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A B S T R A C T   

Artificial Neural Networks (ANNs), sometimes also called models for deep learning, are used extensively for the 
prediction of a range of environmental variables. While the potential of ANNs is unquestioned, they are sur
rounded by an air of mystery and intrigue, leading to a lack of understanding of their inner workings. This has led 
to the perpetuation of a number of myths, resulting in the misconception that applying ANNs primarily involves 
“throwing” a large amount of data at “black-box” software packages. While this is a convenient way to side-step 
the principles applied to the development of other types of models, this comes at significant cost in terms of the 
usefulness of the resulting models. To address these issues, this inroductory overview paper explodes a number of 
the common myths surrounding the use of ANNs and outlines state-of-the-art approaches to developing ANNs 
that enable them to be applied with confidence in practice.   

1. Introduction 

Artificial Neural Networks (ANNs), sometimes also referred to as 
models for deep learning (Goodfellow et al., 2016; Razavi 2021), are a 
computational tool inspired by the structure and operation of the human 
brain. However, while early research into ANNs tried to understand and 
replicate the operation of the brain as closely as possible, the majority of 
subsequent research efforts have focused on the development and 
application of ANNs as a computational tool for forecasting and pattern 
recognition. In the field of environmental modelling, ANNs have been 
used primarily for “prediction and forecasting” in areas such as 

hydrology and water resources (Abrahart et al., 2012; ASCE Task 
Committee on Application of Artificial Neural Networks in Hydrology, 
2000a, 2000b; Dawson and Wilby, 2001; Maier and Dandy, 2000a,b; 
Razavi and Araghinejad, 2009; Maier et al., 2010, Taormina et al., 2012; 
Wu et al., 2014), air quality and carbon emissions (Cabaneros et al., 
2019; Ghalandari et al., 2021; Huber et al., 2021; Zhang et al., 2020), 
meteorology and climate science (Granata and Di Nunno, 2021; Sama
dianfard et al., 2020), environmental science and ecology (Gardner and 
Dorling, 1998; Zou et al., 2022), agriculture (Paudel et al., 2023; Zou 
et al., 2022), soil science (Schillaci et al., 2021) and renewable energy 
(Heydari et al., 2019; Kalogirou, 2001). Consequently, the context of 
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this paper is forecasting and prediction. For ANN applications to other, 
less common, environmental modelling purposes, such as “diagnostic 
learning” and “scenario analysis”, the reader may refer to Razavi et al. 
(2022). 

While the use of ANNs was initially restricted to the research domain, 
their use in industry has become increasingly common. Reasons for this 
include factors such as significant reductions in the cost of sensors and 
the corresponding increase in the availability of large data sets (Reis 
et al., 2015), as well as an increase in the complexity of the systems 
being modelled and the associated understanding of how these can be 
represented mathematically (e.g. Mount et al., 2016). Morever, the 
availability of many open-source software libraries—such as scikit-learn 
(Pedregosa et al., 2011) or caret (Kuhn, 2008) — and tailored imple
mentations for GPUs, like TensorFlow (Abadi et al., 2016) and pytorch 
(Paszke et al., 2019), have made ANN implementations available to a 
wider group of users. Graduate and undergraduate courses in machine 
learning have also started to permeate curricula in environmental sci
ence and engineering, increasing their level of understanding and 
acceptance. 

ANNs are also playing an increasingly important role in integrated 
environmental modelling. For example, they can act as surrogate- or 
meta- or emulation-models to replace all, or portions of, computation
ally expensive simulation models to facilitate repeated model applica
tions, as is the case in optimisation and sensitivity analysis studies (e.g. 
Broad et al., 2015; Castelletti et al., 2012; Razavi et al., 2012). Another 
example can be drawn from climate science, where ANNs are being used 
increasingly to solve parameterization issues or other 
computationally-challenging aspects of climate models (Gentine et al., 
2018). In addition, ANNs can be used as management models designed 
to replace a number of linked process-based models by a single inpu
t/output model, which can generally overcome some of the data inte
gration and software platform incompatibility issues associated with 
integrated process-based models, therefore reducing model complexity 
and the potential for error accumulation. To this end, they can also be 
used for operationalizing digital twins in environmental applications 
(Pylianidis and Athanasiadis, 2022; Pylianidis et al., 2022). 

Despite their widespread application, the inner workings of ANNs 
are often not well understood by environmental modellers, who are 
generally quite content to repeat the rhetoric commonly associated with 
the use of these types of models, such as “ANNs work well because they 
learn from examples”, “complex ANNs are better able to deal with large 
amounts of information”, “ANNs are black boxes” and “ANNs need large 
amounts of data”. While some of these statements are valid in their 
original computer science context, they are often misleading, or even 
untrue, in the context of environmental modelling (Maier and Dandy, 
2000b). As a result of the perpetuation of these myths, the principles and 
level of rigor commonly applied to the development of other types of 
environmental models are generally not applied to the development of 
ANNs (Maier et al., 2010; Wu et al., 2014). Examples include the lack of 
consideration of the selection of appropriate model inputs, the way the 
available data should be divided into the subsets needed for model 
development, how to select an appropriate number of hidden nodes, 
how to deal with the issue of parameter identifiability, how to obtain 
confidence limits on predictions, how ANN models should be validated 
and how models should be deployed in operational environments 
(Cabaneros et al., 2019; Maier et al., 2010; Wu et al., 2014). This can 
have a detrimental impact on the quality and usefulness of the resulting 
models, potentially misleading users (e.g. Humphrey et al., 2017). It also 
makes it difficult to assess and compare research findings (e.g. see Wu 
et al., 2014) and to make significant research progress on the use of 
ANNs for environmental modelling (Abrahart et al., 2012). 

In order to address the above issues, the purpose of this Introductory 
Overview on the use of ANNs for prediction and forecasting is to shed 
light on the inner workings of ANNs by exploding some of the common 
myths that exist about them and to present a state-of-the-art approach to 
their development. We believe this will assist those who are 

apprehensive and sceptical about using ANNs, those who are curious 
about using ANNs and those who have already used ANNs extensively, 
but have done so “blindly” without “looking under the hood” to fully 
understand how ANNs work and what potential implications this might 
have. This increased understanding and guidance is expected to over
come some of the perceived barriers to the adoption of ANNs and in
crease trust and confidence in their use and the results they produce. 

2. Exploding the myths 

We begin this Introductory Overview by exploding some commonly 
held myths because the way ANNs are perceived has significant flow-on 
effects on the approach that is taken to their development, and hence 
what the resulting models are and how they perform. While some of 
these myths and misconceptions have been the cause of a fascination 
with ANNs that has resulted in their widespread use, they have also 
resulted in an unhealthy obsession with certain aspects of the model 
development process, such as the utilisation of different ANN architec
tures and “training” algorithms, at the expense of the consideration of 
other, equally important, aspects, such as input variable selection, data 
splitting and validation. In addition, they have fostered “magical 
thinking” that has resulted in ANNs being perceived as having “special 
powers” that make them exempt from the consideration of issues that 
are considered important for other types of models (e.g. model parsi
mony). Consequently, it is important to understand what some of these 
common myths and misconceptions are, as well as their resulting im
plications, before presenting a state-of-the-art process for developing 
ANN models. A summary of these myths and their corresponding re
alities is given in Table 1 and discussed in more detail below. 

2.1. Myths 

Myth #1: ANNs are fundamentally different from other modelling 
approaches. Although ANNs “look” different from other types of models 
because their structure is inspired by the structure of the human brain (i. 
e. connected nodes in different layers – see Fig. 1), the way they operate 
is very similar to, if not identical, to other environmental modelling 

Table 1 
Common ANN myths and corresponding realities.   

MYTH REALITY 

1 ANNs are fundamentally different 
from other modelling approaches. 

Like all other types of models, ANNs 
convert a set of model inputs into an 
output via a (complex) mathematical 
relationship. 

2 ANNs are black boxes. The mathematical relationship 
between model inputs and outputs is 
known. 

3 ANNs need more data than other types 
of models. 

ANNs often have lower data 
requirements than other types of 
models. They can deal very well with 
incomplete or missing data. 

4 ANNs are different from other 
modelling approaches as they learn 
from examples. 

As is the case for most other types of 
models, the unknown parameters of 
ANNs are obtained by calibration 
(which in artificial intelligence (AI) 
jargon is called training). 

5 A disadvantage of ANNs is that they 
are a “prisoner” of data. 

All types of models are a “prisoner” of 
the data used in their development. 
Recent development has shown that 
ANNs have a great capacity for 
generalization. 

6 ANNs can be used with confidence if 
they perform well on an independent 
validation set. 

Good performance on an independent 
validation set is insufficient - ANNs 
can only be used with confidence if 
they produce good answers “for the 
right reasons”. 

7 ANNs perform better if they have 
more model inputs. 

The inputs to ANNs have to be 
selected carefully to ensure good 
model performance.  
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approaches. As is the case with all models, ANNs predict/forecast vari
ables of interest (dependent variables, model outputs) as a function of 
one or more model inputs (independent variables, predictors). This is 
done by converting model input(s) to model output(s) via a mathe
matical relationship (the functional form of the model) that is usually 
dependent on a number of unknown parameters. Consequently, ANNs, 
like all other models, can be represented by the following equation 
(Mount et al., 2016): 

y= f (θ, x) + ε (Equation 1)  

where y is the model output(s) (dependent variable(s)), x is the model 
input(s) (independent variable(s)), θ is a set of model parameters, f(.) =
is the functional form of the model converting the model input(s) into 
the model output(s) and ε is the random error associated with the model 
prediction. 

For multi-layer perceptron (MLP) ANNs (Werbos, 1975), which are 
the most widely used ANN for prediction and forecasting (Maier et al., 
2010; Wu et al., 2014), the functional form of the relationship con
verting model input(s) to output(s) is determined by how the nodes in 
the input layer (i.e. the model inputs) are connected to the nodes in the 
output layer (i.e. the model output(s)) via hidden nodes and transfer 
functions (see Fig. 1). Application of Equations 2 and 3 to a particular 
network configuration (i.e. number of inputs, outputs and hidden layers 
and nodes) results in a specific mathematical relationship between 
model inputs and outputs that is a function of a number of unknown 
model parameters (i.e. the connection weights and bias). Consequently, 
while the way in which the functional form is arrived at may be different to 
other modelling approaches (e.g. physically-based models), ANNs are 
fundamentally the same as other types of models used for prediction and 
forecasting. 

Input to jth node : Ij =
∑n

i=0
wjixi summation (Equation 2)  

Output from jth node : yj = g
(
Ij
)

transfer (Equation 3) 

Myth #2: ANNs are black boxes. The fact that the functional rela
tionship between ANN model inputs and outputs is usually represented 
as a diagram (Fig. 1), rather than an explicit set of equations, gives rise to 
the perception that ANNs are black boxes. However, as mentioned 
above, the mathematical relationship between model inputs and outputs is 
known for any given model configuration. In fact, some ANN configura
tions correspond to well-known statistical models. 

For example, the application of Equations (2) and (3) to the simplest 
configuration of a MLP, which consists of a network with one input, one 
output, no hidden layers and a linear transfer function with a slope of 1, 
results in a linear regression model (Fig. 2) (Maier and Dandy, 2000b). 
In this case, the connection weight (w) and bias (b) are equal to the slope 

and intercept of the regression line, respectively. By including additional 
nodes in the input layer, the artificial neural network model corresponds 
to a multiple linear regression model. The dimensionality and degree of 
non-linearity of the model can be changed further by the inclusion of 
more hidden layers, different numbers of nodes in each of these and 
different types of non-linear transfer functions at each node. While this 
increases the complexity of the mathematical relationship, making it 
more difficult to interpret, the mathematical relationship between 
model inputs and outputs is still known explicitly. 

Therefore, the internals of ANNs are clear and explicit, but because of 
the often massively parallel nature of the working of neurons, it is more 
difficult to interpret and explain how and why an ANN generates an 
output in response to a given input. This difficulty arises primarily since 
environmental modellers are used to modular modelling configurations 
(as opposed to parallel), which can be understood and interpreted with 
less effort. Modular configurations break down the underlying system 
into smaller modules based on prior knowledge, each of which is in 
charge of modelling a particular process. While such ‘reductionism’ 
makes model applications easier in terms of interpretability and 
explainability, this may limit opportunities to model complex, and 
possibly yet unknown, relationships. Therefore, ANNs can and should be 
used with due diligence to ensure their efficacy is accompanied by 
transparency and explainability (e.g. Binder et al., 2016; Humphrey 
et al., 2017; Lipton, 2018; Paudel et al., 2023; Zeiler and Fergus, 2014). 

Myth #3: ANNs need more data than other types of models. In order 
to bust the myth that ANNs need more data than other types of models, it 
is important to recognise that data are used in the development of the 
vast majority of models, irrespective of model type (Table 2). For all 
model types, the quality of the developed model increases if the “length” 
of the available data (i.e. the number of available data points, or “ex
amples”) increases, as this increases the chances that different types of 
“events” or “patterns” (e.g. extremes) are contained in the data used for 

Fig. 1. Typical structure (left) and operation (right) of a Multi-Layer Perceptron.  

Fig. 2. Artificial neural network representation of a linear regression model.  
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model development. Consequently, having greater “data length” is 
beneficial for the development of all types of models, although this also 
depends on degree of informativeness of the data (e.g. whether the data 
contain repeated examples of similar information, such as medium-flow 
events, or different types of information, such as low-, medium- and 
high-flow events) (Gupta et al., 2014; Singh and Bárdossy, 2012; Noshad 
et al., 2021). However, the impact of “data length” is likely to be greater 
for data-driven models, such as ANNs and traditional statistical regres
sion approaches, as for these types of models, data are generally used to 
assist with the selection of appropriate model inputs, the determination 
of an appropriate model structure, as well as values of the unknown 
model parameters. In contrast, for physically-based models, data are 
generally only used for the determination of unknown model 
parameters. 

However, when assessing the amount of data required for model 
development, “data length” is only one consideration. The other 
consideration is the number of variables for which data are needed (i.e. 
“data breadth/width”). As the structure of more physically-based 
models is dictated by underlying physical processes, so is the number 
of variables for which data are required. However, this is not the case for 
ANNs, which can be flexibly scaled to any available dataset, thereby 
making best use of the available information. In other words, while the 
structure of physically-based models dictates data requirements, the 
structure of ANNs is adjusted based on which data are actually available. 
Under certain circumstances, ANNs can even work with incomplete data 
or variables that contain only proxy information about the processes of 
interest, whereas physically-based models are constrained within their 
rigid parametrizations that dictate their data demand (see Pylianidis 
et al., 2022). Consequently, the “data breadth” required for the development 
of ANNs is generally less than that required for the development of more 
physically-based models. 

Myth #4: ANNs are different from other modelling approaches as 
they learn from examples. In computer science, ANNs are different from 
rule-based approaches in that they “learn from examples”, rather than 
requiring all conceivable outcomes to be pre-specified, for example 
through a set of if-then rules, as is the case with expert systems (see 
Maier and Dandy, 2000b). However, the vast majority of model types 
used for prediction and forecasting “learn from examples”, as the values 
of their unknown model parameters (see Equation (1)) are adjusted 
incrementally to enable model outputs to better match corresponding 
measured example outputs. This process is termed model calibration and 
is typically facilitated by a formal optimisation process. Consequently, 
as the “training” of ANN models entails the incremental adjustment of 
unknown model parameters with the aid of an optimisation algorithm to 
minimise the error between model outputs and a set of corresponding 
historical data, it should be referred to as model “calibration”, rather 
than “training”, to avoid confusion. Recognition of the equivalence of 
“ANN training” and “model calibration” assists with demystifying the ANN 
training process and opens the door to applying any of the methods and al
gorithms that are used for the calibration of other environmental models to 
ANNs. 

Myth #5: A disadvantage of ANNs is that they are a “prisoner” of 
data. The primary argument in support of this myth arises from a 
comparison of ANNs with physically-based models. Such models embed 
domain knowledge via differential and parameterization equations, as 

well as their given ranges or values, based on prior observations or ex
periments. Such domain knowledge may help physically-based models 
to extrapolate beyond available data, for example by preserving mass 
balance within a control volume (Razavi, 2021). However, this possible 
benefit may be at the trade-off of losing data requirement flexibility, and 
the extent of this benefit still depends on the available data. More 
broadly, as discussed previously, the quality of any model is a function of 
“data length”, as models can only be expected to perform well when they 
interpolate within the range of the data used for their development 
(Chen et al., 2022; Zheng et al., 2022). Consequently, all models are 
generally a “prisoner” of the data used for their development to some extent – 
this is not a particular disadvantage of ANNs relative to other types of models. 

Myth #6: ANNs can be used with confidence if they perform well on 
an independent validation set. After the completion of the model cali
bration (training) process, it is considered good practice to check the 
predictive performance of the calibrated model on an independent 
validation set, which is a subset of the available model development data 
that has not been used as part of the model development (i.e. calibration 
and/or selection) process. By comparing the predictive performance of 
the model on the calibration and validation subsets, an assessment can 
be made as to whether the model has overfit (merely “memorised”) the 
calibration data, which is the case if validation performance is markedly 
worse than calibration performance. If this is not the case, it is assumed 
that the model can be used with confidence for its intended purpose. 

However, given that the functional relationship between model in
puts and outputs of ANNs is not constrained by any known underlying 
physical processes, the fact that the model has not overfit to the cali
bration data is no guarantee that it has captured a representative rela
tionship between the model inputs and outputs. In fact, there are many 
examples of calibrated ANN models with similar validation performance 
that have captured very different relationships between model inputs 
and outputs, some of which agree with known system understanding, 
while others do not (Humphrey et al., 2017). Consequently, the fact that 
ANNs perform well on an independent validation set is no guarantee that 
they can be used with confidence in practice, as any model that behaves 
in a way that is counter to physical system understanding is unlikely to 
be trusted. As a result, ANNs not only need to perform well on an in
dependent validation set, but they need to do so “for the right reasons” 
(Li et al., 2015c). In other words, a given validation performance needs to 
be accompanied by verification that the calibrated ANN model does so while 
conforming to any known understanding of the physics of the relationship 
being modelled (Humphrey et al., 2017). Hybrid ANNs that include 
process-related knowledge in the form of physical constraints in loss 
functions, parameter values, or even model structure, may tackle such 
limitations and allow for a new generation of models that reduces model 
variance by removing physically inconsistent solutions, generally 
without affecting their bias (e.g. Hunter et al., 2018; Karpatne et al., 
2017; Kingston et al., 2005a). 

Myth #7: ANNs perform better if they have more model inputs. 
There is a common misconception that ANNs perform better when they 
have more inputs (it should be noted that this refers to more “data 
breadth”, rather than “data length” - providing greater “data length” is 
definitely a good idea) (see Myth #3). However, the inclusion of a larger 
number of model inputs has a number of negative consequences, espe
cially as a larger number of inputs also results in an increase in the 
number of connection weights (i.e. parameters to tune during model 
calibration) and, more generally, higher degrees of freedom. This makes 
it more difficult to identify the combination of parameter values that 
minimises the calibration error, reducing both the computational effi
ciency and likely success of the calibration process (see Zhu et al., 
2022a) (see Myth #4). Consequences of this include increased difficulty 
in being able to assess true model performance, and hence which model 
structure (i.e. number of hidden nodes) is most appropriate, as it is 
unclear whether the relative performance of models with different 
numbers of hidden nodes is due to model structure or the inability to 
identify the combination of model parameters that maximises model 

Table 2 
Influence of data (D) or process understanding (PU) in determining the inputs, 
structure and parameters of different modelling methods (Adapted from Mount 
et al. (2016)).  

Model Type Inputs (x) Structure (f(.)) Parameters (θ) 

Data-Driven (e.g. ANNs) PU/D D D 
Conceptual (Flexible Structure) PU PU/D D 
Conceptual (Fixed Structure) PU PU D 
Physically Based PU PU PU/D  
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performance for a network with a given number of hidden nodes. In 
addition, the inclusion of a larger number of inputs increases the like
lihood of the presence of inputs that provide irrelevant (e.g. not related 
to the model output) or redundant (e.g. correlated with each other) 
information, which means that different combinations of parameter 
values are more likely to result in similar model performance. This 
causes parameter non-uniqueness (Guillaume et al., 2019), increasing 
the likelihood that there are different calibrated models that have 
similar validation performance, but have captured very different re
lationships between model inputs and outputs (see Myth #6). Given the 
potential negative consequences of including irrelevant or correlated inputs, 
the inputs to ANNs have to be selected carefully to ensure good model per
formance (Galelli et al., 2014). 

2.2. Implications 

The implications of the above myths are far-reaching, as they can 
present barriers to the adoption of ANNs and lead to poor model- 
development practices that result in models that do not stand up to 
rigorous examination, thereby decreasing trust and confidence in the 
use of ANNs. As shown in Fig. 3, busting Myths #1 and #2 is vital to 
ensuring this is not the case. The realisation that ANNs are not funda
mentally different from other types of models, and are therefore not black 
boxes, is key to modellers not viewing ANNs as having “special powers” 
that can magically transform a large amount of data into robust and 
accurate predictions. The recognition that the inner workings of ANNs 
are essentially the same as those of other models makes a compelling 
case for the need to adopt state-of-the-art model development processes, 
which, when applied to the determination of appropriate model inputs 
(X), parameters (θ) and functional relationships between model inputs 
and outputs (f(X,θ)+ε), can assist with busting the remaining five myths 
(i.e. Myths 3 to 7), thereby reducing barriers to the adoption of ANNs 
and increasing trust and confidence in their use (Fig. 3). 

Busting Myths #3 and #5 assists with reducing the barriers to 
adopting ANNs, as this (i) clarifies that the input data requirements of 
ANNs (X) can, in fact, be less than those of alternative modelling ap
proaches, as their structure can be adapted to obtain predictions that 

make best use of available data in order to provide useful information, 
rather than requiring data for a set of pre-determined input variables 
(Myth #3), and (ii) highlights that the way data are used in the deter
mination of the unknown ANN model parameters (θ) as part of the 
calibration (training) process is identical to the way this is done in other 
models, making them no more a prisoner of the data that are available 
for model development than is the case for other types of models (Myth 
#5). 

Exploding Myths #4, #6 and #7 is key to increasing trust and con
fidence in ANN models. However, achieving this requires the adoption 
of state-of-the-art model development processes. For example, the 
elimination of any superfluous model inputs (X) via the adoption of 
appropriate input variable selection approaches (Myth #7) (see Section 
3.3) results in smaller, more parsimonious models, increases the iden
tifiability of model parameters and reduces the difficulty of the cali
bration process, which assists with ensuring that the relationship that is 
captured by the resulting model is in accordance with the understanding 
of underlying physical processes. The recognition that ANN “training” is 
identical to model calibration (Myth #4) opens the door to the adoption 
of commonly used optimisation methods for the determination of 
appropriate values of the unknown model parameters (θ) (see Section 
3.6.2). This is likely to result in the identification of better model pa
rameters, as well as opportunities to obtain uncertainties associated with 
parameter estimates. In addition, it could also remove barriers to the 
adoption of ANNs by de-mystifying the ANN “training” process. 
Checking whether ANN models (y = f(X,θ)+ε) behave in accordance 
with expectations based on an understanding of the underlying physics 
by expanding validation approaches to go beyond the assessment of 
model performance on an independent validation set (Myth #6) (see 
Section 3.7) is also key to increasing trust and confidence in ANNs, as 
well as breaking down potential barriers to their adoption. Details of the 
state-of-the-art model development process for achieving these out
comes are given in the next section. 

Fig. 3. Implications and positive impacts of exploding the commononly-held myths about ANNs.  
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3. State–of–the-art ANN model development process 

3.1. Overview 

As mentioned in the previous section, the adoption of state-of-the-art 
model development processes is key to increasing trust and confidence 
in ANNs and hence reducing barriers to their adoption. Consequently, 
the focus of this section is on the presentation of such a process, covering 
all elements needed for the successful development of ANNs for pre
diction and forecasting (see Fig. 4, adapted from Maier et al., 2010; Wu 
et al., 2014). It should be noted that these steps assume that the primary 
modelling objective (see Hunter et al., 2018) has already been 
established. 

The first step in the process is the choice of appropriate model output 
(s) (i.e. the variable(s) to be predicted) and a set of potential model input 
variables. Although ANNs are data-driven models, it is up to the mod
eller to choose which input variables should be considered as part of the 
model development process. This can be done based on a priori knowl
edge and data availability (see Galelli et al., 2014). The resulting data set 
constitutes the “Selected Data (Unprocessed)”. It should be noted that 
once the model outputs have been chosen, the number of nodes in the 
output layer of the ANN has also been determined (Fig. 4). 

Next, the “Selected Data (Unprocessed)”, which consist of measured 
values of the potential model input variables, as well as the model 
output variable(s), have to be processed so that they are in a suitable 
form for the subsequent steps of the model development process. Once 
the “Selected Data (Processed)” of potential model inputs and outputs 
have been assembled and the data have been transformed, the actual 
model can be developed. Deletion of all unimportant and redundant 
potential inputs from the “Selected Data (Processed)” results in the 
“Model Development Data”, which consist of transformed values of 
relevant, non-redundant model inputs and corresponding model output 
(s). These data can then be used for the optimisation of the structure and 
parameter values of the selected model architecture, as well as model 
validation, once they have been split into appropriate subsets (Fig. 3). 

After the “Optimal Model” has been determined, it needs to be 
validated. The objectives of model validation are to ensure the model (i) 
has captured the underlying relationship in the calibration data (repli
cative validity), (ii) can generalise over the range of the calibration data 
(predictive validity) and (iii) is plausible when compared with a priori 
knowledge (structural validity). Once the model has been validated, it 
can be deployed in an operational setting. Details of each of these steps 
are given in the following sub-sections. 

3.2. Data processing 

The primary objectives of the data processing step (Step 2, Fig. 4) are 
(i) to obtain a set of data that contains all potential model inputs and 
outputs, as distinct from the potential input and output variables selected 
previously, and (ii) to ensure that all potential input variables have 
equal representation during model calibration, even though different 
variables are likely to span different numerical ranges. 

The first of these objectives is only applicable to time series problems 
and can be achieved by incorporating appropriate system dynamics 
(time structure, such as auto-regressive processes) into the model inputs 
and outputs by lagging the input and/or output time series. Similar 
concepts also apply to spatial problems. The second objective is ach
ieved by transforming all potential input and output variables to a range 
that is commensurate with the limits of the transfer functions used and 
generally involves either re-scaling or standardisation. The “Selected 
Data (Processed)” resulting from the lagging and transformation pro
cesses contains the transformed values of the potential model inputs and 
the model output(s). 

3.2.1. Lagging 
In time series applications, the potential model inputs not only 

consist of current values of the potential input variables (e.g. flowt, 
temperaturet), but also their past values (e.g., flowt-1, flowt-2, …, flowt-k; 
temperaturet-1, temperaturet-2, ….., temperaturet-k) to represent system 
memory. This requires users to select the maximum time lag beyond 
which the input variable of interest is unlikely to have an effect on model 
output(s), which can be done with the aid of a priori knowledge about 
the system. 

3.2.2. Data transformation 
In general, model inputs consist of variables that span different 

ranges. For example, river flows might vary from ~100 ML/day to over 
100,00 ML/day, while the corresponding river levels might vary from 
0.1 m to 10 m. As weighted values of different model inputs are summed 
at each of the hidden neurons (Equation (2)), variables that have larger 
values (e.g. flow) generally have a much greater influence on the 
resulting activation levels Ij (Equation (3)) than variables that have 
smaller values (e.g. river level). To ensure that all variables have a 
similar chance to influence the model, they need to be transformed. 

Linear transformation can take on different forms, the most common 
being re-scaling and standardisation. Re-scaling generally refers to the 
scaling of data between upper and lower bounds. In general, data are 
standardised to a mean of zero and standard deviation of one (Sarle, 
1997). If bounded activation functions are used in the output layer, it is 
also necessary to scale the output data to ensure that they are within the 
limits of these functions. For example, if the hyperbolic tangent acti
vation function is used in the output layer, the output of which is 
bounded by [− 1, 1], the data should be scaled to [− 0.9, 0.9] or [− 0.8, 
0.8]. Although it is common to use an unbounded activation function in 
the output layer, it is still good practice to transform the output. It 
should be noted that distributional transformations of the input and 
output data are generally not required, but may be considered in certain 
circumstances (e.g. when the data are highly skewed) (see Bowden et al., 
2003). 

3.3. Input selection 

The vector of appropriate model inputs is determined during the 
“Input Selection” step (Step 3, Fig. 4). The difficulties associated with 
this step are twofold: first, the modeller is unlikely to know the func
tional relationship between input variables and output (i.e. f(.), Equa
tion (1)); second, the exhaustive search of the input space is often a 
computationally-intractable problem (consider that there exist 2p 

possible subsets of input variables, with p being the number of candidate 
inputs). Moreover, the cross-correlation between inputs induces redun
dancy and collinearity in the input pool (Maier et al., 2010). The benefits 
of Input Variable Selection (IVS) are therefore not limited to the prag
matic matter of identifying the smallest subset that includes all relevant 
input/output relationships contained in the “Model Development Data”. 
By selecting such a subset, IVS also improves model accuracy (by 
removing irrelevant and redundant inputs), improves other steps of the 
model development process (e.g., data splitting or calibration), and re
sults in a model that is easier to interpret (Galelli and Castelletti, 2013) 
(see Myth #7). For these reasons, the use of IVS algorithms is a necessary 
step of ANN model development (see Bowden et al., 2005a,b; Fernando 
et al., 2009; Galelli et al., 2014; Maier and Dandy, 1997; May et al., 
2008a,b; Taormina et al., 2016). 

IVS algorithms can be categorized as model-based (or wrappers) and 
model-free (or filters), depending on the way with which the input rele
vance is evaluated (Guyon and Elisseeff, 2003; Maier et al., 2010). 
Model-based algorithms rely on the idea of solving the input selection 
problem during the ANN calibration (Section 3.6). In other words, when 
using these algorithms, multiple ANNs with different subsets of inputs 
are calibrated and then the one yielding the highest prediction accuracy 
is selected. The search process is typically informed by global optimi
sation techniques (such as evolutionary algorithms) that determine the 
combination of inputs that maximises model performance (Bowden 
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et al., 2005b; Tirelli et al., 2009) (see Section 3.6). Because of this global 
search strategy, model-based algorithms explicitly account for in
teractions and dependencies between inputs—a key point when dealing 
with datasets characterized by strong collinearity. Their main disad
vantage is their high computational requirements, as a large number of 
calibration runs is necessary to identify the best input subset (Chow and 

Huang, 2005). Thus, model-based algorithms may not be the best choice 
when dealing with large datasets. A second limitation is that the opti
mality of the selected subset is a function of the pre-defined ANN ar
chitecture and the quality of the calibration process. This can lead to 
misleading results (see Myth #7 and Section 3.6.2) and can restrict the 
application of the selected subset to the pre-determined architecture 

Fig. 4. Steps in ANN model development process.  
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(Maier et al., 2010). More recent approaches tackle this problem by 
concurrently optimizing input subset and model architecture (e.g. 
Taormina and Chau, 2015) or by identifying equally-informative subsets 
(Karakaya et al., 2016; Taormina et al., 2016). 

Model-free algorithms (filters) rely on the information content of the 
available data, a priori, to measure the relevance of the inputs—and 
therefore do not depend on an underlying ANN. The simplest form of 
such a filter is represented by linear measures of correlation, which are 
still rather popular in environmental modelling (Maier et al., 2010; Wu 
et al., 2014). In this group, two common measures are the autocorre
lation/partial autocorrelation (Box and Jenkins, 1976) and the Partial 
Correlation Input Selection (May et al., 2008a). Algorithms falling in this 
group are computationally efficient, but naturally tend to underperform 
when dealing with nonlinear input-output relationships. Such limitation 
has prompted many recent studies on the use of information 
theoretic-based dependency measures, which make no assumptions on 
the structure of the dependence between two variables. Measures 
commonly used for the development of ANNs are the Mutual Informa
tion, Partial Mutual Information, and minimum-redundancy max
imum-relevance (Fernando et al., 2009; Hejazi and Cai, 2009; Li et al., 
2015a, 2015b; May et al., 2008a,b; Sharma 2000). It is worth pointing 
out that all model-free algorithms suffer from the same limitation: both 
linear and nonlinear measures of dependence are typically univariate, 
meaning that the relevance between each potential input and output 
variable is considered separately. In turn, this means that the potential 
interactions between inputs may be ignored. 

So, which IVS approach should a modeller use when identifying an 
ANN? The computational requirements of any IVS algorithm are a 
function of the number of observations and candidate inputs (Galelli 
et al., 2014), so it is advisable to use information on the available 
computational resources and characteristics of the dataset at hand to 
make a first decision on the IVS approach. For example, a regular laptop 
can easily support a model-based algorithm when working with fewer 
than 10–15 candidate inputs and a few thousand observations. A second 
consideration may be driven by the nature of the input-output re
lationships (e.g. linear vs nonlinear), which could, for example, be 
leveraged when choosing a specific measure of dependence. When these 
relationships are unknown, it is naturally advisable to rely on nonlinear 
measures, so as to fully exploit the potential of ANNs. 

3.4. Data splitting 

In most real-life applications, the data available for the development 
of predictive models are limited. Consequently, careful consideration 
needs to be given to the way the available data are used for model 
development and evaluation so as to develop the best possible model, 
given the available data (Maier et al., 2023). The general approach for 
dealing with this problem is to divide the data into model development 
(e.g. calibration/training and testing) and model evaluation (e.g. vali
dation) subsets.1 The model development subset is used to determine 
values of the unknown model parameters and model structure via cali
bration and testing, respectively, whereas the validation subset is used 
to evaluate whether the calibrated model can be used with confidence 
for its intended purpose. 

In ANN modelling, the model development data are often divided 
into calibration (training) and testing subsets. The calibration subset is 
used to adjust the model parameters (e.g. connection and bias weights) 
and the testing subset is used to decide when to stop training in order to 
avoid overfitting and to decide which model structure and parameters 
controlling the optimisation algorithm used during model calibration 
are optimal. Overfitting of the calibration/training data (commonly 

referred to as overtraining) is a potential problem when calibrating ANN 
models, as the available data are often noisy, and more importantly, the 
degrees of freedom of the models relative to the number of training data 
can be large. In other words, if the number of free model parameters (i.e. 
connection and bias weights) is large compared with the number of 
training data points, and the data are noisy, there is a danger of 
“memorising” the data points in the training set, rather than learning the 
underlying relationship (Fig. 5). 

By using a testing set, the generalisation ability of the model can be 
assessed on an independent data set (i.e. a data set that is different from 
that used to drive the parameter-adjustment process) during the 
parameter optimisation process. As ANNs “learn” the underlying rela
tionship in the data, the errors obtained using the calibration/training 
and testing sets should be similar and decrease at approximately the 
same rate (Fig. 6, region AB). If the ANN model has sufficient degrees of 
freedom, the error obtained using the calibration/training data will 
continue to decrease as parameter optimisation progresses. However, if 
the calibration/training data are noisy, this reduction in error might be 
at the expense of generalisation ability, as illustrated in Fig. 7 (b). In the 
extreme case, a set of parameters can be found that enables the rela
tionship that is represented by the ANN to pass through all data points in 
the calibration/training set, thus reducing model error to zero. How
ever, this is not desirable, as this means that the model has “memorised” 
the specific set of calibration/training data and has lost the ability to 
generalise. As the testing set monitors the model’s generalisation ability 
during calibration, overtraining, as indicated by an increase in the error 
obtained using the testing set while the error obtained using the training 
set continues to decrease, can be detected (Fig. 6, region BC). In this 
way, the testing set can be used to decide when to stop calibration in 
order to avoid overfitting (Fig. 6). 

When splitting the data into the model development (calibration/ 
training and potentially testing) and validation subsets (Step 4, Fig. 4), 
the objective is to ensure that the resulting subsets have similar statis
tical properties/contain the same “patterns” or “events” (Maier et al., 
2023). In order to achieve this, data points from each of the represen
tative regions of the multidimensional input/output space need to be 
included in each of the data subsets. This is because all patterns that are 
contained in the available data should be used for model calibration to 
ensure the model can perform over as wide a range of conditions as 
possible. At the same time, the same patterns should be incuded in the 
validation data so as to test the performance of the calibrated model over 
the same range of “patterns” or “events”. If this is not the case, the 
evaluation of model preformance is likely to be misleading (Chen et al., 
2022; May et al., 2010; Wu et al., 2013; Zheng et al., 2018). In order to 
achieve representative data splits, different approaches can be used, 
such as using formal optimisation methods to mininise the differences 
between the statistical properties of the different data subsets (e.g. 
Bowden et al., 2002) and dividing the available data into statistically 
representative regions (e.g. by using clustering approaches such as 
self-organising maps (SOMs) (Kohonen, 1995)), from which samples are 
drawn for each of the subsets (e.g. Chen et al., 2022; Guo et al., 2020; 
May et al., 2010; Wu et al., 2013; Zheng et al., 2018; Zheng et al., 2023). 

3.5. Selection of model architecture 

After the available data have been pre-processed, the model inputs 
and outputs have been determined and the available data have been split 
into model development (calibration and/or testing) and evaluation 
(validation) subsets, an appropriate model architecture has to be 
selected (Fig. 4). Although MLPs (Fig. 1) have traditionally been used 
most commonly for prediction and forecasting in environmental appli
cations and represent the “iconic” ANN architecture, there are a number 
of alternatives, such as Recurrent Neural Networks (RNNs), Long Short- 
Term Memory (LSTM) networks, Graph Neural Networks (GNNs), and 
Physics-informed Neural Networks (PINNs). While all of these network 
architectures convert the selected model inputs (X) into the desired 

1 In the machine learning/AI community, what we refer to here as the vali
dation set is often referred to as the testing set and what we refer to here to as 
the testing set is often referred to as the validation set. 
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model output(s) (y), the functional form this transformation takes (f(.)) 
and the parameters that have to be determined by calibration (w) can be 
very different. 

RNN architectures (Hochreiter and Schmidhuber, 1997) are partic
ularly useful for analysing sequential data, which can be valuable when 
considering time-dependent processes. RNNs are designed to capture 
and learn patterns in sequential data by processing each input element 

while maintaining an internal memory. This memory allows RNNs to 
retain information from previous inputs, enabling them to model de
pendencies and context over time. By leveraging their ability to learn 
from historical data and capture temporal dynamics, RNNs offer 
powerful tools for understanding and predicting environmental 
phenomena. 

Fig. 8 depicts the basic form of an RNN, where each step in the 
sequence processes an input and passes its output as input to the next 

Fig. 5. Overfitting of calibration/training data.  

Fig. 6. The phenomenon of overtraining. Calibration/training error is esti
mated using the calibration/training dataset. The testing dataset is used as a 
proxy for estimating the validation error, during the model calibration process. 

Fig. 7. Impact of overtraining on training and test set errors.  

Fig. 8. Simplified representation of a RNN architecture and its unfolding over 
time to articulate the time dependencies within the hidden layers. The internal 
structure of the hidden layer can attain various levels of complexity in order to 
achieve the necessary features to retain the information of the previous 
time steps. 
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step. Practically, it implements the temporal lagging of inputs within the 
neuron structure, using temporal feedbacks. Such architectures are 
intended for timeseries forecasting problems, but suffer from the “van
ishing gradient” problem, which hampers their ability to capture long- 
term temporal dependencies. Their key-advantage is that they can 
handle time series as inputs of varying length, rather than fixed-length 
vectors that are required for MLPs. 

Long Short-Term Memory (LSTM) models (Yu et al., 2019) introduce 
a memory cell that can retain information over longer sequences. They 
incorporate a gating mechanism to control the flow of information, 
allowing it to selectively remember or forget information from previous 
time steps. This makes LSTM models more effective at capturing 
long-term dependencies (Zhou et al., 2021). Gated Recurrent Unit (GRU) 
(Cho, 2014) is a similar architecture to LSTM in that it also utilizes 
gating mechanisms. However, GRU has a simplified architecture with 
fewer gates compared with LSTM, reducing the complexity of the model 
while still capturing long-term dependencies. For a comprehensive re
view of the first wave of recurrent neural networks see Lipton et al. 
(2015). 

An example application to forecasting environmental processes is 
provided by Huang and Kuo (2018) where a LSTM network is fed by a 
convolutional neural network (CNN) which extracts the relevant fea
tures from PM2.5 concentrations, cumulative wind speed and cumula
tive rain over the previous 24 h. Although CNNs have been traditionally 
applied to tasks such as character recognition and image processing 
(Ciresan et al., 2010), their capability to extract features from data in an 
unsupervised manner has been successfully exploited to feed the LSTM 
architecture with data that is useful to forecast PM2.5 concentrations a 
day ahead. 

More modern ANN architectures for sequential data include encoder- 
decoder and transformer architectures, both of which are inspired by 
and have revolutionized machine translation. Encoder-Decoder archi
tectures (Sutskever et al., 2014) are particularly suited to problems for 
which input and output sequences are not temporally aligned. They 
consist of two major components: an encoder that takes a 
variable-length sequence as input, and estimates a compressed (latent) 
representation; and a decoder that takes the compressed representation 
and generates a variable length sequence as an output, one step at a 
time. For instance, Kumar et al. (2021) used an encoder-decoder ar
chitecture to predict soil moisture, humidity, solar radiation and other 
micro-climatic variables from sensor data for agricultural applications. 
The encoder layer is composed of parallel blocks of ANNs (mostly CNNs) 
that focus on different time scales. An attention mechanism (see below) 
selects the encoder output to feed the decoder, which is composed of an 
LSTM and a number of fully connected MLPs. The encoder returns the 
micro-climate prediction of interest. The advantage of the encoder is the 
ability to compact the information of the various time series in the most 
efficient way, capturing their interdependency, so that the decoder layer 
can produce forceasts of higher quality when compared with those ob
tained using standard ANN architectures. 

Graph Neural Networks (GNNs) (Sanchez-Lengeling et al., 2021) 
represent an alternative model architecture that has been developed in 
the research area of Geometric Deep Learning, which attempts to 
generalise deep neural models to non-Euclidean domains, in this specific 
case to graphs. The basic idea of a GNN is to integrate the graph struc
ture in the weight matrix so that nodes are no longer treated as inde
pendent observations, as they would be in a fully connected neural 
network. GNNs exploit information about the spatial relationship of data 
sources in order to capitalise on the information content of the de
pendency among data implied by the graph structure. For example, 
when predicting water supply quantities in a water distribution 
network, the value in a specific stem of the network depends on its 
predecessors. This information can be efficiently used in a GNN, as 
shown by Zanfei et al. (2022), who used a graph convolutional recurrent 
neural network to predict a time series of water demand related to a 
number of water supply systems belonging to the same geographical 

area. GNNs have also been used to increase the accuracy of crop yield 
forecasts (Fan et al., 2022) and to predict the spread of the West Nile 
virus (Tonks et al., 2022). 

Generative models, such as Generative Adversarial Networks (GANs, 
Goodfellow et al., 2014) are currently receiving siginficant attention 
because of their good performance in the production of artificial images 
and synthetic texts, but are also starting to be employed in the envi
ronmental modelling domain. For example, DeepMind published a 
paper (Ravuri et al., 2021) where deep generative models have been 
used to predict rainfall at a very high resolution (nowcasting), demon
strating a notable increase in accuracy. In the words of the authors “… as 
generative models are fundamentally probabilistic, they have the ability 
to simulate many samples from the conditional distribution of future 
radar given historical radar, generating a collection of forecasts similar 
to ensemble methods.“. 

Another successful type of generative models are transformer ar
chitectures that employ an “attention mechanism” (Vaswani et al., 2017) 
that learns a local context for learning “sequence to sequence” problems. 
This mechanism has been instrumental to the success of recent large 
language models, including BERT and GPT, and they are now being used 
in the environmental domain. A recent paper by Grigsby et al. (2023) 
also shows how transformer models can be used for long-range 
spatio-temporal forecasting. The authors claim that the transform ar
chitecture can overcome some limitations of GNNs, in particular the 
requirement of an adjacency matrix to explicitely represent the spatial 
relationship and the requirement of performing separate temporal and 
spatial updates. The proposed approach is based on “spatio-temporal 
embeddings”, that is the encoding of spatio-temporal time series in 
vector representations (embeddings) in a way roughly similar to the 
word embeddings of NLP. Research in these applications of transformer 
models in the environmental modelling domain is just starting. 

Physics-informed Neural Networks (PINNs) (Raissi et al., 2019) are 
an interesting option when we already possess a basic understanding of 
the physical processes underlying the data generation process. If we can 
formalise our understanding of the causal relationships among the sys
tem’s variables using ordinary differential equations (ODEs) or partial 
differential equations (PDEs), then PINNs allow us to incorporate such 
knowledge in the network structure, thus reducing the amount of data 
needed for model development. Typically ODEs and PDEs are incorpo
rated seamlessly in the loss function used to develop ANNs, enforcing the 
physical feasibility of the solution and reducing the breadth of the search 
space (see Fig. 9 for a schematic representation). An introductory review 
is presented by Karniadakis et al. (2021) and applications to climate and 
weather predictions seem to be very promising: Kashinath et al. (2021) 
present a review of various approaches to apply pre-existing knowledge 
on the physics of natural phenomena to machine learning problems, 
such as the use of symmetry and invariancy relationships, stabilty re
quirements, and spatio-temporal coherence. Among other examples, 
they report the work of Manepalli et al. (2019), as part of which a 
conditional GAN (generative adversarial network) is used to emulate a 
physiscs-based model of the spatial distribution of mountain snowpack. 
The physics is incorporated by remarking the areas of higher elevation 
usually covered with more snow and the GAN is penalized for large 
errors made in these areas. 

3.6. Determination of Model Structure and Parameters 

Selection of a particular model architecture is insufficient to define 
the mathematical relationship between the model output(s) and a set of 
model inputs (Equation (1)). This also requires determination of the 
model structure for the selected architecture (e.g. number of hidden 
layers, number of hidden layer nodes, degree of connectivity of nodes, 
types of transfer functions etc.), as well as determination of the values of 
the unknown model parameters (e.g. connection weights and biases) for 
the selected model architecture and structure via calibration/training. 
Once a model with a given structure has been calibrated, it can be used 
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to obtain a set of model outputs, given a corresponding set of model 
inputs. However, as ANNs are data-driven models, the most appropriate 
functional form of the desired input/output relationship (i.e. the optimal 
model structure) cannot be determined a priori. Instead, there is a need 
to evaluate the performance of a number of models with different 
structures using an appropriate performance measure, necessitating 
repeated application of the “Model Structure Selection”, “Model Cali
bration” and “Performance Evaluation” steps in Fig. 4, which are dis
cussed in more detail below. 

3.6.1. Model Structure Selection 
As mentioned above, the combination of model architecture and 

structure defines the functional form of the relationship between model 
inputs and output(s) (i.e. f(.) in Equation (1)). For example, for models 
with a MLP architecture, determination of an appropriate model struc
ture involves the selection of a suitable number of processing elements, 
how they are arranged (e.g. number of hidden layers, number of nodes 
per layer), how they are connected (e.g. fully connected, feedforward 
connections) and how they process incoming signals (e.g. type of 
transfer function etc.) (see Myth #2). The optimal network structure 
generally strikes a balance between generalisation ability and model 
complexity. If model complexity is too low or an inappropriate func
tional form is selected, the model might be unable to capture the desired 
relationship. However, if model complexity is too high, the model might 
have decreased generalisation ability and processing speed, could be 
more difficult to calibrate and might be less transparent (see Myth #7). 

Optimal model structure is generally determined with the aid of the 
available data (see Table 2). However, while it would be possible to vary 
all factors that influence model structure (e.g. number of hidden layers, 
number of nodes in each hidden layer, type and degree of connectivity 
and type of processing at each node in the case of an MLP) in order to 
find the combination that is best suited to the available data, this is 
generally not done due to the large search space involved. Numerous 
techniques have been suggested to make decisions regarding network 
structure less arbitrary, such as growing and pruning algorithms (Reed, 
1993), statistically based comparison procedures and ‘rules of thumb’. 
However, the most used method for selecting the number of hidden layer 
nodes is trial-and-error, where a number of ANNs are calibrated until the 
best-performing model is found (Maier et al., 2010; Wu et al., 2014). 

Which model structure is “best” is generally assessed with the aid of a 

range of performance metrics, such as root mean square error, mean 
average percentage error, the coefficient of correlation etc. (see Dawson 
et al., 2007), as is the case for any predictive model. However, given that 
the structure of ANNs is determined as part of the model development 
process and that ANNs can potentially have many parameters, the use of 
performance metrics that balance model complexity with predictive 
performance, such as the Akaike Information Criterion (AIC) (Hagiwara 
et al., 1993; Humphrey et al., 2017) or the Bayesian Information Cri
terion (BIC) is worth considering (Kingston et al., 2008; Mei and Smith, 
2021). 

3.6.2. Model calibration (training) 
The aim of model calibration is to identify a set of model parameters 

that enables a model with a given functional form (i.e. architecture and 
structure) to best represent the desired input/output relationship. In 
almost all ANN applications, deterministic model calibration ap
proaches are used, which try to obtain a single, optimal parameter 
vector. If overfitting is not considered to be a problem and the training 
data are representative of the modelling domain, this is achieved when 
ANN model performance is maximised, which generally occurs when a 
suitable error measure between actual and predicted training outputs is 
minimised. If overfitting is a possibility, optimal generalisation ability is 
achieved when a suitable error measure between actual and predicted 
outputs in the test set is minimised, provided that training and testing 
data are representative of the modelling domain (see Section 3.4). 

Determination of the combination of model parameters that mini
mises the training or testing error is not a simple problem. As each 
combination of parameters generally results in a different model error, 
an error surface exists in parameter space (see Maier et al., 2019). This is 
illustrated for a model with a single parameter in Fig. 10, where different 
values of the model parameter generally result in different model errors 
(Kingston et al., 2005a; Maier et al., 2019; Zhu et al., 2022b). As can be 
seen, the degree of difficulty in finding the combination of parameters 
that results in the smallest model error is affected by the “ruggedness” of 
the error surface. Ruggedness is a measure of the number, spacing and 
steepness of the craters and valleys in the error surface (see Zhu et al., 
2022a). If the error surface is smooth (Fig. 10(a), there are fewer local 
minima, and the global optimum can be found more easily. In contrast, 
as illustrated in Fig. 10(b), if the error surface is more rugged, it 
generally has more local minima, and the global optimum is more 

Fig. 9. Simplified representation of a Physically-informed Neural Network (PINN).  
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difficult to find (see Maier et al., 2019). The degree of ruggedness of an 
error surface is usually problem dependent and is affected by the num
ber of model parameters, among other factors. As the number of model 
parameters increases, so does the size of the search space and, generally, 
the number of local optima and ruggedness of the error surface. 
Consequently, it is important to find the model with the smallest number 
of inputs and parameters that is able to describe the underlying rela
tionship in the data (see Myth #7 and Section 3.3). 

As deterministic model calibration involves the determination of the 
combination of model parameters that maximises model performance, it 
is an optimisation problem. In the vast majority of applications of MLPs 
to environmental modelling, back-propagation has been used as the 
optimisation algorithm for obtaining the optimal set of model parame
ters (Maier and Dandy, 2000a,b; Maier et al., 2010; Wu et al., 2014). 
However, as the calibration for any predictive model involves the same 
process, any optimisation approach can be used, such as gradient-based 
methods (e.g. conjugate-gradient methods, quasi-Newton methods, the 
Levenberg-Marquardt algorithm) or more global optimisation ap
proaches, such as evolutionary algorithms (see Maier et al., 2019). The 
importance of recognising the independence of the selection of a 
particular model architecture (f(.)) and the optimisation algorithm used 
to obtain values of the unknown model parameters (θ) via calibration 
(training) cannot be overemphasised. This is exemplified by the 
commonly-used term “backpropagation network”, which conflates the 
ANN model architecture (MLP) with the optimisation algorithm used to 
calibrate (train) it (backpropagation). 

As an alternative to the deterministic calibration methods discussed 
above, Bayesian statistics can be employed to estimate the model pa
rameters. Unlike deterministic calibration, Bayesian calibration involves 
finding a probability distribution of the model parameters, given the 
data available for calibration. This is usually done by assuming that the 
model parameters can be approximated by a normal distribution centred 
on the most probable parameters (those that maximise model perfor
mance) or by using a Markov chain Monte Carlo (MCMC) approach, 
which makes no assumptions about the distribution of the parameters 
(see Kingston et al., 2005b). This has a number of advantages, such as 
the ability to obtain confidence limits on predictions (Kingston et al., 
2005b) and the ability to determine an optimal model structure (see 
Kingston et al., 2008). The primary disadvantage of MCMC Bayesian 
approaches to model calibration include their high computational cost. 

3.7. Model validation 

Before the calibrated model can be deployed for forecasting or pre
dictive purposes with confidence, it needs to be validated. This requires 
a check of whether the model has captured the underlying relationship 

that is contained in the calibration data (replicative validity), whether 
the model is able to generalise over the range of the calibration data 
(predictive validity) and whether the model is physically plausible 
(structural validity) (Wu et al., 2014; Humphrey et al., 2017) (Fig. 4). 
Each of these is discussed below. 

3.7.1. Replicative validity 
ANNs work on the assumption that there is a real function that un

derlies a system that relates a set of independent predictor variables 
(model inputs) to one or more dependent variables (model output(s)) of 
interest (Equation (1)). Consequently, if the ANN model has been suc
cessful in capturing the relationship that is contained in the calibration 
data, the model residuals (errors) should be white noise, as the random 
error term (ε) in Equation (1). As a result, any observable patterns 
exhibited by the model residuals are due to a failure of the model to 
capture some parts of the deterministic components of the data. This 
possible failure is ubiquitous across all types of models used in envi
ronmental sciences, including physically-based models, and always re
quires careful attention to minimise its impact on the credibility of the 
results. 

If the model residuals are white noise, then (i) their expected value 
should be zero, (ii) their variance should be constant and (iii) they 
should be statistically independent of each other. In order to determine 
whether the model residuals approximate white noise, a number of 
diagnostic tests need to be performed, such as visual inspection of his
tograms of the residuals to see if their distribution is centred on zero. 

If the model residuals exhibit an autocorrelation structure (i.e. the 
error is not white noise), the underlying relationship to be modelled has 
not been fully captured by the model. This could be due to an inap
propriate model structure, such as insufficient model complexity, or the 
failure to find near-global optima in the error surface during calibration. 
Alternatively, the inability to approximate the desired relationship 
could be due to the absence of data on potential model inputs that have a 
significant impact on the model outputs. In cases where an inappropriate 
model structure or difficulties with model calibration are responsible for 
the deterministic relationship in the model residuals, the “Determina
tion of Model Structure and Parameters” step may need to be repeated. 
Another option is to develop a model that captures the relationships that 
remain in the residuals and to add the output of the error model to that 
of the primary model (e.g. Forouhar et al., 2022). 

It should be noted that if the residuals do approximate white noise, 
this only indicates that the relationship that is contained in the cali
bration data has been approximated adequately, and not necessarily that 
the underlying relationship of the system to be modelled has been 
captured, which also depends on how representative the available data 
are of this process. 

Fig. 10. Error surface with different degrees of ruggedness for a model with one parameter.  
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3.7.2. Predictive validity 
At the completion of the model calibration process, all that is known 

is that the model provides a good fit to a single data set – the calibration 
data (Chapra, 2008). Consequently, to test the generalisation ability of 
the model over the range of the data used for calibration, the perfor
mance of the model is assessed on an independent data set – the vali
dation set (see Section 3.4). It is important that the validation data are 
used for the first time at this stage of the model development process. In 
other words, the validation data should not be used to determine 
optimal model parameters during calibration/training or the optimal 
model structure or appropriate parameters controlling the behaviour of 
the optimisation algorithm used during calibration. 

As mentioned in Section 3.6.1, model performance on the validation 
data is generally assessed using a range of performance metrics. While it 
is important to evaluate model performance on the validation set in 
absolute terms, it is also important to assess the validation performance 
relative to the calibration performance. If there are significant differ
ences in the model performance on the calibration and validation sets, 
this is either an indication of (i) overfitting, as discussed, or (ii) that the 
statistical properties and the information content of the calibration and 
validation data are dissimilar (see Section 3.4). Consequently, predictive 
validation issues can be overcome by ensuring overfitting does not occur 
and that each of the data subsets contains data that are representative of 
all of the “patterns”/“events” that are contained in the available data by 
using appropriate data splitting methods. 

3.7.3. Structural validity 
If an ANN model is to be used for predictive purposes, it is vital that 

its behaviour does not violate any a priori knowledge about the rela
tionship being modelled. Because ANNs are data-driven, models that 
have residuals that approximate white noise and perform well on in
dependent validation data have not necessarily captured the underlying 
physical relationship to be modelled. As discussed previously, this could 
be due to the presence of rugged error surfaces with local optima, where 
different combinations of calibrated model parameters result in the 
same predictive model performance (Kingston et al., 2005a; Zhu et al., 
2022a, 2022b). Some of these may be contradictory to a priori knowl
edge about the system under consideration and the model might 
therefore not be physically plausible. This has important implications in 
relation to the general applicability and credibility of the model. 

As the parameters of ANNs do not have a physical meaning, it is not 
possible to assess structural validity by examining the calibrated values 
of model parameters in isolation, as is the case for more physically-based 
models. However, a number of approaches can be used to check whether 
the calibrated ANN model has not violated any a priori understanding of 
the relationship to be modelled, such as methods based on the overall 
connection weight or methods based on sensitivity analysis (see Hum
phrey et al., 2017). For example, an overall connection weight between 
rainfall and runoff that is negative (i.e. that increased rainfall results in 
decreased runoff) suggests that the input-output relationship deter
mined by the calibrated ANN model violates a priori understanding of 
the underlying physical processes and is therefore not suitable for 
deployment. While such checks do not guarantee that the “correct” 
relationship has been captured, it ensures that the relationship is not 
“incorrect”. 

If a model is found to be structurally invalid, efforts can be made to 
better understand if the error surface is likely to contain many local 
optima (see Zhu et al., 2022a,b), to ensure good solutions have been 
found during the calibration process and to attempt to reduce model 
complexity by using appropriate IVS methods and reducing the number 
of hidden nodes, where possible. Another option includes constraining 
the overall connection weight during calibration to ensure the calibrated 
model is physically plausible. For example, the overall connection 
weight between a rainfall input and the corresponding runoff output can 
be constrained to be positive and the overall connection weight between 
an evaporation input and the corresponding runoff output can be 

constrained to be negative (see Kingston et al., 2005a). 

3.8. Model deployment 

Given that the data that are available for model development are 
limited, it is likely that, once deployed, a validated model will be 
exposed to “patterns”/“events” that were not used during the model 
development (calibration/training and testing) and evaluation (valida
tion) phases. Such extrapolation could result in a significant reduction in 
model performance over time, as the model is exposed to more and more 
non-representative input/output samples. Consequently, the primary 
objective of the deployment phase is to ensure that the performance of 
the model does not deteriorate significantly when exposed to new input/ 
output data. 

The simplest way to achieve this is to re-calibrate the model as new 
data become available. To do this in a computationally efficient manner, 
Bowden et al. (2012) introduced an approach for checking any new data 
so see if these data contain any “patterns”/“events” that were not used 
during model development with the aid of cluster analysis using a 
self-organising map (SOM) (Kohonen, 1995). If this is not the case, there 
is no need to re-calibrate. However, if the new input data are signifi
cantly different from those in the calibration data, then they should be 
added to the calibration data, and the model recalibrated. 

3.9. Summary 

In many applications of ANNs in environmental modelling, the pri
mary focus is on the choice of model architecture, structure and 
“training” (calibration) (Fig. 11), at the expense of the consideration of 
the other steps in the model development process shown in Fig. 4 (Maier 
et al., 2010; Wu et al., 2014). However, as discussed above, this is likely 
to have significant negative consequences on the performance of the 
resulting model. This is because, for a given model architecture, struc
ture and optimisation (training) algorithm, which model is ultimately 
developed (i.e. which set of model parameters is selected as part of the 
calibration process) is a function of the characteristics of the error sur
face (in turn dependent on how the data are processed), the selected 
inputs, and how the available data are split into their calibration, testing 
and validation subsets. These points are summarised in Fig. 11 and 
discussed below. 

As can be seen in Fig. 11, determination of appropriate model pa
rameters (e.g. connection weights and biases) involves the interaction 
between an optimisation algorithm (e.g. back-propagation) and the 
error surface, which represents how the calibration (training) error 
varies with changes in model parameters, as discussed previously. The 
optimisation algorithm navigates through the error surface in order to 
identify the combination of parameters that corresponds to the lowest 
error. However, how successful the optimisation algorithm is in 
achieving this goal depends on the searching behaviour of the algorithm 
(e.g. gradient descent or global search) and the characteristics of the 
error surface (e.g. smooth with one optimum or rough with many local 
optima). While significant attention is paid to the optimisation algo
rithm side of this equation, the characteristics of the error surface are 
often ignored (e.g. Zhu et al., 2022a, b). However, consideration of the 
characteristics of the error surface is vitally important, as these char
acteristics not only influence the ability of the optimisation algorithm to 
find a near-globally optimal solution in this surface, but also what 
parameter combinations these correspond to and how well these are 
defined. For example, if there are many local optima with similar errors, 
it is unknown which of these parameter combinations results in the 
“best” input-output relationship. In fact, having multiple local optima is 
likely to confuse and slow down the optimisation algorithm, and more 
importantly, make it almost impossible to identify a model that repre
sents the desired input-output relationship. 

So, how do we maximise our chances that the error surface is as 
“nicely behaved” as possible – that it contains a single, clearly-defined 
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optimum and that this optimum is easy-to-find by the selected optimi
sation algorithm? In order to answer this question, we need to under
stand what factors affect the characteristics of the error surface. As the 
error surface shows how calibration errors vary with changes in model 
parameters, the dimension of the space the optimisation algorithm has 
to search is equal to the number model parameters (i.e. the number of 
axes in the error surface is equal to the number of model parameters), 
which, for an MLP, is a function of the number of inputs and hidden 
nodes (assuming the nodes are fully connected), as well as the bounds on 
the values the model parameters can take (i.e. their maximum and 
minimum values). Consequently, if an MLP has 15 weights, the values of 
which need to be determined by calibration (training), the optimisation 
algorithm has to search through a 15-dimensional space. Consequently, 
there is a significant incentive to reduce the number of model parame
ters, which can be achieved by using state-of-the-art input variable se
lection techniques to ensure only relevant, non-redundant model inputs 
are included. 

Apart from dimensionality, the characteristics of the error surface are 
also a function of the error values themselves, which are a function of 
the selected input variables and how they are processed (X), the selected 
performance (error) metric, the selected model architecture and struc
ture (f) and which data are used to calculate the error (i.e. the calibration 
data) (Fig. 11). Consequently, the characteristics of the error surface are 
directly related to the Data Processing, Input Selection, Data Splitting 
and Performance Metric Selection steps in Fig. 4. For example, if there is 
redundancy in the selected inputs, different parameter combinations are 
likely to result in the same calibration error, introducing local optima 
into the error surface, potentially resulting in different models that have 
the same calibration and validation error, but have captured different 
underlying relationships, some of which might not align with an a priori 
understanding of the underlying physics. However, whether this is the 
case or not can only be ascertained by going beyond the use of an in
dependent validation set to also include structural validation methods 

(Fig. 11). Consequently, there is a need to adopt state-of-the-art ap
proaches at each step of the model development process. 

4. Summary and conclusions 

ANNs were considered a “novelty item” by industry 20–30 years ago, 
primarily confining their application to the research domain. However, 
this is certainly not the case anymore. Today, many businesses are 
familiar with ANNs and their capability, and often employ machine 
learning experts. While the potential of ANNs is clear, they are still 
surrounded by an air of mystery and intrigue, leading to a lack of un
derstanding of their inner workings. This has led to the perpetuation of a 
number of myths, resulting in the misconception that the application of 
ANNs primarily involves “throwing” a large amount of data at a “black- 
box” software package. While this is certainly a convenient way to side- 
step the principles and level of rigor applied to the development of many 
other types of environmental models, this comes at significant cost in 
terms of the validity and usefulness of the resulting models, the ability to 
assess and compare research findings and the ability to progress research 
efforts. In order to address these issues, this paper explodes a number of 
the common myths surrounding the use of ANNs for the prediction and 
forecasting of environmental systems and outlines state-of-the-art ap
proaches to developing ANN models that enable them to be applied with 
confidence in practice. 

In terms of exploding the myths surrounding the use of ANNs for 
prediction and forecasting, this paper clarifies that:  

1. Like all other types of models, ANNs convert a set of model inputs 
into a model output via a (complex) mathematical relationship. They 
are therefore not a “special case” that is exempt from the need to 
apply good model development practices. 

Fig. 11. Summary of the importance of data processing, input variable selection, data splitting and validation approaches in increasing trust and confidence in ANNs 
and reducing barriers to their adoption. 
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2. The mathematical relationship between model inputs and outputs is 
well-defined and known for ANN models. Consequently, ANNs are 
not “black boxes” from a numerical point of view.  

3. Data requirements of ANNs are typically more flexible than those of 
other types of models. Consequently, they generally do not require a 
large number of inputs for their development. In addition, unlike 
many other models, ANNs can handle incomplete or missing data 
and still generate effective input-output relationships.  

4. The vast majority of models used for prediction and forecasting 
“learn from examples” as their unknown model parameters are 
determined with the aid of previous examples of the input-output 
relationship of interest as part of model calibration. Consequently, 
the “training” of ANN models is equivalent to the “calibration” of any 
other predictive model and not a special attribute that sets ANNs 
apart.  

5. Most types of models perform best when they interpolate between 
the data used for their development (e.g. as part of model calibra
tion) and are therefore a “prisoner of data”. This is not a particular 
disadvantage of ANNs relative to other types of models. In fact, 
recent developments have shown that ANNs have significant ca
pacity for generalization.  

6. While the assessment of the performance of calibrated/trained ANNs 
on an independent validation data set is essential, good performance 
on this data set is insufficient evidence to enable ANNs to be used 
with confidence in practice. There is also a need to check whether the 
input-output relationships ANN models have captured are in accord 
with known system understanding. This ensures ANNs are able to 
generalise and therefore able to be used with confidence in practice.  

7. The inputs to ANNs must be selected carefully to ensure good model 
performance. The inclusion of inputs that provide irrelevant and/or 
redundant information makes it more difficult to calibrate/train 
models and to obtain models that provide meaningful and trust
worthy results. 

While the application of ANNs is synonymous with different types of 
architectures (“types of ANNs”) and calibration (“training”) approaches, 
all steps in the model development need to be considered carefully. 
These include:  

1. Selecting potential model inputs and outputs based on the problem 
being addressed and any available system understanding.  

2. Processing of the available data to ensure any temporal dynamics are 
accounted for explicitly via lagging (unless ANNs with recurrent 
architectures are used) and to ensure input variables spanning 
different ranges have the opportunity to have an influence on model 
outputs by being scaled appropriately.  

3. Selecting the subset of potential model inputs so that the selected 
inputs have a substantial influence on the model output(s) and are 
independent of each other (i.e. do not provide redundant informa
tion) (see Galelli et al., 2014). This is crucial in terms of ensuring that 
the most parsimonious model is developed, which is vital to ensuring 
the model parameters (e.g. connection weights) are as well-defined 
as possible and the resulting model is able to capture and gener
alise over the underlying physical relationships that are contained in 
the available data.  

4. Splitting the available data into model development (calibration 
(and testing)) and evaluation (validation) subsets using approaches 
that ensure the statistical properties of the data in each of these 
subsets are as close to each other as possible (see Chen et al., 2022). 
This is critical to maximise generalisation ability (i.e. that the model 
is calibrated/trained over all types of events/patterns that are con
tained in the available data) and the degree to which this is assessed 
independently (i.e. that the independent performance of the model is 
assessed over all types of events/patterns that are contained in the 
available data).  

5. Selecting a model architecture (e.g. MLP, RNN, GNN, PINN) that is 
most appropriate for the problem under consideration.  

6. Optimizing the model structure (e.g. number of hidden layers and 
nodes) and model parameters (e.g. connection weights and biases) so 
as to maximise model performance on the calibration or testing set, 
while trying to minimise the number of model parameters that need 
to be determined via calibration.  

7. Checking the replicative, predictive and structural validity of the 
best-performing calibrated model by checking (i) the model re
siduals, (ii) the predictive performance of the model on the inde
pendent validation set and (iii) whether the relationship captured by 
the model conforms with a priori knowledge (see Humphrey et al., 
2017).  

8. Deploying the model in a way that ensures performance does not 
deteriorate over time by re-calibrating the model using any newly 
collected data that are significantly different from the data used for 
initial model development (see Bowden et al., 2012). 

Given the universal function approximation ability of ANNs, they 
present a “one stop shop” for developing prediction and forecasting 
models for environmental problems. However, the lack of understanding 
of how ANNs work and the misconception that they represent a “unique” 
modelling approach and are therefore exempt from modelling devel
opment methods that are considered best-practice for other types of 
environmental models presents a significant threat to the usefulness and 
credibility of ANN models. We hope this paper provides a useful 
resource for those starting, as well as those continuing, on their ANN 
modelling journey by shedding light on common myths and mis
conceptions and providing guidance on best-practice model develop
ment approaches. 
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learning in Python. J. Mach. Learn. Res. 12, 2825–2830. 

Pylianidis, C., Athanasiadis, I.N., 2022. Learning latent representations for operational 
nitrogen response rate prediction. AI for Earth Sciences Workshop at ICLR2022 
arXiv. http://arxiv.org/abs/2205.09025. 

Pylianidis, C., Snow, V., Overweg, H., Osinga, S., Kean, J., Athanasiadis, I.N., 2022. 
Simulation-assisted machine learning for operational digital twins. Environ. Model. 
Software 148, 105274. https://doi.org/10.1016/j.envsoft.2021.105274. 

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: a 
deep learning framework for solving forward and inverse problems involving 

nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. https://doi. 
org/10.1016/j.jcp.2018.10.045. 

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., 
Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., 
Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., 
Mohamed, S., 2021. Skilful precipitation nowcasting using deep generative models 
of radar. Nature 597, 672–677. https://doi.org/10.1038/s41586-021-03854-z. 

Razavi, S., Araghinejad, S., 2009. Reservoir inflow modeling using temporal neural 
networks with forgetting factor approach. Water Resour. Manag. 23, 39–55. 

Razavi, S., 2021. Deep learning, explained: fundamentals, explainability, and 
bridgeability to process-based modelling. Environ. Model. Software 144, 105159. 
https://doi.org/10.1016/j.envsoft.2021.105159. 

Razavi, S., Hannah, D.M., Elshorbagy, A., Kumar, S., Marshall, L., Solomatine, D.P., 
Dezfuli, A., Sadegh, M., Famiglietti, J., 2022. Coevolution of machine learning and 
process-based modelling to revolutionize Earth and environmental sciences: a 
perspective. Hydrol. Process. 36 https://doi.org/10.1002/hyp.14596. 

Razavi, S., Tolson, B.A., Burn, D.H., 2012. Review of surrogate modeling in water 
resources: review. Water Resour. Res. 48 https://doi.org/10.1029/2011WR011527. 

Reed, R., 1993. Pruning algorithms-a survey. IEEE Trans. Neural Network. 4, 740–747. 
https://doi.org/10.1109/72.248452. 

Reis, S., Seto, E., Northcross, A., Quinn, N.W.T., Convertino, M., Jones, R.L., Maier, H.R., 
Schlink, U., Steinle, S., Vieno, M., Wimberly, M.C., 2015. Integrating modelling and 
smart sensors for environmental and human health. Environ. Model. Software 74, 
238–246. https://doi.org/10.1016/j.envsoft.2015.06.003. 

Samadianfard, S., Hashemi, S., Kargar, K., Izadyar, M., Mostafaeipour, A., Mosavi, A., 
Nabipour, N., Shamshirband, S., 2020. Wind speed prediction using a hybrid model 
of the multi-layer perceptron and whale optimization algorithm. Energy Rep. 6, 
1147–1159. https://doi.org/10.1016/j.egyr.2020.05.001. 

Sanchez-Lengeling, B., Reif, E., Pearce, A., Wiltschko, A., 2021. A gentle introduction to 
graph neural networks. Distill 6. https://doi.org/10.23915/distill.00033, 10.23915/ 
distill.00033.  

Sarle, W.S., 1997. Neural Network FAQ, Part 1 of 7: Introduction. Periodic Posting to the 
Usenet Newsgroup comp.ai.Neural-Nets, vol. 1997. 

Schillaci, C., Perego, A., Valkama, E., Märker, M., Saia, S., Veronesi, F., Lipani, A., 
Lombardo, L., Tadiello, T., Gamper, H.A., Tedone, L., Moss, C., Pareja-Serrano, E., 
Amato, G., Kühl, K., Damatirca, C., Cogato, A., Mzid, N., Eeswaran, R., Rebelo, M., 
Sperandio, G., Bosino, A., Bufalini, M., Tunçay, T., Ding, J., Fiorentini, M., 
Tiscornia, G., Conradt, S., Botta, M., Acutis, M., 2021. New pedotransfer approaches 
to predict soil bulk density using WoSIS soil data and environmentalcovariates in 
Mediterranean agro-ecosystems. Sci. Total Environ. 146609 https://doi.org/ 
10.1016/j.scitotenv.2021.146609. 

Sharma, A., 2000. Seasonal to interannual rainfall probabilistic forecasts for improved 
water supply management: Part 1 — a strategy for system predictor identification. 
J. Hydrol. 239, 232–239. https://doi.org/10.1016/S0022-1694(00)00346-2. 

Singh, S.K., Bárdossy, A., 2012. Calibration of hydrological models on hydrologically 
unusual events. Adv. Water Resour. 38, 81–91. 

Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural 
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112. 
https://arxiv.org/abs/1409.3215. 

Taormina, R., Chau, K., Sethi, R., 2012. Artificial neural network simulation of hourly 
groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. 
Intell. 25, 1670–1676. https://doi.org/10.1016/j.engappai.2012.02.009. 

Taormina, R., Chau, K., 2015. Data-driven input variable selection for rainfall–runoff 
modeling using binary-coded particle swarm optimization and Extreme Learning 
Machines. J. Hydrol. 529, 1617–1632. https://doi.org/10.1016/j. 
jhydrol.2015.08.022. 

Taormina, R., Galelli, S., Karakaya, G., Ahipasaoglu, S.D., 2016. An information theoretic 
approach to select alternate subsets of predictors for data-driven hydrological 
models. J. Hydrol. 542, 18–34. https://doi.org/10.1016/j.jhydrol.2016.07.045. 

Tirelli, T., Pozzi, L., Pessani, D., 2009. Use of different approaches to model presence/ 
absence of Salmo marmoratus in Piedmont (Northwestern Italy). Ecol. Inf. 4, 
234–242. https://doi.org/10.1016/j.ecoinf.2009.07.003. 

Tonks, A., Harris, T., Li, B., Brown, W., Smith, R., 2022. Forecasting West nile virus with 
graph neural networks: harnessing spatial dependence in irregularly sampled 
geospatial data. http://arxiv.org/abs/2212.11367. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., 
Polosukhin, I., 2017. Attention is all you need. http://arxiv.org/abs/1706.03762. 

Werbos, P.J., 1975. Ph.D. Thesis. Beyond Regression: New Tools for Prediction and 
Analysis in the Behavioral Sciences, vol. 1974. Harvard University, Cambridge.  

Wu, W., Dandy, G.C., Maier, H.R., 2014. Protocol for developing ANN models and its 
application to the assessment of the quality of the ANN model development process 
in drinking water quality modelling. Environ. Model. Software 54, 108–127. https:// 
doi.org/10.1016/j.envsoft.2013.12.016. 

Wu, W., May, R.J., Maier, H.R., Dandy, G.C., 2013. A benchmarking approach for 
comparing data splitting methods for modeling water resources parameters using 
artificial neural networks. Water Resour. Res. 49 (11), 7598–7614. https://doi.org/ 
10.1002/2012WR012713. 

Yu, Y., Si, X., Hu, C., Zhang, J., 2019. A review of recurrent neural networks: LSTM cells 
and network architectures. Neural Comput. 31, 1235–1270. https://doi.org/ 
10.1162/neco_a_01199. 

Zanfei, A., Brentan, B.M., Menapace, A., Righetti, M., Herrera, M., 2022. Graph 
convolutional recurrent neural networks for water demand forecasting. Water 
Resour. Res. 58 https://doi.org/10.1029/2022WR032299. 

Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: 
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), Computer Vision – ECCV 2014, 

H.R. Maier et al.                                                                                                                                                                                                                                

https://doi.org/10.1145/3447548.3467173
https://doi.org/10.1145/3447548.3467173
https://doi.org/10.1016/j.envsoft.2014.11.028
https://doi.org/10.1016/j.envsoft.2014.11.028
https://doi.org/10.1016/j.envsoft.2015.05.013
https://doi.org/10.1016/j.envsoft.2015.05.013
https://doi.org/10.1016/j.envsoft.2014.12.015
https://doi.org/10.1016/j.envsoft.2014.12.015
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref61
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref61
https://doi.org/10.1111/0885-9507.00069
https://doi.org/10.1111/0885-9507.00069
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref63
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref63
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref63
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref63
https://doi.org/10.1016/S1364-8152(99)00007-9
https://doi.org/10.1016/j.envsoft.2010.02.003
https://doi.org/10.1016/j.envsoft.2018.11.018
https://doi.org/10.1016/j.envsoft.2018.11.018
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4477173
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref68
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref68
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref68
https://doi.org/10.1016/j.envsoft.2008.03.008
https://doi.org/10.1016/j.envsoft.2008.03.008
https://doi.org/10.1016/j.neunet.2009.11.009
https://doi.org/10.1016/j.neunet.2009.11.009
https://doi.org/10.1016/j.envsoft.2008.03.007
https://doi.org/10.3390/w13182525
https://doi.org/10.1080/02626667.2016.1159683
https://doi.org/10.1186/s40537-021-00446-6
https://doi.org/10.1186/s40537-021-00446-6
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref74
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref74
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref74
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref74
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref74
https://doi.org/10.1016/j.compag.2023.107663
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref76
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref76
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref76
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref76
http://arxiv.org/abs/2205.09025
https://doi.org/10.1016/j.envsoft.2021.105274
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s41586-021-03854-z
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref81
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref81
https://doi.org/10.1016/j.envsoft.2021.105159
https://doi.org/10.1002/hyp.14596
https://doi.org/10.1029/2011WR011527
https://doi.org/10.1109/72.248452
https://doi.org/10.1016/j.envsoft.2015.06.003
https://doi.org/10.1016/j.egyr.2020.05.001
https://doi.org/10.23915/distill.00033
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref89
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref89
https://doi.org/10.1016/j.scitotenv.2021.146609
https://doi.org/10.1016/j.scitotenv.2021.146609
https://doi.org/10.1016/S0022-1694(00)00346-2
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref92
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref92
https://arxiv.org/abs/1409.3215
https://doi.org/10.1016/j.engappai.2012.02.009
https://doi.org/10.1016/j.jhydrol.2015.08.022
https://doi.org/10.1016/j.jhydrol.2015.08.022
https://doi.org/10.1016/j.jhydrol.2016.07.045
https://doi.org/10.1016/j.ecoinf.2009.07.003
http://arxiv.org/abs/2212.11367
http://arxiv.org/abs/1706.03762
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref100
http://refhub.elsevier.com/S1364-8152(23)00162-7/sref100
https://doi.org/10.1016/j.envsoft.2013.12.016
https://doi.org/10.1016/j.envsoft.2013.12.016
https://doi.org/10.1002/2012WR012713
https://doi.org/10.1002/2012WR012713
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1029/2022WR032299


Environmental Modelling and Software 167 (2023) 105776

18

Lecture Notes in Computer Science. Springer International Publishing, Cham, 
pp. 818–833. https://doi.org/10.1007/978-3-319-10590-1_53. 

Zhang, B., Zhang, H., Zhao, G., Lian, J., 2020. Constructing a PM2.5 concentration 
prediction model by combining auto-encoder with Bi-LSTM neural networks. 
Environ. Model. Software 124, 104600. https://doi.org/10.1016/j. 
envsoft.2019.104600. 

Zheng, F., Chen, J., Ma, Y., Chen, Q., Maier, H.R., Gupta, H., 2023. A robust strategy to 
account for data sampling variability in the development of hydrological models. 
Water Resour. Res. 59, e2022WR033703 https://doi.org/10.1029/2022WR033703. 

Zheng, F., Chen, J., Maier, H.R., Gupta, H., 2022. Achieving robust and transferable 
performance for conservation-based models of dynamical physical systems. Water 
Resour. Res. 58 https://doi.org/10.1029/2021WR031818. 

Zheng, F., Maier, H.R., Wu, W., Dandy, G.C., Gupta, H.V., Zhang, T., 2018. On lack of 
robustness in hydrological model development due to absence of guidelines for 
selecting calibration and evaluation data: demonstration for data-driven models. 
Water Resour. Res. 54, 1013–1030. https://doi.org/10.1002/2017WR021470. 

Zhou, Y., Wu, W., Nathan, R., Wang, Q.J., 2021. A rapid flood inundation modelling 
framework using deep learning with spatial reduction and reconstruction. Environ. 
Model. Software 143, 105112. https://doi.org/10.1016/j.envsoft.2021.105112. 

Zhu, S., Maier, H.R., Zecchin, A.C., 2022b. Identification of metrics suitable for 
determining the features of real-world optimisation problems. Environ. Model. 
Software 148, 105281. https://doi.org/10.1016/j.envsoft.2021.105281. 

Zhu, S., Zecchin, A.C., Maier, H.R., 2022a. Use of exploratory fitness landscape metrics to 
better understand the impact of model structure on the difficulty of calibrating 
artificial neural network models. J. Hydrol. 612, 128093 https://doi.org/10.1016/j. 
jhydrol.2022.128093. 

Zou, S., Zhang, L., Huang, X., Osei, F.B., Ou, G., 2022. Early ecological security warning 
of cultivated lands using RF-MLP integration model: a case study on China’s main 
grain-producing areas. Ecol. Indicat. 141, 109059 https://doi.org/10.1016/j. 
ecolind.2022.109059. 

H.R. Maier et al.                                                                                                                                                                                                                                

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1016/j.envsoft.2019.104600
https://doi.org/10.1016/j.envsoft.2019.104600
https://doi.org/10.1029/2022WR033703
https://doi.org/10.1029/2021WR031818
https://doi.org/10.1002/2017WR021470
https://doi.org/10.1016/j.envsoft.2021.105112
https://doi.org/10.1016/j.envsoft.2021.105281
https://doi.org/10.1016/j.jhydrol.2022.128093
https://doi.org/10.1016/j.jhydrol.2022.128093
https://doi.org/10.1016/j.ecolind.2022.109059
https://doi.org/10.1016/j.ecolind.2022.109059

	Exploding the myths: An introduction to artificial neural networks for prediction and forecasting
	1 Introduction
	2 Exploding the myths
	2.1 Myths
	2.2 Implications

	3 State–of–the-art ANN model development process
	3.1 Overview
	3.2 Data processing
	3.2.1 Lagging
	3.2.2 Data transformation

	3.3 Input selection
	3.4 Data splitting
	3.5 Selection of model architecture
	3.6 Determination of Model Structure and Parameters
	3.6.1 Model Structure Selection
	3.6.2 Model calibration (training)

	3.7 Model validation
	3.7.1 Replicative validity
	3.7.2 Predictive validity
	3.7.3 Structural validity

	3.8 Model deployment
	3.9 Summary

	4 Summary and conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


