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ABSTRACT

In the field of structural health monitoring, the adoption of intelligent systems able to automatically detect
changes in a structure are evidently attractive. A change in the baseline configuration can be an early predictor
of a structural defect that has to be monitored before it reaches critical conditions. When there is no prior
knowledge on the system, deep learning models such as Autoencoders could effectively detect a change and
enhance the capability to determine the damage location. In this paper a deep learning approach is applied to a
test rig consisting of a small building model composed by four floors connected by bending springs. Modifications
of the system are simulated by changing stiffness of the spring. This algorithm is compared with traditional
approach based on modal parameters by carrying out experimental tests to validate the hypothesis.
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1. INTRODUCTION

In the last years, Structural Health Monitoring (SHM) of civil infrastructures, i.e. buildings and bridges, has
become a trending topic.1,2 SHM refers to the implementation of monitoring strategies to detect structural
damages using dynamic response measurements, feature extraction algorithms and statistical analysis of the ex-
tracted features to asses the current state of the system.3 Indeed, structures are subjected to many environmental
factors that may affect their integrity. Most often visual inspections are used to locate the damage. However, in
some cases, they may not be feasible and in general, due to their nature, are nowadays considered inaccurate and
poorly reliable as well as very time-consuming.4 Among all techniques implemented in SHM, vibration-based
one provide an automatic and more reliable way to assess the health of a structure.5–8 The basic idea relies
on the change of measured vibration responses due to changes of the structural properties as function of the
damage. In this framework, due to the large amount of data available, deep learning seems to be a powerful for
damage detection. Indeed, deep learning is able to discover meaningful features in large datasets using multiple
processing layers.9 Most deep-learning models for damage detection are trained on both the healthy and the
damaged states of the structure.10 This can be a huge limitations, since it is not usually possible to acquire
data from damaged states of the system. Convolutional autoencoders (CAEs) seems to be able to overcome
this limitation, providing an algorithm able to detect damages based only on raw vibration data of the healthy
structure.10–12

This paper proposes an unsupervised deep-learning algorithm for structural monitoring trained with vibration
data acquired from the structure only in the healthy state. The algorithm, based on CAE, was tested on a
four-storeys building and accelerations data coming from accelerometers placed one on each floor. The objective
is to provide a general algorithm able to detect damages for different structures, i.e. buildings or bridges.
This paper is organized as follow: the description and the mathematical model of the tested structure are re-
ported in Section ??, the experimental campaign is presented in Section 3 while the algorithm in Section 4, the
results are discussed in 5, finally the last section is devoted to the conclusion and future trends.

2. SYSTEM DESCRIPTION

The system, shown in Figure 1, is a multi-storey building composed of five aluminum plates, connected by steel
laminas, respectively modelling the storeys and the pillars of the building and whose data are reported in Table
1.13
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Table 1: Data of the system.

Storey

Area 200× 200 mm2

Thickness 20 mm
Mass 2.26 kg

Pillars

Area 0.5× 50 mm2

Thickness negligible
Mass negligible

Figure 1: A photo of the real sys-
tem.

Figure 2: Lumped mass model of
the system.

2.1 Mathematical model

Being the mass of each storey much larger than the mass of the laminas, the system can be modelled through a
lumped mass approach. Given that, the dynamic model consists of a series of masses connected by springs, as
shown in Figure 2.

Four degrees of freedom are considered, the absolute horizontal displacements of the storey, grouped in the
following vector:

x = [x1 x2 x3 x4]
T (1)

The mass matrix of the model is diagonal:

[M ] =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m

 (2)

To compute the stiffness matrix, a clamped-clamped beam with one of the extremities subjected to a transversal
displacement was considered.14 The stiffness value of the equivalent spring can be derived as:

keq = 4 · k = 4 · 12EJ

L3
(3)

Moreover, the effect of the weight of each storey on the transversal stiffness is taken into account through the
term T = m · g/L.15 In the end, the stiffness matrix:

[K] =


2keq − 7T −keq + 3T 0 0
−keq + 3T 2keq − 5T −keq + 2T 0

0 −keq + 2T 2keq − 3T −keq + T
0 0 −keq + T keq − T

 (4)

Rayleigh’s damping model has been considered for the structure. So, the resulting damping matrix is written as:

[C] = α[M ] + β[K] (5)
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where the coefficients α = 0.03 and β = 0.0028 have been computed through least square minimization, consider-
ing the analysis of the experimental responses of the system in terms of modal damping and natural frequencies.
Given these matrices, the equations of motion of the system can be derived solving the following second-order
ordinary differential equations (ODEs):

[M ] ẍ + [C] ẋ + [K] x = 0 (6)

3. EXPERIMENTAL CAMPAIGN

The aim of the experimental campaign conducted on the real system was the acquisition of raw data for both
”healthy” and ”damaged” structure. In both cases, four accelerometers were adopted, one for each storey. The
structure was excited by an impact hammer and the transversal vibrations were acquired. In total, for the
”healthy” structure, 1000 records of 50 seconds each were recorded. An example of the response is shown in
Figure3. After an averaging procedure, the Frequency Response Function has been evaluated for each accelerom-

(a) 2nd floor. (b) 3rd floor.

(c) 4th floor. (d) 5th floor.

Figure 3: Acceleration of each floor with input applied on 5th floor.

eter. An example is reported in Figure 4, where the structure was excited by an input force on the 5th floor.
Moreover, natural frequencies and mode shapes were extrapolated by means of the Experimental Modal Analysis
(EMA).16,17 In particular, the natural frequencies of the system are reported both for the numerical and the
experimental model in Table 2.
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(a) 2nd floor. (b) 3rd floor.

(c) 4th floor. (d) 5th floor.

Figure 4: FRFs evaluated for each accelerometer, one for each floor, with input applied on 5th floor.

Table 2: Natural frequencies for both the numerical and the experimental model.

Mode Numerical model [Hz] Experimental model [Hz]

1 0.79 0.75
2 2.51 2.41
3 3.88 3.74
4 5.01 5.04

Typical internal structural damages are not determined by a loss of material but by a change of geometry or
material properties which affect one or many elements in the stiffness matrix.18 For this reason, the ”damaged”
time histories were acquired changing only the stiffness value. In particular, six different sets of laminas were
use to decrease, in the range of 10− 60%, the stiffness of the spring connecting two subsequent floors. In total,
240 time histories of 50 seconds each were acquired: 10 per each combination of entity of the damage (type of
lamina) and its position.
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4. NETWORK ARCHITECTURE

The basic idea behind this work was to implement a convolutional autoencoder able to detect anomalies on the
basis of the error of reconstruction of the input sample to the autoencoder. Autoencoders are unsupervised
learning algorithms which, after several transformation and data compression, aim to reconstruct the input at
the output with least distortion. This technique is widely used in remove noise, compressing and visualizing high
dimensional data.19 Convolutional Neural Networks (CNNs), on which Convolutional Autoencoders (CAEs) are
based, is a class of Artificial Neural Networks (ANNs) whose algorithms are based on convolution operations.
This leads to many advantages: (i) each neuron is no longer connected to all neurons of the previous layer, but
only to a smaller portion, reducing parameters and speed up convergence; (ii) dimension reduction allows to
remove trivial features while retaining useful information.20

4.1 Preprocessing

As already said, for the healthy structure, 1000 time histories of 50 seconds were recorded. In particular, the
transversal accelerations were acquired by the four accelerometers with a sampling frequency of 100 Hz and
arranged into a 4-columns matrix. Then, the entire set of time histories was normalized,21,22 shuffled and
divided into train, validation and test subsets, respectively composed by 800, 100 and 100 records.

4.2 Training and test

The train set was used for training procedure of the autoenconder model shown in Figure 5.

Figure 5: Autoencoder model.

In particular, 200 training epochs were considered and the Mean Squared Error (MSE) was used as loss
function. Moreover, a callback setting on the validation loss was adopted. Then, the trained model was used to
reconstruct the test set, and the Mean Absolute Error (MAE) was evaluated separately for each accelerometer.
The maxima over all the test set were taken as thresholds, to be considered for detecting the anomalies. Indeed,
the MAE loss represent the error of reconstruction done by the autoencoder. So, it is likely to assume that the
greater the error of reconstruction the greater the damage is.

5. RESULTS

The 240 damaged records were firstly analyzed via EMA. However, natural frequencies and mode shapes were
found to slightly change for damages of 10%, as shown in Figure 6.
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(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 6: Vibration modes of structure for 10% reduction of the stiffness value and for different positions of the
damage.

For damages of higher entity, reported in Figure 7, the differences were appreciable, but the detection of
damage position was not straightforward. With this in mind, the anomalies set was preprocessed with the
same scaler obtained for the training set and then fed to the autoencoder. The MAE errors for each of the
anomaly record and for each channel (accelerometer) were then compared to the previously found MSE test
thresholds. Each record with a loss higher than the threshold was classified as anomaly. All anomalies were
detected, confirming the precision of the method for detecting the structure’s damage, also for cases in which
the entities of the damage are not so high. Moreover, for each anomaly detected, the channel (corresponding to
the accelerometer position, i.e. the floor) with the maximum value of the MAE loss was selected as the damage
position and compared with the real and known damage position. So, for each damage entity in the range
10− 60% and taken as reference, the following index was evaluated:

detection =
nd

ntot
× 100 (7)

where nd is the number of anomalies with damage entity equal or higher than the reference value and whose
position was correctly detected by the model, while ntot is the total number of anomalies with damage entity
equal or higher than the reference value. The results are reported in Table 3.

Table 3: Anomalies detection.

Damage Detection

-10% 33.19%
-20% 40.20%
-30% 52.24%
-40% 65.11%
-50% 84.61%
-60% 100%
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(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 7: Vibration modes of structure for 50% reduction of the stiffness value and for different positions of the
damage.

6. CONCLUSION

The use of a convolutional autoencoder for damage detection was investigated. In particular, raw data coming
from experimental acquisitions on a four-storey building were used and the error of reconstruction was taken as
instrument to detect the anomalous records. The algorithm, compared to conventional vibration-bases methods,
was able to detect all records with structural damages, showing good precision in the detection of their position,
especially for higher damage entities. Future developments of this work will include changes in the mass of the
system and the use of the model together with the NNs for detecting anomalies for more complex structures.
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