set (see SupplementaryMaterial
9). In addition, LNODEs provide better generalization properties compared
to Gaussian processes emulators, especially for ventricular function (see
Supplementary Material 8).

LNODEs require a small amount of computational resources and
enable several applications of interest in a very fast and accurate manner.
Indeed, as reported in Table 4, running the training phase of theANNalong
withGSA and robust parameter estimation on a single core standard laptop
just requires 13 h of computations.We remark that this time can be reduced
with a multi-core implementation. On the other hand, employing the 3D-
0D modelM3D-0D for the same computational pipeline would entail very
significant costs. The overall speed-up with the surrogate modelMANN is

equal to 1718x. Furthermore, after the parameter calibration process, a
whole-heart electromechanical simulation can run via high-performance
computing with the estimated model parameters, showing all relevant
space-time fields, such as transmembrane potential, active contraction,
displacement and stresses. This would provide relevant insights across the
whole high-fidelity cardiac model.

It is interesting to note that several model parameters related to elec-
trophysiology, mechanics, and hemodynamics at the cell-to-organ scale
have a significant impact on the pressure-volume loops. These model
parameters can be inferred from the pressure-volume relationships using
Bayesian parameter estimation withUQ, i.e., their true values are contained
within the 95% credibility regions of the posterior distribution. In addition,
bayesian statistics provides important insights by capturing cross-
correlations between model parameters. This occurs even between differ-
ent cardiovascular compartments, such as the systemic circulation and
ventricular electromechanics. Our approach could be applied in a clinical
setting by using clinically measured rather than computational pressure-
volume loops to infer protein and cell-to-organ function directly from
clinical data.

Even though this paper focuses on a single anatomy, it represents an
important milestone towards the construction of emulators incorporating
geometric variability. Indeed, the presented approach can be extended to
cover patient variability, by incorporating statistical shape modeling44,45 or
other ANN-based methods, such as Universal Solution Manifold
Networks46 or generative deep learning techniques based on Signed

Fig. 4 | Two-dimensional views of the posterior distribution estimated by means of HMC for each test case (rows) and Ntest= 5 electromechanical simulations
(columns). Different colors are associated to T LV, T ventricles, T atria, T all .

Table 3 | True value and median with interquartile range
(between brackets) associated to the estimated values of
ventricular steady-state duty ratio drToRORd-Land, systemic
resistance scaling factor Rsys and pulmonary resistance
scaling factor Rpulm during HMC for the first numerical simu-
lation of the testing set

Parameter Ground truth T LV T ventricles T atria T all

drToRORd-Land 0.23 0.21 (0.05) 0.23 (0.03) 0.20 (0.05) 0.27 (0.04)

Rsys 3.28 3.28 (0.49) 3.30 (0.13) 3.32 (0.27) 3.18 (0.11)

Rpulm 2.63 2.70 (0.43) 2.66 (0.26) 2.99 (0.49) 2.51 (0.15)
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Distance Fields47,48, within LNODEs, to encode different geometrical para-
meterizations. Furthermore, multiple pathological conditions and diag-
noses can be taken into account by providing specific one-hot vectors as
additional inputs to theANN47. In thismanner,wewould run the numerical
simulations with the biophysically detailed and anatomically accurate
mathematical model just once and we would train an ANN that generalizes
on multiple patients, while effectively capturing multi-physics and multi-
scale knowledge. Moreover, even though patient-specific pressure-volume
loops have not been considered in this work, we aim at adding this infor-
mation as part of our computational pipeline for parameter calibrationwith
UQ. The proposed method paves the way to extensions incorporating dif-
ferent anatomies and pathological conditions, which would potentially
allow for auniversalwhole-heart simulator thatmight be readily deployed in
clinical practice for fast and reliable personalized parameter calibration
based on patient-specific data.

Methods
Ethics statement
The clinical data used in this study were collected as part of a clinical trial
(REC reference: 14/WM/1069) approved by the West Midlands-Coventry
& Warwickshire Research Ethics Committee.

Learning atrial and ventricular pressure-volume loops
Following the model learning approach introduced in ref. 20, we build a
system of LNODEs, i.e., a set of ordinary differential equations whose right
hand side is represented by a feedforward fully-connected ANN, that learns
the pressure-volume temporal dynamics of the 3D-0D closed-loop elec-
tromechanicalmodelM3D-0D in a latent space.All details regarding cardiac
anatomyand themodelM3D-0D, aswell as the coupling to pressure-volume
loops, are reported in Supplementary Material 1 and 2, respectively. In this
framework, the four-chamber heart surrogate modelMANN reads:

dzðtÞ
dt

¼ ANN zðtÞ; cos 2πðt � AVdelayÞ
THB

� �
; sin

2πðt � AVdelayÞ
THB

� �
; θ;w

� �
for t 2 ð0;THB�;

zð0Þ ¼ z0;

8<
:

ð1Þ

where z0 is the vector of initial conditions. The ANN, with weights and
biases encoded in w 2 RNw , is defined by ANN : RNzþ2þNP ! RNz .
Vector θ 2 Θ � RNP defines the model M3D-0D parameters. Some
examples of θ could be conductances of different ionic channels,myocardial

conductivity, atrial and ventricular active tension or passive stiffness, and
resistances of the systemic and pulmonary circulation. The reduced state
vector zðtÞ 2 RNz contains the time-dependent pressure and volume
variables of the left atrium (LA), right atrium (RA), left ventricle (LV) and
right ventricle (RV), as well as additional latent variables without a direct
physical interpretation, that is zðtÞ ¼ ½zphysicalðtÞ; zlatentðtÞ� ¼
½pLAðtÞ; pLVðtÞ; pRAðtÞ; pRVðtÞ;VLAðtÞ; VLVðtÞ;VRAðtÞ;VRVðtÞ; zlatentðtÞ�T .
The ANN receives Nz state variables, NP scalar parameters, and two
periodic inputs. Indeed, even though LNODEs are just trained on the last
cardiac cycle, the cosine and sine terms account for the heartbeat periodTHB
and the atrioventricular delay AVdelay of whole-heart electromechanical
simulations (see SupplementaryMaterial 2 for further details). On the other
hand, the vector of physics-based model parameters θ, which involves
cardiac electromechanics and cardiovascular hemodynamics, is not related
to the time variable, as is the case forTHB andAVdelay, and is givendirectly as
input neurons to theANN.We stress that, differently from ref. 23, the initial
reduced state vector z0 contains different sets of initial conditions for
pressures, volumes and latent variables. Pressure and volume initial values
are determined by model M3D-0D. Following49, latent variables are
initialized to zero and these initial conditions act as additional tunable
parameters along with the weights and biases of the ANN.

The loss function that we minimize during the ANN optimization
process reads:

LðzðtÞ;~zðtÞ; bwÞ ¼ argminbw
jjzphysicalðtÞ � ~zphysicalðtÞjj2L2ð0;THBÞ

z2norm

"

þ α

dzphysicalðtÞ
dt

� d~zphysicalðtÞ
dt

����
����
2

L2ð0;THBÞ
z2norm;diff

þ β

max
t2½0;THB�

zphysicalðtÞ � max
t2½0;THB�

~zphysicalðtÞ
� �2

z2norm;max

þ γ

min
t2½0;THB�

zphysicalðtÞ � min
t2½0;THB�

~zphysicalðtÞ
� �2

z2norm;min

þ η jjzlatentð0Þjj2 þ jjzlatentðTHBÞjj2
� �

þ ιjjbwjj2L2�;
ð2Þ

with α = β = γ = η = 0.1. The loss function aims at finding an optimal set of
weights bw for the ANN. It comprises the normalized mean square error
between ANN pressure-volume predictions zphysical(t) and observations
~zphysicalðtÞ, as well as a weak penalization of the physical state vector time
derivatives, maximum and minimum values for t∈ [T− THB, T]. Indeed,
given the small ratio between the dimensionality of the training dataset and
the number of parameters θ of modelM3D-0D, we notice that these three
additional terms reduce the generalization errors of the ANN. The
penultimate weakly enforced condition on zlatent(t) favors a periodic
solution for all the hidden latent variables. The last term of the loss function
prescribes the L2 regularization of the ANN weights and ι is one of the
automatically tuned LNODEs hyperparameters (see Supplementary
Material 4).

Global sensitivity analysis
We employ the Saltelli’s method to perform a variance-based sensi-
tivity analysis50. We compute both first-order Sobol indices and total-
effect Sobol indices for each combination of quantity of interest and
model parameter36. These two indices define how much varying a
single parameter affects a specific QoI and how higher-order inter-
actions among model parameters influences the model outputs,
respectively. All mathematical details regarding the computation of

Table 4 | Summary of the approximated computational times
to perform GSA and parameter estimation with UQ. 3D-0D
closed-loopmodelM3D-0D (top) and LNODEsMANN (bottom)

Task Computational
resources

Execution time

M3D-0D

Single simulation (5
heartbeats)

512 cores 6 h and 20min

GSA (704’000 simulations) 512 cores 508 years

Parameter estimation with UQ
(750 heartbeats)

512 cores 0.5 years

Total: 508.5 years

MANN

Training dataset generation
(405 simulations)

512 cores 106 days and 21 h

Reduced-order model training 1 core 10 h

GSA (704’000 heartbeats) 1 core 2 h

Parameter estimation with UQ
(750 heartbeats)

1 core 1 h

Total: 108 days
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Sobol indices and Saltelli’s sampling are given in Supplementary
Material 5, along with first-order Sobol indices computed using
model MANN.

Robust parameter estimation
We perform parameter calibration with inverse UQ following a two-stage
approach. First, given a set of time-dependentQoIs related to four-chamber
heart pressure and volume traces, we solve a bounded and constrained
optimization problem by employing modelMANN to obtain the pointwise
MAP estimation for a predefined set of model parameters θ 2 Θ � RNP .
Second, we initialize HMC based on the MAP estimation and we build an
approximation for the posterior distribution of θ37, while accounting for the
measurement and surrogate modeling errors via Gaussian Processes24. We
provide all the mathematical and numerical details regarding the optimal
control problemwe solve, MAP estimation, HMC, and howwe account for
the different sources of error during inverse UQ in Supplementary Mate-
rial 6.

Software libraries
All 3D-0D closed-loop electromechanical simulations run with the Cardiac
ArrhythmiaResearchPackage (CARP)13,51.We trainmodelMANN byusing
an in-house high-performance Python library based on Tensorflow52. We
perform GSA by means of the open source Python library SALib53.
Parameter estimation with UQ is carried out by combining the open source
Python libraries JAX54 and NumPyro55.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The four-chamber heart pressure-volume loops used to train and test
LNODEs are available at: https://github.com/MatteoSalvador/cardio
EM-4CH.

Code availability
The code to train LNODEs, to perform GSA and to do Bayesian parameter
estimation with uncertainty quantification is publicly available at: https://
github.com/MatteoSalvador/cardioEM-4CH.
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