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A B S T R A C T   

Polyhydroxyalkanoates (PHA) are among the most promising bio-based alternatives to conventional petroleum- 
based plastics. These biodegradable polyesters can in fact be produced by fermentation from bacteria like 
Cupriavidus necator, thus reducing the environmental footprint of the manufacturing process. However, ensuring 
consistent product quality attributes is a major challenge of biomanufacturing. To address this issue, the 
implementation of real-time monitoring tools is essential to increase process understanding, enable a prompt 
response to possible process deviations and realize on-line process optimization. In this work, a soft sensor based 
on in situ Raman spectroscopy was developed and applied to the in-line monitoring of PHA biomanufacturing. 
This strategy allows the collection of quantitative information directly from the culture broth, without the need 
for sampling, and at high frequency. In fact, through an optimized multivariate data analysis pipeline, this soft 
sensor allows monitoring cell dry weight, as well as carbon and nitrogen source concentrations with root mean 
squared errors (RMSE) equal to 3.71, 7 and 0.03 g/L, respectively. In addition, this tool allows the in-line 
monitoring of intracellular PHA accumulation, with an RMSE of 14 gPHA/gCells. For the first time, also the 
number and weight average molecular weights of the polymer produced could be monitored, with RMSE of 8.7E4 
and 11.6E4 g/mol, respectively. Overall, this work demonstrates the potential of Raman spectroscopy in the in- 
line monitoring of biotechnology processes, leading to the simultaneous measurement of several process vari-
ables in real time without the need of sampling and labor-intensive sample preparations.   

1. Introduction 

Plastic plays a fundamental role in our society, either as industrial or 
domestic material, replacing wood, glass and many other raw materials 
thanks to its incomparable thermomechanical properties, product sta-
bility, light weight, and durability, all combined with economic feasi-
bility (Singh et al., 2017). These features have made plastic 
manufacturing reach over 390 million tons per year, most of which 
coming from fossil sources (https://plasticseurope.org/knowl-
edge-hub/plastics-the-facts-2022/.). Nevertheless, over the recent 
years, the negative aspects related to this wide usage have been high-
lighted (Andreasi Bassi et al., 2021). In particular, one of the most 
dangerous sources of pollution is the incorrect disposal of these plastics 
(Meereboer et al., 2020). The complex structure and the high molecular 

mass extend the durability, allowing the various plastics to remain in 
water bodies, soil, and landfills for extremely long times (Raza et al., 
2018). This persistence in the environment is source of the notorious 
concern of microplastics (MPs). The pervasive use of plastics in all facets 
of human life results in a daily exposure to MPs. This continual exposure 
through drinking water has sparked increasing worries regarding po-
tential health risks for humans (Ivar do Sul and Costa, 2014; Kirstein 
et al., 2021). Even though recovering and recycling technologies are 
improving, we still cannot avoid sustained pollution. An alternative 
solution is the replacement of these traditional plastics with bio-
polymers, materials obtained from renewable sources, which ideally 
combine biodegradability with the mechanical and chemical properties 
of conventional polymers (Albuquerque and Malafaia, 2018). Even if 
this ultimate solution has not been reached yet, one of the most 
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appealing green alternatives to fossil-based plastics is currently repre-
sented by polyhydroxyalkanoates (PHA), a class of renewable and 
biodegradable polyesters that shows the highest expected growth rate 
among the bio-based polymers (Andreasi Bassi et al., 2021; Medeiros 
Garcia Alcântara et al., 2020). 

PHA are produced as a natural strategy for carbon and energy storage 
by several microorganisms. Their large-scale manufacturing can be then 
accomplished by cultivating such microorganisms either in discontin-
uous or continuous bioreactors (Medeiros Garcia Alcântara and Spon-
chioni, 2022). However, high operating costs, lot-to-lot variability of the 
produced PHA and availability of an appropriate downstream process-
ing are still important bottlenecks to be considered. To ensure consistent 
product quality, robustness of the manufacturing, and a labor effective 
process optimization aimed at maximizing the PHA productivity, mak-
ing it competitive with the traditional plastics, the development of 
reliable tools capable of monitoring in real time the biopolymer quality 
is crucial (Blunt et al., 2018). 

Indeed, the Process Analytical Technology (PAT) initiative, enacted 
by the Food and Drug Administration (FDA) in 2004, has among its main 
goals the establishment of a comprehensive understanding of 
manufacturing processes through the definition of critical quality attri-
butes and their relationship with critical process parameters (Hinz, 
2006). Mainly applied in the pharmaceutical industry, the so-called PAT 
tools for the monitoring and control of manufacturing processes have 
been spreading to many other industries in the last decades, including 
the manufacturing of PHA (Gernaey et al., 2012). In fact, several works 
reported the possibility of monitoring, quantifying, and assessing the 
ongoing PHA synthesis via on-line measurements, exploiting different 
analytical techniques. Among all, Fourier-transformed infrared spec-
troscopy (FT-IR) combined with attenuated total reflection (ATR) is a 
very promising monitoring solution as demonstrated by different works 
(Jarute et al., 2004; Doppler et al., 2021), as well as the in-line photon 
density wave (PDW) technique, able to collect measurements in highly 
turbid biochemical processes (Gutschmann et al., 2019, 2023). In 
addition, different research groups focused on information from exhaust 
gas data in order to predict both substrate consumption and PHA pro-
duction trends (Duvigneau et al., 2022; García et al., 2019; Ochoa et al., 
2020). Despite their potential as monitoring tools, most of these tech-
nologies either require sampling of the culture broth or complex sample 
preparation policies, which limit the data acquisition rate as well as 
introduce the risk of culture contamination. 

Among the different monitoring tools available, Raman spectroscopy 
is gaining much attention from both academia and industry since it can 
provide an in-depth characterization of the cell culture, measuring, at 
the same time, nutrients, metabolites, cell density and polymer quantity 
and quality (Samek et al., 2016). As such, this analytical technique has 
found applicability in many fields, such as material science, diagnostics, 
and biology (Mulvaney and Keating, 2000), producing a fingerprint of 
culture biochemical composition (Das and Agrawal, 2011). These 
fingerprint-like signatures can be translated into snapshots for identifi-
cation of molecular reactions and biologics (Pezzotti, 2021). Given its 
potential, the interest in applying this spectroscopic technique to PHA 
fermentation processes is reflected in different scientific works. De 
Gelder et al. (De Gelder et al., 2008) and Samek et al. (Samek et al., 
2016) explored the potential of Raman spectroscopy for PHA quantifi-
cation directly from bacterial cultures. Tao and co-workers (Tao et al., 
2016) focused on the dynamic changing of PHA-related wavelength 
intensity, estimating the precise periods of maximum productivity. 
Thanks to regression statistics, it is possible to train chemometric models 
via offline measurements, obtaining from Raman spectra a suitable 
methodology for quantification (Abu-Absi et al., 2011; Rowland-Jones 
and Jaques, 2019). In order to extract the maximum possible informa-
tion from the measured spectra, we need to rely on suitable multivariate 
data analysis (MVDA) methodologies (Madden and Ryder, 2003). MVDA 
projection methods, such as principal component analysis (PCA), partial 
least squares (PLS), and orthogonal PLS (OPLS), are statistical 

techniques that have been developed and used to analyze data generated 
from more than one variable. As such, they fit suitably within the goals 
of PAT and Quality by Design (QbD) since they allow significant infor-
mation mining from spectroscopic data (Beckett et al., 2018). Indeed, 
the objective is to obtain, with sufficient accuracy, the simultaneous 
quantification of several relevant variables. This approach requires the 
suitable formulation of a model as well as data preprocessing (DPP), 
which strongly affects the final prediction accuracy (Gonzalez Zelaya, 
2019; Narayanan et al., 2022). Among the different options, PLS 
regression models have been demonstrated as the most promising 
methodology to extract information from Raman spectra, due to their 
relative simplicity compared to other statistical approaches and suffi-
cient accuracy (Hisazumi and Kleinebudde, 2017; Radtke et al., 2020; 
Esmonde-White et al., 2022). 

Despite the significant advances in the monitoring of PHA produc-
tion from bacterial cultures through Raman spectroscopy, the reported 
approaches are still mainly based on at-line measurements, requiring 
sampling and labor-intensive sample preparations before being able of 
extracting quantitative information. These drawbacks erode the great 
potential of Raman spectroscopy for providing a fast response, and 
potentially a real-time characterization of the culture broth. Conversely, 
in situ monitoring offers great potential to overcome typical limitations 
associated to at-line and off-line process supervision. Indeed, in situ 
monitoring tools are in use in various fields, from crystalline solid for-
mation (Pienack and Bensch, 2011) to battery development (Grey and 
Tarascon, 2017) to 3D metal printing (Colosimo and Grasso, 2020). 

To bridge this gap between the biotechnology industry and other 
process industries, we developed a soft sensor enabling the real-time 
monitoring of PHA production from Cupriavidus necator through in situ 
Raman spectroscopy, avoiding any sampling and sample preparation. 
With this approach, based on the MVDA of the collected Raman spectra, 
we show the possibility of quantifying important cell culture parameters 
such as the viable cell density and metabolite concentration, but also the 
polymer quality and, specifically, its molecular weight distribution 
(MWD). To the best of our knowledge, this is the first report about the 
real-time assessment of the MWD of an intracellular product like PHA, 
without the need for sampling. In this direction, we first developed an 
optimal algorithm architecture. This was obtained by evaluating the best 
hyperparameters (HP), which are the characteristic factors of data pre-
processing, through a Bayesian optimization loop and a K-Fold cross- 
validation (CV) procedure. We then applied this soft sensor for the in- 
line monitoring of PHA from perfusion cultures. 

The in-line information provided by this tool can be advantageously 
exploited for the development of a process control algorithm for on-line 
disturbance rejection and process optimization, allowing to reduce the 
costs associated to PHA biomanufacturing. 

2. Materials and methods 

2.1. Experimental setup 

The experimental setup is the high-density perfusion bioreactor 
schematically shown in Fig. 1. This bioreactor consists of a 2 L stirred 
tank vessel (Vaudaux-Eppendorf, Switzerland), connected to an alter-
nating tangential flow filtration (ATF) unit, composed of a hollow-fiber 
membrane (0.5 µm, PES, 1570 cm2 Repligen, USA) and a diaphragm 
pump connected to its controller (Repligen, USA). This ATF device al-
lows to retain the cells inside the bioreactor, thus increasing the density. 
The cell line used in these experiments is Cupriavidus necator DSM 428 
(DSMZ, Germany). The experimental runs were performed at 37 ◦C, pH 
7, Dissolved Oxygen (DO) 20% v/v and stirring speed 500 rpm. By using 
DASGIP Control software (Eppendorf, Germany), these parameters were 
kept constant throughout the experiments. Temperature was controlled 
using a heating mantel and pH through the automatized addition of 
carbon dioxide and pH buffers. DO percentage was adjusted by oxygen 
flowrate and mixing was provided by a Rushton impeller installed at the 
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bottom of transmission shaft. The inlet air was filtered through an air 
filter (Midisart 2000, 0.2 μm PTFE, Sartorius, Germany) and inserted in 
the culture volume via a 7-hole sparger. Depending on oxygen uptake, 
the inlet volumetric concentration was in the range 0–30%, while air 
flowrate varied between 20 and 50 sL/h. Antifoam B emulsion at 5% in 
water (Sigma-Aldrich, USA) was added manually while two marine 
impellers were implemented above the liquid level, to prevent foam 
accumulation. 

Three different media were used: a basal growth medium, a basal 
growth medium without nitrogen source, and a concentrated C-Fraction. 
The carbon source was gluconic acid and the nitrogen source ammonium 
phosphate dibasic. The growth medium formulation was adapted from 
(López-Abelairas et al., 2015), the basal medium without nitrogen had 
the same formulation but without any nitrogen source. The C-Fraction 
solution was composed of 5.0 g/L MgSO4⋅7 H2O (Honeywell Fluka, 
Germany) and 324.0 g/L D-gluconic acid sodium salt (Sigma Aldrich, 
USA). 

In all experimental runs, the growth medium was supplied at a 
constant flowrate (i.e. 42 mL/h). After the exponential phase, this me-
dium was switched to the one without nitrogen in order to promote PHA 
accumulation. The C-fraction was added manually whenever the carbon 
source concentration dropped below 17 g/L. 

Raman spectra were acquired from all bioreactor experiments using 
a Kaiser RamanRxn2 analyzer (Kaiser Optical Systems Inc., USA), which 
includes a 785 nm laser with a power of 400 mW and a cooled charged- 
coupled device (CCD) detector, measuring inelastic photon scattering 
across the range of 100–3425 cm− 1. This device was connected to a bIO- 
Optic immersion probe placed inside the perfusion bioreactor through a 
bioreactor port. The Raman probe, as all the other hardware together 
with the reactor unit, were sterilized via autoclave using a Systec DX65 
(Systec GmbH & Co. KG, Germany). Spectra were collected every 15 min 
using an exposure time of 10 seconds and 75 cumulated scans, leading to 
a measurement time of 12.5 min per spectrum. In this way the final 
resulting spectrum came from the average of cumulated scans, with the 
aim of improving the signal-to-noise ratio. 

2.2. Analytics 

Samples were taken regularly and analyzed for optical density (OD) 
at 583 nm, cell dry weight (CDW), ammonia and gluconic acid con-
centrations, and PHA accumulation and molecular weight distribution. 

The OD and ammonia concentration were determined using a Cedex 
Bio Analyzer (Roche Diagnostics, Switzerland). In addition, an 

estimation of cell concentration was obtained by measuring the CDW. To 
perform this, a precise cell culture volume (1 mL) was centrifugated by a 
Centrifuge 5415 (Eppendorf, Germany) at 13’000 rpm for 6 min and 
then the resulting pellet was dried in a vacuum concentrator (Concen-
trator Plus, Eppendorf, Germany) and finally weighted. 

Concerning the gluconic acid, its concentration was determined via 
high performance liquid chromatography (HPLC) (Agilent Technologies 
1200 series, Germany) at room temperature using an Aminex HPX-87 H 
Ion Exclusion Column (Bio-Rad, USA) and an isocratic elution at 
0.7 mL/min with 14 mM H2SO4 as mobile phase. UV absorbance was 
carried with a diode array detector set at 210 nm. 

PHA extractions were performed with chloroform using a Soxhlet 
apparatus at 61 ◦C for 5.5 h coupled with solvent evaporation under 
reduced pressure (Rotavapor© R-300, Buchi, Switzerland). The PHA 
concentration was then determined using the crotonic acid method 
(Karr et al., 1983). Briefly, PHA containing samples were digested in 
concentrated H2SO4 (98%) for 30 min at 95 ◦C before dilution by mixing 
with 100 folds milliQ water. The crotonic acid was measured via HPLC 
with UV detection at 210 nm (Agilent Technologies 1200 series, Ger-
many) using an Aminex HPX-87 H Ion Exclusion Column. The elution 
was carried out at 0.7 mL/min using 14 mM H2SO4 as the mobile phase. 
PHA molecular weight distribution was determined by size exclusion 
chromatography (SEC) performed through an Agilent 1100 GPC/SEC 
(Agilent, USA) unit equipped with two columns (PSS PFG linear M 
columns) connected to a refractive index detector. The elution was 
performed in hexafluoro isopropanol (HFIP) at 1 mL/min at 35 ◦C. The 
instrument was calibrated with polymethyl methacrylate (PMMA) 
standards (Tan et al., 2014). 

2.3. Multivariate data analysis pipeline 

In order to develop a functioning soft sensor based on spectroscopic 
data, the Raman spectra collected during the cell culture need to un-
dergo a multivariate data analysis pipeline. This comprises different 
stages. It starts with the collection and preparation of the data set, 
including both spectra and offline reference measurements, and the 
matching of the spectra to the reference values since normally spectra 
are collected every 15 min while the reference values are only available 
every few hours. After these two initial steps, the spectra undergo a 
series of preprocessing steps, in order to remove most of the noise and 
increase the relevant signal. Based on these preprocessed spectra, a 
model can be developed which correlates the spectra to the variables to 
be predicted. In this work, a partial least squares (PLS) model was 

Fig. 1. Schematic representation of the high-density perfusion bioreactor coupled with the alternating tangential flow (ATF) filtration unit for cell retention used for 
PHA biomanufacturing. The reactor is equipped with a submersion probe for in situ Raman spectroscopy. The Raman probe was connected to a computer for spectra 
collection. The signal collected in-line is used for model training and update. 
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employed. Furthermore, a wavenumber selection step was added, 
initially using the so-called “bio importance regions” and afterwards 
using the variable importance as a selection metric, as described later in 
this paper. 

2.3.1. Spectra matching 
Since the spectra are acquired at specific time intervals, i.e. 15 min, 

while the variable reference values from offline analysis are only 
available at the end of the working day, a proper time matching has to be 
performed. Two possibilities were explored: single spectrum matching 
and multiple spectra matching. 

This leads to a dataset where each sample has one or more Raman 
spectra attached. In fact, single spectrum matching corresponds to the 
matching of a single spectrum to each reference value. This is done via a 
list search algorithm which matches the timestamp of the two elements. 
The use of single spectrum matching leads to discarding a high quantity 
of spectra. In fact, the in situ Raman spectroscopy generated many more 
spectra than the samples collected for offline analysis. Therefore, with 
this approach, all the Raman spectra recorded throughout the day and 
not associated to any reference value are discarded. 

This can be avoided through a multispectra matching. In this work, 
this was implemented by matching each reference sample data not only 
to the spectrum attributed in a single matching phase but also to the 4 
temporarily closest spectra. Hence, to the timestamp corresponding to 
the j reference measurement, a single matched spectrum i, and the 
spectra i − 2, i − 1, i+1 and i+2 were related. The only exceptions are 
when the first and second spectra are involved. The two strategies are 
schematically illustrated in Fig. 2. The main idea behind this approach 
exploits the fact that biological systems are characterized by slow ki-
netics of cellular growth and substrate consumption, as well as product 
accumulation. In this way, the dataset is augmented by an approximate 
factor of 5, thus leading to a more accurate and robust model. 

2.3.2. Preprocessing pipeline 
The first step of the preprocessing pipeline is wavenumber (feature) 

selection. In this work, two different approaches were developed. The 

first one consists of the removal of the non-informative wavenumbers 
based on the so-called “bio importance regions”, which are selected 
based on the concept behind the fingerprint-like signatures of specific 
biological and chemical species (Pezzotti, 2021). Here we should elim-
inate spectra corrupted by water and window material interferences, as 
well as non-informative regions dictated by bioprocess modeling expe-
rience. This leads to the selection of the spectral ranges of 450 – 1820, 
1880 – 2530, and 2590 – 3100 cm− 1, as reported in (Feidl et al., 2019a, 
2019b). The second approach consists in the use of the variable 
importance (VIP) (Andersen and Bro, 2010) as a feature selection metric. 
This metric can be calculated based on the PLS scores and, as a rule, the 
wavenumbers with VIP higher than 1 would be considered important 
and used as features for model calibration. 

The next step of the pipeline consisted of a Savitzky-Golay (SG) filter 
(Savitzky and Golay, 1964), the goal of which is to smooth noisy data 
obtained from chemical spectra analyzers. Specifically, for Raman 
spectroscopy, this filter is needed due to the presence of high-frequency 
peaks (Schafer, 2011). This technique was selected for its ability to 
retain the signal shape and, compared to other filters, to provide better 
performance (Chen et al., 2004; Acharya et al., 2016). The imple-
mentation of SG smoothing is accomplished by choosing in a convenient 
way both the polynomial degree and the working frame size. Usually, 
their values are estimated through a try-and-error methodology 
(Acharya et al., 2016). 

Since spectra may have been recorded under different analyzer 
conditions, it is important to equalize the impact of data on model ac-
curacy. For Raman spectroscopy, normalization is a scaling technique 
applied on the intensity of each wavenumber throughout the entire 
sampling. In this case, the Standard Normal Variate (SNV) scaler was 
applied (Barnes et al., 1989). Furthermore, in order to avoid giving 
higher importance to different wavenumbers because of their charac-
teristically higher intensities, it is important to normalize the dataset, 
hence mean centering was applied wavenumber-wise (van den Berg 
et al., 2006). 

In this work, initially the hyperparameter values of the SG filter and 
the application or not of the normalization and scaling approaches were 

Fig. 2. Schematic comparison between the single and the multispectra matching approaches. In this scheme, the different colors correspond to different samples 
taken during the process and characterized offline for metabolite concentrations, PHA accumulation and MWD. Hence for single spectrum matching only one 
spectrum per reference measurement is selected while all others are discarded (blank lines). In multispectra matching instead, the majority of the spectra 
are retained. 
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selected based on expert guidance and, in a second approach, optimized 
based on the cross-validation error. 

2.3.3. Partial least squares model 
A partial least squares (PLS) model (Wold et al., 2001) was used as 

regressor and predictor in this work. This model is widely used for 
chemometrics applications (Feidl et al., 2019a, 2019b; Rajalahti and 
Kvalheim, 2011; Teixeira et al., 2009). Indeed, PLS is suitable for the 
analysis of data with strongly collinear and noisy predictor variables. In 
addition, due to the fact that it is a space reduction technique, it is 
particularly employed when the number of features (wavenumbers) 
highly surpasses the number of predictive variables. In a general way, 
the basic idea behind PLS is that it forms orthogonal score vectors (called 
latent vectors or components) by maximizing the covariance between 
different sets of variables. In the case of regression, the blocks of vari-
ables are the aforementioned predictors (factors) and responses (offline 
measurements). Thus, PLS is able to extract score vectors which are used 
as new predictors representation and regress responses on these new 
ones (Saunders et al., 2006). Therefore, in this model approach, the 
number of components to be used needs to be selected. In fact, too many 
components will lead to an overfitted model, while a too low number of 
them may lead to an imprecise model. Even if, in principle, it is possible 
to evaluate as many PLS components as the rank of predictors variables, 
just a part of them is used, because the measured data are rich in noise 
and some of the smaller components will describe only this disturbance. 
Therefore, a method must be employed to select a suitable number of 
components (Geladi and Kowalski, 1986). As reported by Kvalheim et al. 
(Kvalheim et al., 2018), there are several approaches to accomplish this 
selection: cross-validation, Monte Carlo and F-test (Geladi and Kowalski, 
1986) are just a few of them. An easy and powerful approach is to use a 
minimum number of components to account for most of the cumulative 
variance expressed in response values, and this technique has been 
adopted in this work (Wold et al., 2001). 

2.3.4. Hyperparameter optimization and cross-validation 
In order to select the best set of hyperparameters for the pre-

processing pipeline, an optimization algorithm combined with a cross- 
validation (CV) step was developed. Specifically, Bayesian optimiza-
tion together with a 5-fold cross-validation approach was done. Named 
after Bayes’ theorem (Brochu et al., 2010), Bayesian optimization is an 

iterative algorithm made up of two key factors: a probabilistic surrogate 
model and an acquisition function. The core idea of Bayesian optimi-
zation is that in each iteration, the surrogate model is fitted to all the 
observations of the target function collected until that point. Next, the 
acquisition function determines the next points to be calculated, using 
the prediction of the probabilistic surrogate model, automatically 
balancing the trade-off between exploration and exploitation (Yang and 
Shami, 2020; Lei, 2021). The acquisition function is selected so as to be 
cheap to compute and easy to be optimized (Lei, 2021), while tradi-
tionally, surrogate models employ Gaussian processes, due to their 
expressiveness, flexibility, and easy handling (Wu et al., 2019). 

This Bayesian optimization algorithm was used to minimize the 
average root mean squared error (RMSE) in cross-validation. Specif-
ically, 5-fold cross-validation was used, in which the training dataset is 
divided into 5 subsets, and each used as test set in a rotational manner, 
while the other 4 subsets are used for model training. This rotational 
approach leads to training and testing the model 5 different times, 
generating five different RMSE values. The RMSE in CV is then the 
average of these five errors. 

Concluding, a schematic summary of the multivariate data analysis 
approach used in this work is shown in Fig. 3. 

2.4. Algorithm implementation and error definition 

All calculations were carried out on MATLAB 2021b (The Mathworks 
Inc., USA), using both built-in functions and in-house developed rou-
tines. Regarding the built-in functions, bayesopt was used for Bayesian 
optimization, crossvalind for determination of the k-fold subdivision, 
plsregress for PLS model development and sgolayfilter for the SG filter. 

The RMSE and relative RMSE for variable j are defined as: 

RMSEj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
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i=1
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√
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Fig. 3. Schematic representation of the multivariate data analysis pipeline employed in this work.  
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Where Ndata is the number of samples of the selected variable, yi, ̂yi and y 
are the experimental, predicted, and mean values, respectively, and j 
represents the variable of interest. 

3. Results and discussion 

Raman spectroscopy is emerging as a powerful tool for the moni-
toring of biotechnology processes. Indeed, it combines a fast analysis 
with an in-depth characterization of the system. To access the full po-
tential of this technique, we explored the possibility of applying it in situ, 
for the in-line characterization of PHA biomanufacturing from Cupria-
vidus necator without the need for sampling, which may introduce the 
risk of contamination, and labor-intensive sample preparations. The 
Raman spectra collected every 15 min from a perfusion bioreactor are 
stacked in Fig. 4. 

The PHA accumulation during time can be tracked at 1735 cm− 1 

(García et al., 2019). However, the heterogeneity and complexity of the 
system prevents the unambiguous attribution of the bands to the 
different components. Hence, the extraction of quantitative information 
from this analysis requires the development of a suitable MVDA 
pipeline. 

3.1. Single spectrum matching 

The first task of model development was the creation of a correct 
dataset by establishing a suitable correspondence between Raman 
spectra (matrix of intensity values) and offline measurements of cell dry 
weight, metabolite concentration, and polymer molecular weight 
distribution. 

The spectroscopy probe performed measurements with a specific 
time frequency (15 min, necessary to accumulate several scans and 
reduce the noise) while samples were taken with a lower frequency and 
analyzed offline. Therefore, in a preliminary approach based on a tem-
poral scale, by comparing the two analysis times it was possible to 
correlate one spectrum to one sample following the approach of single 
spectrum matching. 

After having matched the spectra and the samples, they were first 
analyzed without any preprocessing. In Table 1, the absolute and the 
relative RMSE values are shown for gluconic acid, CDW, ammonia, PHA 
accumulation, and molecular weight distribution, for both the training 
and testing set. As mentioned above, the entire available dataset, 

comprising 5 high-density perfusion runs, was divided using a random 
80:20 split, in training and test datasets, respectively. The training 
dataset is used for model calibration, while the remaining data set is 
used for testing prediction accuracy. In this way, overfitting of the model 
can be detected, since the model was not calibrated on the test data set. 
These RMSE values show already the potential predictive power of 
Raman spectroscopy. However, they are still too high to be used as an in- 
line monitoring tool. 

In order to improve the predictive performance of this tool, we 
inserted a data preprocessing step in the pipeline. With regards to 
spectroscopic data, several smoothing and scaling tools can be imple-
mented. However, the most used set of tools are a Savitzky-Golay 
smoothing combined with SNV and mean centering as normalization 
methods. The main drawback of this step is the manual tuning of the 
architecture algorithm parameters, usually referred to as hyper-
parameters (HP). This procedure requires a high user experience com-
bined with a great difficulty in managing different HP simultaneously, 
whose interactions are unknown a priori. 

In this first preprocessing approach, the HP and combination of 
techniques were set via expert decision. In Table 2, the RMSE and 
relative RMSE values for this approach are shown. Here, it is possible to 
deduce that the preprocessing approach has brought a limited yet 
noticeable improvement in predictive potential for the CDW and 
ammonia concentration. In particular, for the latter, these preprocessing 
steps have reduced the relative RMSE from more than 1000% (indi-
cating that this value could not be predicted at all) to 180%, which, 

Fig. 4. Example of collection window of Raman spectra during a perfusion bioreactor experiment. Colors indicate the values of emission intensities: the lower 
intensities are in red, the higher in blue. The change in color of the signal at 1735 cm− 1 indicates the increasing quantity of PHA produced for energy storage. 

Table 1 
RMSE and relative RMSE of prediction in training and test sets for all the vari-
ables using single spectrum matching and no preprocessing.  

Variable Train set Test set 

RMSE Relative 
RMSE (%) 

RMSE Relative 
RMSE (%) 

Gluconic acid 4.57 g/L  30.4 7.70 g/L 50.4 
Cell dry weight 1.96 g/L  23.8 16.9 g/L 187 
Ammonia 0.02 g/L  23.1 0.73 g/L 1071 
PHA 

Accumulation 
4.95%  22.5 21.5% 92.7 

Mn 2.02 ×104 

g/mol  
18.5 9.27 ×104 

g/mol 
93.3 

Mw 2.97 ×104 

g/mol  
21.52 1.20 ×105 

g/mol 
124  
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although still too high, indicates how Raman spectroscopy is able to 
detect it, even if not accurately. However, for all the remaining vari-
ables, the errors have increased. A potential cause for this aggravation 
could be a deficient choice of the hyperparameter values, emphasizing 
the need of an automated hyperparameter optimization. 

In order to define an automatic preprocessing hyperparameter 
approach, an optimization loop was added to the predictive pipeline, 
using a Bayesian optimizer and 5-fold cross-validation approach. The 
main aim of cross-validation is to improve model robustness by 
exploiting the same amount of data while the objective of the Bayesian 
optimization is to minimize the average RMSE in cross-validation, 
defining an adequate pretreatment approach for the raw spectra. In 
the optimization loop, not only the Savitzky-Golay filter hyper-
parameters were considered, but also, in a Boolean fashion, the appli-
cation of the scaling and centering methods. 

In Table 3, the RMSE values obtained with this new approach are 
shown. Relative to cell dry weight and PHA recovery, the testing error 
dropped by 21% and 36% respectively, achieving a better prediction 
accuracy compared to the expert-guided preprocessing. The other vari-
ables estimations are also improved, with decreasing relative errors, 
although the number-average molecular weight Mn error remains 
significantly high. On the other hand, the weight-average molecular 
weight Mw predictions keep worsening, and despite the boost in pre-
processing, the model continues to be somehow imprecise, and still not 
adequate for advanced control applications. 

A possible justification might be related to the low number of data 
used to train the model: with respect to big data framework (Zhou et al., 
2017), in this case the data volume is limited to a bench-scale 
biochemical configuration. An additional concern comes from the 
collected Raman intensities: each spectrum refers in fact to a small 
sample and therefore poorly representative of the whole reactor volume. 
To mitigate this drawback, the multispectra approach was adopted. 

3.2. Multispectra matching 

In order to have a more complete picture of the whole volume of the 
bioreactor, which is expected to compensate the fluctuations from point 
to point and improve model robustness, a larger number of Raman 
spectra associated to a given sample was used, adopting the multispectra 
matching procedure described above. Differently to the single spectrum 
approach, the main idea of multispectra matching is to create a corre-
spondence between more than one spectrum to the same reference 
value. This obviously increases the size of data and introduces some kind 
of temporal-mean on Raman intensities. By combining this promising 
approach with the optimized preprocessing step discussed before, the 
procedure provided outstanding results, obtaining the lowest error for 
all the variables as reported in Table 4. 

With this approach, it is possible to reliably predict important vari-
ables associated to the cell culture and to the polymer quality, thus 
providing a promising tool for in-line quality monitoring and control. 

3.3. Feature selection using VIP 

In order to increase the model robustness and reduce noise in the in- 
line implementation of the developed soft sensor, it is worthwhile to 
conduct a feature selection procedure. Here, a metric such as variable 
importance (Mehmood et al., 2020) can be used to select the wave-
numbers which carry more useful information for each predicted vari-
able instead of using all the variables contained in the so-called “bio 
importance regions”. The reason behind choosing VIP as feature selec-
tion mainly lies on the use of supervised feature selection over unsu-
pervised ones in labeled data problems. As already declared, this 
preference leads to lower model prediction errors (Cho et al., 2008). 

In Fig. 5, the VIP variable importance plot is shown as an example for 
the case of PHA accumulation. It is seen that the different Raman 
wavenumbers are not equally important for the prediction of PHA 
accumulation. In particular, by selecting only the wavenumbers with a 
VIP score higher than one, a more robust model would be obtained, since 
the noise and non-PHA-related signal interference would be eliminated. 
In general, all variables with a VIP score closer (or greater) than 1 (in red 
in Fig. 5) are considered in developing the model. In this manner, VIP 
scores estimation is a suitable tool for feature selection when PLS 
regression is employed. 

With this approach, it would then be possible to develop a lighter yet 
effective multivariate data analysis pipeline, using a reduced number of 
predictor variables. In Table 5, the RMSE values obtained for all 
measured variables using this approach are shown. Compared to the 
previous approach, it is evident how the results have slightly either 
improved or worsened, being quite similar in most of the variables: in 
the case of Mw, a weak yet important improvement is obtained (− 4% on 
testing set error) while for PHA recovery and CDW the relative error has 
increased by 9% and 1%, respectively, which could be argued to be 

Table 2 
RMSE and relative RMSE of prediction in training and test sets for all the vari-
ables using single spectrum matching and a default preprocessing approach.  

Variable Train set Test set 

RMSE Relative 
RMSE (%) 

RMSE Relative 
RMSE (%) 

Gluconic acid 6.68 g/L  44.4 21.7 g/L 142 
Cell dry weight 2.46 g/L  29.8 14.5 g/L 162 
Ammonia 0.02 g/L  30.6 0.12 g/L 181 
PHA 

Accumulation 
5.65%  25.7 35.6% 153 

Mn 3.47 ×104 

g/mol  
31.8 8.99 ×105 

g/mol 
904 

Mw 4.99 ×104 

g/mol  
36.2 9.41 ×105 

g/mol 
975  

Table 3 
RMSE and relative RMSE of prediction in training and test set for all the vari-
ables using single spectrum matching and an optimized preprocessing step, via 
Bayesian optimization and cross-validation.  

Variable Train set Test set 

RMSE Relative 
RMSE (%) 

RMSE Relative 
RMSE (%) 

Gluconic acid 8.59 g/L  57.1 20.55 g/L 134 
Cell dry weight 1.76 g/L  21.4 12.63 g/L 140 
Ammonia 0.03 g/L  38.3 0.14 g/L 210 
PHA 

Accumulation 
8.22%  37.3 27.29% 117 

Mn 2.77 ×104 

g/mol  
25.4 6.64 ×105 

g/mol 
667 

Mw 6.17 ×104 

g/mol  
44.8 9.71 ×105 

g/mol 
1005  

Table 4 
RMSE and relative RMSE of prediction in training and test sets for all the vari-
ables using multispectra matching and an optimized preprocessing step, via 
Bayesian optimization and cross-validation.  

Variable Train set Test set 

RMSE Relative 
RMSE (%) 

RMSE Relative 
RMSE (%) 

Gluconic acid 5.46 g/L  36.8 6.27 g/L  40.3 
Cell dry weight 3.78 g/L  45.0 3.63 g/L  43.7 
Ammonia 0.03 g/L  35.5 0.03 g/L  42.8 
PHA 

Accumulation 
11.7%  51.2 12.5%  76.9 

Mn 5.75 ×104 

g/mol  
54.9 7.44 ×104 

g/mol  
66.9 

Mw 9.12 ×104 

g/mol  
73.5 1.23 ×105 

g/mol  
77.7  
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inside the margin of error of the analytical method. 
On the other hand, this approach has several and important advan-

tages, such as performing a higher-in-detail feature selection, employing 
a more robust and less prone-to-noise model, and highlighting the 
informative content of specific Raman wavelengths. 

With this lighter model it is then possible to speed up the prediction 
stage, thus providing an important tool for the implementation of a 
prompt control strategy smoothing down the fluctuations at the 
manufacturing level. 

In Fig. 6, the observed vs predicted plots (or parity plots) for all 
variable predictions in the test set are shown. As evident from these 
plots, the overall predictions are sufficiently in line with the observed 
values, underlying the ability of the developed algorithm for quantifi-
cation of extra- and intracellular substances. 

Overall, although the error in the prediction is larger than those 
reported from other examples in using Raman spectroscopy for the 
characterization of PHA production, it is worth highlighting that in these 
previous works samples taken from the bioreactor are pre-processed to 
reduce disturbance from the turbid medium and interference with sig-
nals not related to the polymer (Samek et al., 2016; De Gelder et al., 
2008; Tao et al., 2016; Hermann et al., 2020). With our approach 
instead, the signal is collected in situ through the use of immersion 
probes located directly in the bioreactor. This leads to important ad-
vantages related to the reduced necessity of human intervention, avoi-
ded risk of contamination and spectra collected at higher frequency. 
Still, as confirmed by the parity plots, the model developed can repro-
duce the trend of most of the predicted variables, thus providing an 

efficient and useful method for a prompt reaction to process 
fluctuations. 

3.4. Prediction of perfusion reactor variables 

To demonstrate the predictivity of the soft sensor developed in this 
work, the experimental evolution for all the considered variables during 
a fermentation process is compared with the model predictions based on 
the signals collected by in situ Raman spectroscopy in Fig. 7. 

The model accuracy varies depending on the variable of interest, 
with a RMSE as reported for each attribute in Table 5 (see test set). While 
the PHA accumulation can be poorly predicted, as also confirmed by the 
parity plot in Fig. 6, the predictions of the cell dry weight are in very 
good agreement with the experimental measurements, displaying the 
lag, exponential, and stationary phases expected during the cell growth. 
In addition, the high variance reported by this prediction underlines the 
robustness of the developed algorithm and the absence of model over-
fitting. The trend of gluconic acid consumption is also nicely predicted, 
although with an underestimation of the residual concentration. The 
monotonically decreasing concentration of gluconic acid is perceived as 
a complete depletion of the carbon source, although empirical values 
demonstrated a steady-state concentration of 5 g/L. 

Very promising results were obtained in the prediction of the mo-
lecular weight distribution of PHA, which is reported for the first time in 
this work and is even more valuable considering the intracellular nature 
of the product. The slight overestimation observed for Mn must indeed 
be contextualized in the bacterial culture monitoring, which can easily 
create a noisy and disturbed signal. However, the reliable trend and 
proper quantification of Mw, which is the parameter considered for the 
final application of the polymer, confirm the possibility of employing the 
soft sensor developed in this work for the in-line prediction of the 
polymer quality and for a prompt intervention to keep this property at 
the desired set-point during a manufacturing campaign. 

4. Conclusion 

In this work, Raman spectroscopy has been demonstrated to be a 
valuable tool for the in-line monitoring of PHA manufacturing. In 
particular, thanks to a suitable multivariate data analysis pipeline, 
characterized by an optimized preprocessing step, it is possible to ach-
ieve sufficiently accurate predictions of several process variables, 
ranging from metabolite concentrations to cell dry weight to polymer 
quality (Mn and Mw). It is to be noted that it is quite reasonable to 
expect that this list could be prolonged by introducing more variables. 
This work underlines the importance of spectroscopic sensors for in-line 

Fig. 5. Variable importance scores vs the Raman wavenumbers as predictor variables for PHA accumulation. Wavenumbers with a VIP score higher than one are 
shown in red. 

Table 5 
RMSE and relative RMSE of prediction in training and test sets for all the vari-
ables using multispectra matching and an optimized preprocessing step, via 
Bayesian optimization and cross-validation, together with variable importance 
as wavenumber selection tool.  

Variable Train set Test set 

RMSE Relative 
RMSE (%) 

RMSE Relative 
RMSE (%) 

Gluconic acid 5.54 g/L  37.3 7.00 g/L  45.0 
Cell dry weight 3.67 g/L  43.7 3.71 g/L  44.8 
Ammonia 0.03 g/L  41.5 0.03 g/L  46.2 
PHA 

Accumulation 
11.0%  48.1 14.1%  86.1 

Mn 6.85 ×104 

g/mol  
65.3 8.72 ×104 

g/mol  
78.4 

Mw 8.87 ×104 

g/mol  
70.8 1.16 ×105 

g/mol  
73.4  

J. Medeiros Garcia Alcântara et al.                                                                                                                                                                                                         



Journal of Biotechnology 377 (2023) 23–33

31

applications, which, although requiring higher investment costs, allow 
the simultaneous monitoring of multiple process variables. In this 
context, it should be underlined the remarkable result, reported here for 
the first time, to measure in-line through a spectroscopic method the 
molecular weight distribution of a biopolymer inside a bacterial cell. A 
further improvement of the performance of this sensor is expected when 
combining it with suitable mechanistic or hybrid models, for example in 
the frame of extended Kalman filters (Narayanan et al., 2020). 
Furthermore, the results reported in this work can be further extended 
and utilized for the monitoring of other processes, since the data analysis 
framework is agnostic to measured variables. 
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Medeiros Garcia Alcântara, J., Distante, F., Storti, G., Moscatelli, D., Morbidelli, M., 
Sponchioni, M., 2020. Current trends in the production of biodegradable bioplastics: 
the case of polyhydroxyalkanoates. Biotechnol. Adv. vol. 42, 107582 https://doi. 
org/10.1016/j.biotechadv.2020.107582. 
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