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Abstract—Side-channel attacks allow the extraction of sensi-
tive information from cryptographic primitives by correlating
the partially known computed data and the measured side-
channel signal. Starting from the raw side-channel trace, the
preprocessing of the side-channel trace to pinpoint the time
at which each cryptographic primitive is executed, and, then,
to re-align all the collected data to this specific time repre-
sent a critical step to setup a successful side-channel attack.
The use of hiding techniques has been widely adopted as a
low-cost solution to hinder the preprocessing of side-channel
traces, thus limiting side-channel attacks in real scenarios. This
work introduces Hound, a novel deep-learning-based pipeline
to locate the execution of cryptographic primitives within the
side-channel trace even in the presence of trace deformations
introduced by the use of dynamic frequency scaling actuators.
Hound has been validated through successful attacks on various
cryptographic primitives executed on an FPGA-based system-
on-chip incorporating a RISC-V CPU while dynamic frequency
scaling is active. Experimental results demonstrate the possibility
of identifying the cryptographic primitives in DFS-deformed side-
channel traces.

Index Terms—Side-channel analysis, dynamic frequency scal-
ing, deep-learning, locating of cryptographic primitives.

I. INTRODUCTION

Side-channel attacks pose a significant threat to modern
cryptographic implementations, even when the underlying al-
gorithms boast mathematical soundness. By exploiting vulner-
abilities in the physical implementation of the cryptographic
primitives (CPs), side-channel attacks can exploit the unin-
tended information leakage generated from electronic devices
during the execution of CPs [1]. The leakage, often manifested
in power consumption [2] or electromagnetic emissions [3],
can be analyzed by attackers to potentially reveal confidential
information by correlating it with partially known processed
data.

Traditionally, properly implemented masking [4], [5] and
hiding [6]–[8] countermeasures offer robust protection against
side-channel attacks, leading to successful security evalua-
tions. Masking countermeasures split sensitive intermediate
values into independent shares that are processed separately
to reduce significantly the correlation between each share and

the secret key. Hiding countermeasures introduce randomness
into the targeted side-channel signal to degrade the signal-to-
noise ratio.

Over the past two decades, researchers have proposed
various methods to enhance the effectiveness of side-channel
analysis, such as differential power analysis (DPA) [2], tem-
plate attacks [9], correlation power analysis (CPA) [10], as
well as deep-learning-based solutions [11], [12]. Notably, all
the proposed techniques share two key requirements. First,
they require a large number of executions of the same CP
with different inputs. Second, the attacker needs to locate and
align in time all the CP executions in the side-channel trace
to feed the attack method of choice.

In a controlled laboratory environment, the attacker has full
access to the target device, simplifying the security assessment
of a CP implementation. Security evaluation boards, like
SASEBO SAKURA-II [13] and NewAE CW305 [14], provide
so-called trigger pins, facilitating the temporal alignment be-
tween CP executions and corresponding side-channel signals.

In contrast, attacking the implementation of a CP in the
real world presents a more significant challenge. Indeed, the
attacker needs to locate the CP within the side-channel trace.
Specific settings still permit a rough alignment of the measured
side-channel signal with CP execution even in real-world
scenarios, e.g., by leveraging specific logic events happening
in the computing platform or by using pattern-matching tech-
niques applied to the side-channel trace to generate so-called
virtual triggers [15], [16].

However, the importance of pinpointing the executions of
the CPs in the side-channel trace even without a triggering
infrastructure motivated several contributions, i.e., [17], [18].
In a similar manner, the continuous improvement in the attack
techniques fueled the use of hiding techniques to hinder the
task of locating a CP, thus preventing the localization of
the CPs in the side-channel trace as an additional security
countermeasure.

[19] is the seminal work that presented a deep-learning
pipeline to locate the CPs within side-channel traces deformed
by means of random delay countermeasures. However, random
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Fig. 1: Overview of the proposed Hound pipeline for locating cryptographic primitives in frequency-scaled side-channel traces,
divided into training and inference pipelines.

delay introduces a limited trace deformation, and its imple-
mentation requires custom hardware or software implementa-
tions inducing non-negligible performance overheads [20]. In
contrast, Dynamic Frequency Scaling (DFS) actuators offer a
cheap and standard solution that has been widely investigated
to implement hiding techniques. The possibility of employing
hundreds of operating frequencies allows to effectively deform
the side-channel trace at the point of preventing the correct
pinpointing of the CP and, consequently, invalidating the
possibility of attacking the target device even if the attacker
can deploy an effective side-channel attack.

Contributions - This paper introduces Hound, a deep-learning
methodology for locating cryptographic primitives within
heavily randomized side-channel traces where the trace defor-
mation is obtained by means of a randomized DFS actuator.
Hound offers three contributions to the state of the art:

• We propose a deep-learning pipeline that automatically
locates and aligns CPs within side-channel power traces,
even in the presence of DFS countermeasures. Thus, the
need for triggering infrastructure is eliminated, which is
a significant hurdle in real-world side-channel analysis.

• We evaluate the effectiveness of our solution across
various cryptographic primitives. Furthermore, we per-
form successful side-channel attacks after CP localization
and alignment to validate the quality of the results and
compare our solution against state-of-the-art techniques.

• To facilitate further research and ensure reproducibility,
we have released Hound as an open-source tool along
with a dataset of relevant side-channel traces. The tool
and dataset are available on GitHub 1.

The rest of the paper is organized into four sections. Sec-
tion II discusses the academic and commercial tools to locate
the CPs within side-channel traces. Section III presents the
proposed Hound approach. Section IV details the experimental
results. Finally, Section V presents the conclusions.

II. RELATED WORKS

Existing methods for locating CPs within side-channel
traces primarily rely on trigger signals from security evaluation
boards (SASEBO SAKURA-II [13] and NewAE CW305 [14])

1https://github.com/hardware-fab/Hound

or pattern matching against pre-computed CP templates. Com-
mercially available FPGA-based devices, like the Riscure
icWaves [16] and NewAE ChipWhisperer Pro [15], offer
virtual-triggering features, producing a trigger pulse upon
real-time identification of a pattern in the side-channel trace
being monitored. Barenghi et al. [17] introduced a method
utilizing matched filters for efficiently pinpointing the AES-
128 cryptosystem within a power trace, achieving robustness
in environments with interrupts and busy waits that could
change the trace’s profile. Nonetheless, this approach fails
when it comes to recognizing interrupted CPs, which are
discarded by the matched filter. Becker et al. [21] suggested
a waveform-matching trigger system designed to identify CPs
by comparing them to a pre-calculated CP template.

All these methods need a pre-computed template of the
CP to be localized to work correctly. To address this issue,
Trautmann et al. explored in [18] a semi-automatic technique
for locating CPs by building the template online, starting from
some CP characteristics, such as the number of rounds.

However, using architectural-level techniques to morph the
power trace represents an easy-to-implement and effective
countermeasure to deceive pattern-matching-based solutions.
For instance, employing time-sharing multithreading on a
single-core microcontroller [22] can obstruct an attacker’s
ability to accurately locate CPs, with interrupt service routines
further modifying the side-channel trace’s form. Consequently,
more sophisticated methods for detecting CPs in the side-
channel trace have been developed. Chiari et al. [19] de-
veloped a deep-learning approach for identifying deformed
CPs through random delay, employing a Convolutional Neural
Network (CNN) trained to differentiate CPs from the re-
maining portions of the power trace. Even though random
delay-based hiding techniques generate some degree of CP
deformation, they are limited in their ability to introduce
significant variability in the power trace [20].

Despite these advancements, current state-of-the-art tech-
niques struggle with highly deformed traces, particularly when
the computing platform employs effective hiding countermea-
sures like DFS [23]. These countermeasures profoundly alter
the timing of operations and continuously morph the side-
channel signal, making it challenging to isolate CPs using
traditional methods. To address this limitation, we propose a
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Fig. 2: Focus on the proposed Hound training pipeline, divided into Dataset Building and CNN Training. Class0, class1 and,
class2 contain CP start part windows, CP spare parts windows, and noise windows, respectively.

deep-learning-based technique for CP localization in power
traces collected from platforms implementing DFS as a coun-
termeasure.

III. METHODOLOGY

This section introduces Hound, a novel deep-learning
method for CP localization within highly deformed side-
channel traces, specifically designed to address scenarios
where the target platform employs DFS as countermeasure
to effectively obfuscate the measurements.
Threat model - Similarly to profiled attacks, we assume the
attacker has access to an identical copy of the target device,
i.e., a clone. However, we focus on a realistic scenario where
the attacker can only run selected applications and monitor
the resulting side channels without complete control over the
cloned device. Specifically, the attacker cannot activate or
deactivate the hiding countermeasure, namely DFS. Nonethe-
less, the attacker retains the ability to probe the clone device,
enabling them to detect when the CP initiates. This probing
facilitates precise labeling of the beginning of each CP on the
clone device.
Hound - Figure 1 depicts the proposed Hound methodology
consisting of a training and inference pipeline. Figure 1a re-
ports the Training Pipeline, which aims at creating a classifier
that can sort a window of the side-channel trace into three
categories: start of a CP, spare part of a CP, or just noise (see
Figure 2). This framework locates where the CPs begin
in the side-channel trace without removing the obfuscation
countermeasure. We assume that the attacker leverages an
exact copy of the target device to collect a noise trace and
some cipher traces for the training. The noise trace is obtained
by running general-purpose applications that are not the CP.
Such information is necessary to train a neural network to
distinguish the beginning of the CPs from the execution of
other applications. Each cipher trace is gathered while a single
CP is running, where the attacker decides what data and keys
to use. All measurements are collected with the obfuscation
mechanism active since the attacker cannot turn it off. Starting
with measured raw traces, the Dataset Building stage creates
a database of windows from the noise and cipher traces, each
being N samples long. This database is then used to train a
CNN classifier.

Figure 1b reports the Inference Pipeline. At inference time,
the goal is to identify the CPs within a novel side-channel trace

from the target device by employing the trained CNN. This
pipeline is divided into three key stages: Sliding Window Clas-
sification, Screening, and Alignment. The inference pipeline
takes in a single side-channel trace and segments it to mark the
start of each CP. Initially, the Slicing stage processes a side-
channel trace and generates a series of windows to classify
with the trained CNN. Starting from the classified windows,
representing a segmentation of the input trace, the Screening
stage produces a sequence of time instants marking the start of
each CP in the trace. Finally, the Alignment stage chunks the
original side-channel trace based on these outputs, arranging
the identified CPs accordingly.

The details related to the dataset creation and the CNN
architecture are discussed in Section III-A, while the sliding
window classification and the screening procedure are detailed
in Section III-B.

A. Training Pipeline
The Training Pipeline, detailed in Figure 2, is divided into

Dataset Building and CNN Training stages. Starting from a
raw collection of side-channel traces, the pipeline generates a
dataset and trains a CNN classifier to distinguish the starting
of a CP.
Dataset Building - The first stage in the training pipeline is
Dataset Building, which receives a collection of side-channel
traces as input and generates a dataset suitable for training
the CNN. The attacker uses a clone of the target computing
platform to create a noise trace and a set of cipher traces.
The noise trace captures the execution of various general-
purpose applications, excluding the target CP. Each cipher
trace is collected while executing a single CP, where the
attacker controls the plaintext and secret key. Notably, the
attacker cannot disable the obfuscation mechanism, so the
DFS remains active during all trace collection. Considering the
proposed threat model, the attacker can only execute a chosen
application and measure the corresponding side channel on
the clone device. However, the attacker can probe the clone
device to detect the start of each CP. In contrast, probing is not
required for the noise trace. Once trained, the CNN works on
the target architecture that implements DFS without the need
for probing. For each cipher trace i of length Li samples, the
starting N samples are labeled as start of the CP (see class0
in Figure 2). The remaining Li−N samples are equally split
into consecutive windows of width N and labeled as spare
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Fig. 3: Focus on the proposed Hound inference pipeline, divided into Sliding Window Classification, Screening, and Alignment.

part of the CP (see class1 in Figure 2). Moreover, we extract a
random set of N -sample windows from the noise trace and we
label each of them as noise (see class2 in Figure 2). Although
the methodology aims to identify only the beginning of each
CP, the division into three classes allows CNN to maximize
the distinction over the three cases.

Convolutional Neural Network - The architecture of the 1D
CNN is adapted from the CNN proposed in [19]. The CNN
takes a window of N samples from the side-channel trace
as input and outputs a classification score vector. The CNN’s
structure is organized into six sequential components: a convo-
lutional block, a pair of residual blocks, a global average pool-
ing layer, a fully-connected block, and a softmax layer. Each
convolutional block features a 1D convolutional layer, a batch
normalization layer [24], and a ReLU activation function.
The residual blocks [25], each containing two convolutional
blocks, are augmented with shortcut connections to perform
element-wise feature summation. All the convolutional layers
implement a kernel size of 64, a stride of 1, and zero padding
to maintain the sample count to N . The first convolutional
layer and the one in the first residual block implement 16
filters, while the subsequent residual block doubles the filter
count to 32. The global average pooling layer averages the
obtained features over the temporal dimension N . The feature
vector is then processed through two fully-connected layers
with a ReLU activation function. The softmax layer completes
the architecture, generating a 3-dimensional vector with the
classification scores for each class.

Notably, DFS introduces a significant amount of random-
ization in the side-channel trace. To address this, the CNN
proposed in [19] has been adapted to work with three classes,
i.e., start of the CP, spare part of the CP, and noise. This
modification allows the CNN to learn the pattern of the
highly obfuscated side-channel trace better, maximizing the
discrimination between the start of the CP and the other two
classes.

B. Inference Pipeline

The Inference Pipeline, detailed in Figure 3, is divided
into Sliding Window Classification, Screening, and Alignment
stages. Leveraging the trained CNN classifier, the pipeline
locates the starting sample of each CP present in a new side-
channel trace. Sliding Window Classification - The first stage

in the inference pipeline is Sliding Window Classification.
It takes a new side-channel trace, slices it into N -sample
windows, and uses the trained CNN to output a classification
score to label each window as start of the CP, spare part of the
CP, or noise (see Sliding Window Classification in Figure 3).
The Slicing stage implements a sliding window procedure to
slice the side-channel trace in input. It takes three inputs, i.e.,
the side-channel trace, the size of the sliding window (N ),
and the stride (s), and outputs an ordered set of N -sample
windows to feed the CNN.

The CNN’s softmax output is a 3-dimensional probability
distribution of classes, classifying each N -sample window as
start of the CP, spare part of the CP or noise. The inference
process considers the class with the highest probability out-
come among the three as the CNN’s output.

Since the CNN’s output might be noisy and not always
suitable for directly determining the exact location of the CPs,
the inference pipeline incorporates a subsequent Screening
stage to refine the CNN’s output (see Screening in Figure 3).
Screening - The Screening stage refines the segmentation
output from the Sliding Window Classification stage to identify
the beginning of the CPs in the side-channel trace. Algo-
rithm 1 highlights the screening procedure. The screening
algorithm (see Algorithm 1) takes the segmentation output
from the Sliding Window Classification stage, denoted as seg,
and some parameters, i.e., the stride s used for the sliding
window, the kernel size k for the polish procedure (see line
10 of Algorithm 1), and the average CP length avgCP . In the
end, it returns the list starts of samples corresponding to the
beginning of each CP instance in the processed side-channel
trace.

The algorithm is an iterative process that involves three
main steps: POLISH, EXTRACT, and REFINE. The core idea
behind Algorithm 1 is to start with an aggressive polish and
incrementally refine it by attempting to uncover new CPs. The
polishing step (see line 10 of Algorithm 1) employs a majority
filter across the whole segmentation. This filter traverses the
input signal for a given kernel size k, replacing each point with
the most frequently occurring value within a k-sized window.
The extraction step (see line 14 of Algorithm 1) identifies the
initial sample of each CP. It pinpoints the indices of the falling
edge down to class 0, meaning those samples with a value of
0 where the preceding value is not 0. These samples are then



Algorithm 1 Screening
Input: seg, s, k, avgCP
Output: starts

1: starts← []
2: do
3: polishedSeg ← POLISH(seg, k)
4: newStarts← EXTRACT(polishedSeg, s)
5: k, seg ← REFINE(k, avgCP, newStarts, seg)
6: starts.update(newStarts)
7: while seg not empty && k ≥ 1
8: return starts
9:

10: procedure POLISH(seg, k)
11: polishedSeg ← majorityFilter(seg, k)
12: return polishedSeg
13: end procedure
14: procedure EXTRACT(seg, s)
15: newStarts← [ ]
16: for i, sample in enumerate(seg) do
17: if sample is falling edge to class 0 then
18: newStarts.update(i× s)
19: end if
20: end for
21: return newStarts
22: end procedure
23: procedure REFINE(k, avgCP , starts, seg)
24: k ← refineK(k)
25: minCP ← refineMin(avgCP, starts)
26: refineSegs← []
27: // Look if can be still two consecutive CPs
28: for s, snext in starts do
29: if snext − s > 2×minCP then
30: subSeg ← seg[s : snext]
31: refineSegs.update(subSeg)
32: end if
33: end for
34: return k, refineSegs
35: end procedure

scaled by s, i.e., the stride in the sliding window classification.
Finally, the refining step (see line 23 of Algorithm 1) fine-
tunes the algorithm’s parameters by reducing kernel size k and
generating a list of sub-segmentation for subsequent iterations.
These sub-segments encompass those regions of the input
segmentation for which multiple hidden CPs might still exist.
The process begins by determining the minimum length of a
CP minCP (see line 25 of Algorithm 1), which is derived by
comparing the input’s average CP length and the CP’s starting
points identified so far. Next, the algorithm examines pairs of
consecutive CP starting points (see line 28 of Algorithm 1).
If the distance between them exceeds twice the minCP , it
indicates the potential presence of additional CPs within that
interval. Consequently, the corresponding sub-segmentation is
queued for further processing.

The algorithm persists until no further refinement is pos-
sible, i.e., when k drops below one or the refining step
yields an empty list of sub-segmentations seg (see line 7 of
Algorithm 1).

Alignment - The last stage of the inference pipeline is
Alignment. It leverages the CP starting points identified by
the previous stages to chunk the input side-channel trace into
temporally aligned segment.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental results of Hound
in four parts. Section IV-A outlines the experimental setup.
Experimental results targeting the CNN training and inference
pipelines are discussed in Section IV-B and Section IV-C,
respectively. A comprehensive example workflow, including
a successful side-channel attack and a comparison with state-
of-the-art proposals, is provided in Section IV-D.

A. Experimental Setup: Hardware and Software

We utilized the NewAE CW305 development board [14] as
our validation platform, designed specifically to facilitate high-
precision, low-noise side-channel measurements. This board
incorporates an AMD Artix7-100 FPGA. Power traces were
captured using a Picoscope 5244d digital sampling oscillo-
scope (DSO), operating at a sampling rate of 125 Msamples/s
and a resolution of 12 bits. For our reference computing
platform, we employed a 32-bit RISC-V System-on-Chip [26]
implemented on the FPGA. Taking steps from [27], we imple-
mented the Dynamic Frequency Scaling mechanism coupled
with a true random number generator (TRNG) [28] to deliver
a novel actuator that can randomize the operating frequency,
thus introducing non-negligible deformations in the collected
side-channel traces. The TRNG generates a random number
used to select a frequency from a pool of 760 available
frequencies ranging from 5 MHz to 100 MHz, with a step
of 125 kHz. Notably, DFS remained enabled throughout the
entire experimental phase. Consequently, a new frequency is
requested as soon as a configuration is locked. As a result,
each cryptographic primitive experiences a variable number
of clock frequency reconfigurations, e.g., an average of 41
reconfigurations per AES encryption, leading to significant
trace deformation. As the cryptographic primitives of choice,
we selected the constant-time, unprotected version of three
ciphers, i.e., AES-128, Clefia-128, and Camellia-128, from the
OpenSSL software codebase [29], and a masked version of
Tiny-AES-128 [30].

B. Training Evaluation

This section details the evaluation of the performance of the
CNN by elaborating on the dataset-building process and the
training metrics.

The training of the CNN leverages a NVIDIA 1080 Ti
employing the PyTorch software programming framework.
The training datasets were built following the methodology
outlined in Section III-A, starting from a collection of 262 144
power traces. The three classes, namely start of a CP, spare
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(c) Clefia.
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(d) Camellia.

Fig. 4: Test confusion matrices for the different cryptosystems affected by DFS.

TABLE I: Parameters for each pipeline stage and metrics score over all the tested ciphers.

Cipher General-Purpose Inference parameters CNN hyperparameters Metrics
Applications avgCP k N s batch size lr dropout Hits Mean IoU Std IoU

AES ✓ 145k 150 10k 62 256 0.01 0.2 100% 97.01% 1.65%
✗ 120k 150 10k 62 100% 93.62% 2.75%

AES Masked ✓ 50k 10 5k 50 256 0.007 0.35 100% 97.13% 1.85%
✗ 50k 150 5k 50 100% 95.05% 1.43%

Clefia ✓ 80k 150 3k 80 256 0.007 0.3 100% 97.90% 2.88%
✗ 80k 150 3k 80 100% 98.46% 0.76%

Camellia ✓ 4.4k 80 1.1k 50 128 0.007 0.4 100% 91.92% 4.79%
✗ 4.1k 63 1.1k 50 100% 93.09% 3.63%

part of a CP, and noise, were balanced with equal represen-
tation of 33% components each. Table I reports the window
sizes N for each cipher. As a general guideline, the window
size N is adjusted to approximate one round of the targeted
CP. For fast encryption algorithms, like Camellia, the window
size is increased to capture a more significant portion of the
CP without compromising the quality of results. The windows
corresponding to the ciphers, i.e., start of a CP and spare part
of a CP, are evenly distributed across the key bytes. Following
standard deep-learning practices, the collected datasets were
divided into training, validation, and testing sets, constituting
80%, 10%, and 10% of the total, respectively.

Each neural network underwent training for 25 epochs,
where an epoch encompasses a complete iteration over the
training set. The Adam optimizer [31] was employed to
minimize the cross-entropy loss, paired with the one-cycle
learning rate scheduler. The validation error was assessed
after each epoch, and the network with the lowest error was
chosen for further evaluation. Subsequently, this network was
employed to assess the performance of unseen traces during
the inference phase. Since DFS introduces significant trace
deformation with high variability, we noticed how CNNs that
did not reach an accuracy of at least 99% were not always able
to classify the CPs in the sliding windows procedure correctly.
Hyperparameters such as training batch size, learning rate (lr),
and dropout were carefully chosen to address this issue (see
the CNN hyperparameters column in Table I).

A distinct CNN model has been trained using a custom
dataset for each cipher under examination. As an indicator of
the effectiveness of the trained CNNs, their confusion matrices
are presented in Figure 4. The column indices represent the
true classes, while the row indices represent the predicted ones.

Notably, the trained classifiers can discriminate excellently be-
tween the three classes, as highlighted by the high percentages
on the main diagonal of each matrix.

C. Inference Evaluation

A brief experimental campaign was conducted to evaluate
the best pipeline parameters. Table I displays the values of
the average cipher length avgCP , the strides s, and the initial
kernel size k for each cipher. We evaluate the performance
of the Sliding Window Classification and Screening stages
by computing two quality metrics: hits and Intersection over
Union (IoU). Hits represent the proportion of correctly identi-
fied CPs relative to the total number of actual CPs within the
trace. The IoU, on the other hand, measures the normalized
overlap between the predicted CP starting point and the ground
truth, taking into account the CP’s overall length. A higher
IoU score signifies better agreement between the predicted and
actual CP starting points. It is formally defined in Equation 1,
where Pi and GTi are the segments corresponding to the CP
i in the predicted and ground-truth segmentation, respectively.

IoUi =
|Pi ∩GTi|
|Pi ∪GTi|

(1)

Since Hound focuses on pinpointing the CP’s beginning within
the trace, the IoU metric disregards the CP’s ending point.
The predicted ending point is always assumed to be accurate.
Table I shows the mean and standard deviation of IoU, where
a higher score corresponds to a better segmentation.

We conducted tests on the inference pipeline for each cipher
using consecutive cipher executions and encryptions inter-
leaved with random general-purpose applications. The seg-
mentation hits score achieved 100% for every cryptographic



(a) A portion of the input trace containing 5 AES executions.

(b) Output of the Sliding Window Classification stage.

(c) Output of the Screening stage.

(d) AES locations on the portion of the inference trace.

Fig. 5: Example of Hound inference pipeline applied to a side-
channel trace affected by DFS that contains 5 AES executions
mixed with general-purpose applications.

TABLE II: Segmentation and side-channel attack (SCA) re-
sults targeting AES-128. Reported results consider the pres-
ence (or not) of general-purpose applications interleaved with
the CPs in the side-channel trace.

Hiding General-Purpose Hits SCA
Mechanism Applications (%) (N. CPs)

[17] None ✓ 0% ✗

✗ 0% ✗

[18] None ✓ 0% ✗

✗ 0% ✗

[19] Random Delay ✓ 1637% ✗

Insertion ✗ 879% ✗

Hound DFS ✓ 100% 571
✗ 100% 74

algorithm in both scenarios, i.e., consecutive encryption and
interleaved with noisy general-purpose applications, consis-
tently managing to identify all executions. The IoU score, on
the other hand, ranges from 91.92% to 98.46% for the different
ciphers. The results demonstrate the robustness of the proposed
methodology in locating CPs with high accuracy and precision,
even in the presence of DFS-induced trace deformation.

D. The Complete Attack Flow

This section showcases the efficacy of Hound in locating
cryptographic primitives obfuscated by DFS. We present a
comprehensive attack flow that takes an unknown side-channel
trace and retrieves the secret key. The key is retrieved using a
deep-learning-based attack as an effective side-channel analy-
sis technique.

Figure 5 shows the results of applying each step of the
proposed inference pipeline to locate the CPs into a portion
of a trace containing five executions of AES-128, i.e., the CP.
The entire side-channel trace contains 367 CPs collected from
a platform implementing a randomized dynamic frequency
scaling mechanism. Starting from the portion of the side-
channel trace in input, Figure 5b depicts the segmentation
output of the Sliding Window Classification stage that correctly
highlights the presence of five CPs interleaved with random
general-purpose applications. Notably, it is easy to detect
also the end of the AES encryptions by looking at Class
1, as the classifier is trained to recognize the spare part of
the CPs. The number of samples in the x-axis of the plot
is reduced by a factor of 62, equal to the value of stride
s during the classification. The Screening stage cleans the
segmentation output by removing spurious activations of the
various classes (see Figure 5c). The time instants locating the
beginning of the five CPs are applied to the original side-
channel trace, thus allowing an easy time realignement (see
Figure 5d).

As an effective side-channel attack, we employed a CNN
developed using the tool proposed by [12]. The attacking
CNN targets the sub-byte intermediate and has been trained
starting from the same side-channel collection described in
Section III-A. A minor sub-sampling is used to ease the
training process of the attacking CNN, reducing the input
size and expediting the process. Column SCA in Table II
enumerates the number of CPs needed to reach a guessing
entropy of 1, i.e., guess the secret key correctly.

Comparison against state of the art - Building on the
prior evaluation, Table II further stresses the effectiveness of
the proposed methodology, detailing the attack results under
various scenarios. The target CP is AES-128. We compare
our approach against three state-of-the-art proposals, i.e., [17],
[18], and [19]. For each state-of-the-art approach, we report
the hiding mechanism for which the methodologies were
designed by their authors (see the Hiding Mechanism column
in Table II). We considered the random CPs’ execution within
a set of noisy general-purpose applications and their execu-
tion without any noisy application (see the General-Purpose
Applications column in Table II). For each analyzed scenario,
Hound can correctly identify the beginning of all the CPs in
the side-channel trace, leading to a successful side-channel
attack. In contrast, the three state-of-the-art methodologies fail
to locate the CPs in the side-channel trace due to the high DFS
obfuscation, and thus, the subsequent side-channel attack is
unsuccessful. More specifically, [17] and [18] achieve a 0% hit
rate, indicating they cannot locate any CPs in the trace. On the



other hand, [19] exhibits anomalously high hit rates of 879%
and 1637% for the two scenarios. These excessively high
rate values highlight a significant number of false positives
determining the subsequent failure of the side-channel attacks.

V. CONCLUSIONS

We presented Hound, a novel deep-learning technique for
pinpointing cryptographic primitives within highly desynchro-
nized side-channel traces. Unlike existing methods, Hound
successfully locates the CPs in side-channel traces collected
from computing platforms implementing dynamic frequency
scaling mechanism as an effective hiding countermeasure.

We conducted a comprehensive evaluation to locate both
sequences of consecutive cryptographic primitives and those
interleaved with other applications. The evaluation considered
different cryptographic primitives. The experimental results,
obtained by running a diverse set of applications on an FPGA-
based RISC-V processor, validate the effectiveness of our
approach in enabling successful side-channel attacks. These
results also emphasize the shortcomings of current state-of-
the-art solutions.

To promote reproducibility and future research, we have
made Hound publicly available as open-source software, along
with a collection of test traces.
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