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 1 Introduction 

Steel and composite steel constructions are susceptible to 

time-dependent deterioration and aging effects due to a 

range of factors, such as corrosion brought on by harsh 

weather conditions and fatigue damage [1]. The economic 

ramifications of these repercussions are particularly im-

portant since steel bridges are widely used in many coun-

tries across the world. Steel girders that are exposed to 

air and salt water corrosion over time. The initial thickness 

of connections and profiles, such as the web and flanges 

of steel I-girders, are reduced by corrosion, in addition to 

other things. Due to thickness reductions brought on by 

corrosion penetration (e.g., strength and stiffness), the 

damage affects the element's and section's structural 

properties [2]. 

In the literature, the topic of bridge life cycles in relation 

to deterioration events like corrosion and fatigue has been 

explored. The impacts of cumulative seismic damage and 

corrosion on the lifespan of bridges are further explored 

by Kumar et al. [3], who point out that cumulative seismic 

damage has a longer-lasting impact on structural depend-

ability than corrosion. The effects of corrosion degradation 

on the seismic response of RC bridge piers have also been 

investigated [4,5]. It has been made clear how bonding 

contributes to the seismic capacity's decline. 

A paradigm for structural inspection and maintenance 

planning is put out by Kim et al. [6] with particular refer-

ence to the management of transportation infrastructure, 

emphasising the relationship between the necessary 

maintenance and the degree of damage. In Frangopol et 

al. [7], factors such as climate change and structural 

health monitoring were taken into account while analyzing 

and making decisions for evaluating bridge life-cycle per-

formance and cost. According to Akiyama et al. [8], life-

cycle reliability, risk, and resilience-based design of trans-

portation infrastructures have been researched. This em-

phasizes the significance of researching both independent 

and interdependent risks to gauge bridge dependability 

(e.g. earthquake and tsunami, or landslide). 

In the literature, for instance in the review study of 

Biondini & Frangopol [9], the link between Structural Con-

trol and Health Monitoring (SC&HM) and the life-cycle of 

bridges has been examined. Vagnoli et al. [10] examined 

railway bridges with a focus on dependability evaluation 

and the function SC&HM plays, contrasting various struc-

tural health monitoring techniques (e.g. model, non-

model). 
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The influence of SC&HM on the life-cycle of transportation 

infrastructures would need more in-depth research not-

withstanding the advances in information supplied by the 

current literature. In order to explore how SC&HM might 

favourably affect the resilience and, in turn, the life-cycle 

of bridge structures, this contribution is being made. 

2 SC&HM contribution to Structural Resilience 

2.1 Diagnosis and prognosis 

Damage diagnosis allows decision-makers to know about 

the different types of deterioration in civil engineering 

structures and the appropriate course of action to follow 

in response to hazardous structural conditions. Damage 

diagnosis is accomplished by structural health monitoring 

(SHM), which focuses on damage detection, localization, 

quantification, and prognosis. According to Doebling et al. 

[11], the four steps may be further explained as follows: 

 Finding out whether the structure has been termed as 

Phase 1. 

 Phase 2 includes Phase 1 as well as the site of the 

damage. 

 Phase 2 and a determination of the intensity make up 

Phase 3. 

 Phase 3 plus the evaluation of the structure's remain-

ing useful life constitute Phase 4. 

The most common vibration-based damage diagnostic 

methods include the first two phases as its main founda-

tions (without the use of structural models). By combining 

vibration-based techniques with a structural model, phase 

3 damage diagnosis may sometimes be completed. Phase 

4 might provide significant safety and economic benefits 

to the management of structures and infrastructure, but it 

is still a challenging engineering task that requires trans-

disciplinary and predictive modeling abilities [11-16]. 

Doebling et al. provided a review of the literature in 1996 

[17] about the various techniques for identifying damage 

and monitoring a structure's condition based on changes 

in its observable dynamic properties. They are based on 

adjusting dynamic flexibility, modifying modal properties, 

updating structural matrices while undergoing constrained 

optimization, nonlinear methods, and neural network-

based methodologies. 

Although some algorithms need access to a thorough FEM 

of the structure to get a deeper insight and access to 

higher levels of data, others depend on a dataset of the 

undamaged structure as a baseline (e.g. quantification). 

During the last 10 years, considerable improvements in 

processing power and sensing technologies have increased 

the number of sensors in a SHM system, increasing the 

quantity of data collected in turn. Sophisticated processing 

methods must be utilized to handle this enormous number 

of data in order to translate the heterogeneous, multi-

source data into different types of specific indications and 

make effective management, inspection, and maintenance 

decisions possible. As a consequence, automated algo-

rithms are increasingly being used in science for data man-

agement, computation, and structural (like damage) iden-

tification. 

Because of their elegant performance and frequent, de-

manding accuracy, machine learning methods, especially 

deep learning algorithms, have been increasingly benefi-

cial and widely employed in vibration-based structural 

damage assessments. The second may discover a direct 

mapping from the original inputs to the final outputs with-

out the requirement for feature extraction, in contrast to 

the first which requires data preparation (human involve-

ment) to extract certain characteristics or attributes. Deep 

learning can thus manage enormous amounts of data (big 

data) successfully and for a variety of reasons [18-21]. 

Wavelet and other time-frequency analysis and feature ex-

traction approaches have recently been developed and de-

ployed for the processing of large data from sensor net-

works for the health evaluation of bridge constructions in 

addition to Deep Learning [22,23]. 

2.2 Resilience dimensions 

According to MCEER researchers, the four primary ele-

ments, or dimensions, of resilience are robustness, re-

sourcefulness, redundancy, and rapidity [24-26]. In 

depth: (1) The ability of a structure or element to with-

stand a particular amount of stress (such as damage) and 

maintain its regular level of usefulness is referred to as 

robustness. You may also call it the concept of damage 

tolerance. (2) Redundancy, for example, of load-bearing 

components: the ability to develop alternative load-sup-

porting pathways after the deterioration of the primary 

parts has taken place (i.e., original elements that are re-

placeable); (3) Resourcefulness: The ability to identify is-

sues, set priorities, and gather materials when circum-

stances threaten the stability of the structure or one of its 

components; (4) Rapidity: The ability to prioritize inter-

ventions and finish the job quickly. 

Many research has been published to aid in our under-

standing of structural resilience in buildings. One such is 

the condensed recovery plan suggested by Cimellaro et al. 

[27] using the resilience method. In Domaneschi & Marti-

nelli [28], the idea of instant resilience is put up as being 

connected to the automated operation of certain compo-

nents to make up for local out-of-services. Several fields 

have also studied structural resilience. 

2.3 Monitoring toward resilience 

In recent years, the scientific community has been more 

interested in the connection between resilience and devel-

oping digital technologies, such as structural and infra-

structure monitoring [29,30]. 

According to Biondini & Frangopol [9], structural resilience 

is considered here as a Performance Indicator for life-cycle 

considerations of transportation infrastructures. The four 

unique SHM levels and the Resilience dimensions may be 

linked together after their identification in order to demon-

strate how the four SHM phases can be utilized as efficient 

instruments and procedures for the evaluation and im-

provement of the Resilience dimensions [31]. The concep-

tual relationship between SHM phases and resilience di-

mensions is shown in Figure 1. The information provided 

is the presence or absence of structural damage if Damage 

Detection is considered the first level of the SHM. It is not 

feasible to provide any details on the location or scope of 
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the damage. In this case, the identical structure's redun-

dancy dimension and structural damage are correlated di-

rectly. Regardless of the kind of damage, a redundant 

structure consistently appears to be more safe than one 

that is statically defined. The Polcevera's Viaduct tragedy 

in Italy shows that the problem of corrosion of the steel 

strands within the concrete remains reasonably reflected 

the principal cause of the disaster due to the structure's 

intrinsic lack of redundancy [32,33]. For this reason, the 

simplest information on the presence of diseases in the 

structures through SHM techniques must be associated 

with the grade of redundancy of the structure in order to 

implement the appropriate countermeasures, such as 

emergency measures (e.g., evacuation, traffic reduction, 

shutting down of critical facilities). 

 

Figure 1 Resilence & SHM phases. 

The second level of SHM, Damage Localization, is con-

nected to resilience's Rapidity dimension. If the pathology 

has been recognized and any localized or diffuse damage 

has been localized, the intervention and recovery steps 

must move quickly. In this case, the SHM system may be 

used to facilitate decision-making to efficiently handle the 

emergency while expediting actions that adhere to a pri-

oritized plan. 

Moreover, a relationship between the Resourcefulness di-

mension and the third degree of Damage Intensity may be 

seen. Knowing the degree of the damage after interrup-

tions helps to properly assist the organizing and recovery 

stages by allowing for an accurate evaluation of the re-

sources needed. 

The fourth level of SHM, Prognosis, is linked to resilience's 

Robustness quality. The estimate of the structure's re-

maining life is the important topic, given an assessment of 

its current condition. This SHM level provides an oblique 

measurement of structural resilience by attempting to 

forecast the structural performance to tolerate a certain 

degree of damage while retaining its typical level of func-

tioning. 

The relevance of installing monitoring systems on build-

ings and infrastructure to increase their resilience and 

safety, hence prolonging their life cycle, is thus made clear 

in light of this description and the links emphasized. 

2.4 Effects of Structural Control on structural Re-

silience  

The assessment of the system performance while taking 

into account aging and degradation is a crucial component 

of a life-cycle assessment. The Functionality function Q(t) 

at the base of Resilience (R) [24-26], considered here as 

a performance indicator for life-cycle considerations of 

transportation infrastructures, accordingly to Biondini & 

Frangopol [9], allows to give a thorough description of the 

time evolution of the structural resources. This description 

includes deterioration as well as the potential occurrence 

of local and global failures. The ability of a system, group, 

or community to adapt and endure by modifying non-es-

sential characteristics and reconstructing itself is known as 

resilience [34]. It is connected to the system's capacity to 

survive the consequences of extraordinary events and 

quickly restore its previous functionality and performance 

[24-26]. 

The normalized region below a system's functionality func-

tion Q(t) is known as resilience R (Figure 2), where the 

functionality function Q(t) is measured as a dimensionless 

function of time t, tr0 is the time at which recovery starts 

after a damaging event and TLC is a time set by stakehold-

ers to recover the functionality of the infrastructure. To a 

value of Q(t) = 1 it corresponds no loss-of-function for the 

system, while to a suitable small value (not necessarily 

zero if only a Serviceability Limit State has been exceeded) 

it corresponds to the out-of-service of the system or the 

structure. 

 

Figure 2 Structural Control contribution to structural resilience. 

It can be observed with initially the degradation can affect 

the functionality of the structure by gradually reducing it. 

This is the case, for example, with the effects of fatigue 

over the long term. However, it has been shown in the 

literature how appropriate control devices can mitigate the 

effects of, for example, wind on metal elements [35]. 

Upon the intervention of a shock such as a strong earth-

quake on the structure, the control system can effectively 

mitigate its effects by significantly reducing the internal 

actions of structural members and the response as a 

whole. So the structure thus controlled prevents an essen-

tially larger state of damage in advance as if such a control 
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system were not implemented (uncontrolled structure) 

[36]. 

3 Conclusions 

The paper explores the relationship between structural 

monitoring and control with respect to resilience and 

lifecycle, with particular reference to transportation infra-

structure. The conceptual approach proposed in this paper 

has made it possible to highlight the benefits that an effi-

cient monitoring system can bring to structural resilience, 

as well as a structural control system. It becomes evident 

how such systems when implemented on a bridge for ex-

ample can improve resilience and safety, allowing it to ex-

tend its life cycle. 

It becomes clear that improving the resilience of struc-

tures and infrastructure depends critically on the ability of 

the monitoring system to identify with greater depth than 

simple periodic inspections the factors related to damage 

and their evolution, thus solving knowledge problems of 

increasing complexity.  

The implemented monitoring system can enable the struc-

ture both to limit the rate of natural degradation, for ex-

ample with respect to fatigue phenomena of metallic ele-

ments, and to reduce the effects of a sudden shock, such 

as an earthquake, by reducing the peak of the response 

and thus limiting possible damage compared with the case 

where the structure considered was without the monitor-

ing system.  
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