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A B S T R A C T

This article combines data and tube-based predictive control to deal with systems with bounded parametric
uncertainty. This integration generates robustly feasible control sequences that can also be exploited in
cooperative scenarios where controllers learn from each other’s data. In particular, the approach is based
on a database that contains information from previous executions of the same and other controllers handling
similar systems. By the combination of feasible histories plus an auxiliary control law that deals with bounded
uncertainties, which only needs to be stabilizing for at least one of the system realizations within the
uncertainty set, this scheme provides a finite-horizon predictive controller that guarantees exponential stability
and robust constraint satisfaction. The validity and benefits of the proposed scheme are shown in case studies
with linear and non-linear dynamics.
1. Introduction

Multiple applications of predictive model control (MPC) in industry,
e.g., [1–3], have stimulated renewed interest in approaches combining
data-based and learning methods with predictive control schemes [4].
For example, those based on neural networks [5], adaptive models [6],
scenarios [7], and the extension of terminal regions [8], to name
a few examples. In the recent literature, we can find MPC schemes
for repetitive tasks that learn from previous executions to improve
its performance. For instance, in [9], the theoretical properties are
derived from the use of safe sets, which can be defined as regions
of the state space where there exists a control law that guarantees
constraint satisfaction for all successive time steps. This topic is also
addressed in [10,11], where methods to expand regions of safe states
are proposed. Learning is also used to infer the plant model, as in [12],
where experimental data on system inputs and outputs are used to
feed a non-parametric machine learning method. Multi-step predictors
learned from the data for robust MPC are used in [13].

Another strategy is to use a model-free approach such as [14],
where the control signal is calculated using combinations of closed-loop
trajectories stored from the past in such a way that the combined per-
formance cost is minimized. This approach is related to direct weight
optimization (DWO) techniques [15] and also to kriging methods [16,
17]. In general, both techniques rely on expressing a given datum as a
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linear combination of data stored in the database, while some measure-
ment of the combined weights is minimized. The DWO approach has
been used in the context of identification in [18], and for data-based
control purposes in [19]. On the other hand, kriging methods have been
mainly used as an interpolation technique, first in geostatistics [20], but
also in some control-related applications, e.g., [21] uses a basic kriged
black box prediction model to design a non-linear MPC controller,
and [22] introduces a new type of state space modeling technique based
on kriging weights. The strategy presented in [14] was extended in [23]
to obtain offset-free control under some limiting conditions. However,
these strategies are highly dependent on the quality of the data and
lack the robustness to track setpoints not included in the database.

To address this challenge, several robust data-driven MPC tech-
niques have emerged. For example, for the control of Type 1 dia-
betes, [24] combines data-driven learning with min–max MPC to obtain
patterns of disturbance sets from historical data and calculate insulin
infusions in the worst-case disturbances. Moreover, [25] proposes a
robust data-driven MPC method that uses Hankel matrices to predict
the system behavior by its input–output trajectories and includes a
slack variable to relax the constraints and account for noise, i.e., the
differences between the online measurements and the data used for
prediction. This method is extended in [26] using constraint tight-
ening to enforce closed-loop output constraint satisfaction. Another
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way of handling disturbances is to rely on stochastic approaches. For
instance, [27] proposes a stochastic MPC based on data driven for linear
systems subject to unknown additive disturbances. It is also considered
a distributionally robust optimization with a Wasserstein ambiguity
set based on a dataset consisting of disturbance trajectories. Then, a
scenario-based tube MPC is employed to reduce the online complexity
of the classical scenario-based stochastic MPC.

In this article, we deal with the reutilization of past historical infor-
mation following the method presented in [14], where data-based pre-
dictive control is proposed to manage linear systems through a convex
combination of previously applied trajectories assuming that successive
executions of the system remain constant and are disturbance-free.
The key contribution of our work is to extend [14] to overcome its
lack of robustness regarding constraint satisfaction, e.g., due to process
oise or parametric uncertainties. To this end, we provide a set of
onditions that must be met by the trajectories employed by the data-
ased controller to ensure robust constraint satisfaction. Here we apply
strategy analogous to tube-based MPC [28], but it is a data-based

redictive controller that provides us with the nominal disturbance-
ree trajectory for the current system. Therefore, the control problem
s twofold: (i) to calculate the nominal control inputs by a convex
ombination of previously trajectories collected in the database, and
ii) to apply a stabilizing feedback controller to reject the differences
etween the real and nominal dynamics. Regarding the former, it is
mployed a direct weight optimization based on [14], an idea aligned
ith the rationale of kriging methods [21,22] and recent data-driven
PC approaches [26,29], which rely on the fundamental lemma by
illems et al. [29, Lemma 2]. The lemma establishes that a discrete-

ime LTI system can be fully characterized by its trajectories as long
s the input is persistently exciting [30]. The main differences with
egard to the previously mentioned articles are that the newly pro-
osed method guarantees recursive feasibility and robust exponential
tability, and can even manage one system with trajectories generated
rom different instances of the system being controlled (e.g., a set of
ontrollers sharing a cloud-based database), leading to a cooperative
earning approach. To learn from each other’s trajectories, controllers
eed trajectories generated in a wide range of conditions and system
ealizations so that they are representative of the behavior of the
ystem; also, trajectories should be stored in a format that is easily
ccessible and can be processed efficiently by the cooperative learning
lgorithm.

The idea of using data from one or more systems to design a
tabilizing controller for another system is also addressed in [31] in
data-based manner for the particular case of transferring a stabilizing

ontrol policy from a source system to a target system. The common-
lities of our method and that of [31] are a prior knowledge of the
aximum distance between two linear systems, significant data (with
oise) from the source system, and the design of a stabilizing controller
ased on linear matrix inequalities (LMI) for the target system. How-
ver, our twist is the integration of data-driven control and predictive
ontrol to inherit the optimal and robustness properties of tube-based
PC. Our method also provides robust exponential stability and robust

onstraint satisfaction, which is a major issue in reusing past historical
ata. Another approach related to our proposal is the interpolation-
ased MPC [32], which relies on the convex combination of feedback
ontrol laws for a set of uncertain systems. Although this idea has
ome connections with the current work, note that our trajectories may
ave been generated by different types of controllers. Furthermore,
obust constraint satisfaction is attained in [32] leveraging the well-
nown approach of Kothare et al., which is known to be conservative.
he referred article also points out some significant differences with
tandard predictive control approaches.

To sum up, the novelty of our work is the combination of a data-
riven MPC with a tube-based approach to address systems with poly-
opic uncertainty. This integration presents a novel contribution that
2

an be leveraged to have multiple controllers learning in a cooperative c
fashion. It also allows for the design of controllers that are both
data-driven and robust, filling a gap in the existing literature.

Finally, a preliminary version of the proposed strategy was accepted
for presentation [33]. There are significant differences between the
current article and the conference version: (i) the problem formula-
tion is now less conservative, with fewer constraints required; (ii) the
optimization problem has now more degrees of freedom, improving
performance; (iii) the current article does include theoretical analysis
of the recursive feasibility and stability; (vi) new simulations and an
additional example are also included in the current version.

Index of contents: Section 2 presents the problem setting and the
roposed control strategy. Sections 3 and 4 detail the design and
mplementation of the nominal and auxiliary controllers, respectively.
ection 5 analyzes the recursive feasibility and stability guarantees.
ections 6 and 7 present the case studies. Section 8 ends the paper with
oncluding remarks.
Notation: Sets R and N refer to real numbers and integers, respec-

ively. The distance between vectors 𝑥, 𝑦 ∈ R𝑛 is d(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ =
√

(𝑥1 − 𝑦1)2 +⋯ + (𝑥𝑛 − 𝑦𝑛)2, while the square of the distance is denoted
s ‖𝑥 − 𝑦‖2. The image of a set  ⊆ R𝑛 under a linear mapping
∶ R𝑛 ↦ R𝑚 is given by 𝐴 ≜ {𝐴𝑥 ∶ 𝑥 ∈ }. For sets  , ⊆ R𝑛, the
inkowski sum is  ⊕ ≜ {𝑥+ 𝑦 ∶ 𝑥 ∈  , 𝑦 ∈ }, and the Pontryagin

ifference is  ⊖  ≜ {𝑧 ∈ R𝑛 ∶  ⊕ {𝑧} ⊆ } for  ⊆  . The matrix
≻ 0 (𝐴 ⪰ 0) is positive definite (semi-definite). The identity matrix is

enoted as I. The set 𝛺 ∈ R𝑛 is a robust positively invariant (RPI) set
or system 𝑥+ = 𝑓 (𝑥,𝑤) with constraints  and  if ∀𝑥 ∈ 𝛺 ⊂  and
𝑤 ∈  , its evolution satisfies 𝑥+ ∈ 𝛺.

. Problem formulation

We consider that the system dynamics are described by the follow-
ng discrete-time linear time-invariant (LTI) model with an unknown
ector of parameters 𝜃 ∈ 𝛩 ⊆ R𝑛𝜃 :
+ = 𝐴(𝜃) 𝑥 + 𝐵(𝜃) 𝑢, (1)

here 𝑥, 𝑥+ ∈ R𝑛𝑥 and 𝑢 ∈ R𝑛𝑢 are, respectively, the state, the successor
tate, and the input of the system. The matrices 𝐴(𝜃) ∈ R𝑛𝑥×𝑛𝑥 and
(𝜃) ∈ R𝑛𝑥×𝑛𝑢 are the state-transition and input-to-state matrices, which
epend on the realization of parametric uncertainty 𝜃.

ssumption 1. All systems (𝐴(𝜃), 𝐵(𝜃)) are controllable.

ssumption 2. The differences between the system realizations are
ounded by polytopic sets 𝛥𝐴𝜃 and 𝛥𝐵𝜃 that account for possible
arameter variations.

Two different realizations of 𝜃, say 𝜃𝑖, 𝜃𝑗 ∈ 𝛩, lead to two distinct
ystem realizations (𝐴𝑖, 𝐵𝑖) and (𝐴𝑗 , 𝐵𝑗 ), with

𝑖 − 𝐴𝑗 ∈ 𝛥𝐴𝜃 , 𝐵𝑖 − 𝐵𝑗 ∈ 𝛥𝐵𝜃 . (2)

The parametric uncertainty of the system can be reinterpreted as
n unknown disturbance 𝑤. In particular, the dynamic evolution of the
ystem realizations 𝑖 and 𝑗 can be related as follows by (2)

𝑥+ = 𝐴𝑖 𝑥 + 𝐵𝑖 𝑢
∈ (𝐴𝑗 + 𝛥𝐴𝜃) + (𝐵𝑗 + 𝛥𝐵𝜃)
= 𝐴𝑗 𝑥 + 𝐵𝑗 𝑢 +𝑤,

(3)

here the state and inputs are subject to constraints

∈  , 𝑢 ∈  , (4)

ith the disturbance term 𝑤 bounded by

∈  ≜ 𝛥𝐴𝜃  ⊕ 𝛥𝐵𝜃  . (5)

ote that, in case of need,  can be enlarged to deal with additional
ources of uncertainty.

ssumption 3. Sets  ⊆ R𝑛𝑥 ,  ⊆ R𝑛𝑢 , and  ⊆ R𝑛𝑤 are polytopic

onvex sets that contain the origin in their interiors.
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Table 1
Database structure.
Traj. ID 𝑘 𝑥𝑡(𝑘) 𝑢𝑡(𝑘)

1 1 𝑥𝑡(1) 𝑢𝑡(1)
⋮ ⋮ ⋮ ⋮
1 𝑘1end 𝑥𝑡(𝑘1end) 𝑢𝑡(𝑘1end)

2 1 𝑥𝑡(1) 𝑢𝑡(1)
⋮ ⋮ ⋮ ⋮
2 𝑘2end 𝑥𝑡(𝑘2end) 𝑢𝑡(𝑘2end)

⋮ ⋮ ⋮ ⋮

2.1. Database structure and control goal

Any controller has access to a database that contains a set of
𝑇 trajectories generated by different instances of system (1). Each
trajectory is identified using indices within set  ≜ {1,… , 𝑇 } and is
assumed to be feasible for the system realization that generated it, but
does not need to be feasible for other system realizations. In particular,
a trajectory 𝑡 ∈  is composed of a sequence of samples

(

𝑥𝑡(𝑘), 𝑢𝑡(𝑘)
)

,
or 𝑘 ∈ 𝑡 ≜ {1,… , 𝑘𝑡end}, that satisfy (1) and (4) for the particular
ystem realization. See Table 1 for an example regarding the structure
f the considered database.

emark 1. Although we consider the general case of the database
eing cooperatively updated by multiple realizations of system (1), it is
orth noticing that there is no difference if the database is generated
y collecting data from a single plant that uses different parametric
onfigurations.

ssumption 4. At some time instant 𝑘𝑡end, the sequences of all the
trajectories 𝑡 ∈  finish at a bounded distance from the origin smaller
than a threshold 𝜀 ∈ R+.

Remark 2. The threshold 𝜀 defines a ball around the origin, and must
be small enough to satisfy basic conditions such as constraints. It can be
empirically chosen as a function of the amplitude of noise and random
disturbances that affect the tracking errors. The larger 𝜀, the greater
he uncertainty of the system’s state relative to the origin.

The control objective is to regulate the system to the origin while
inimizing a global infinite-horizon cost:

∞ =
∞
∑

𝑛=0
𝓁
(

𝑥(𝑛), 𝑢(𝑛)
)

, (6)

here 𝓁(⋅, ⋅) is the stage cost, which is defined by positive definite
eighting matrices 𝑄 ∈ R𝑛𝑥×𝑛𝑥 and 𝑅 ∈ R𝑛𝑢×𝑛𝑢 :
(

𝑥(𝑛), 𝑢(𝑛)
)

= 𝑥(𝑛 + 1)⊤𝑄𝑥(𝑛 + 1) + 𝑢(𝑛)⊤𝑅𝑢(𝑛). (7)

For the sake of implementability, it is desirable to consider a finite
horizon 𝑁 , so the cost function (6) is replaced by:

𝐽𝑁 =
𝑁−1
∑

𝑛=0
𝓁
(

𝑥(𝑛), 𝑢(𝑛)
)

+ 𝑓
(

𝑥(𝑁)
)

, (8)

where 𝑓 (⋅) = 𝑥(𝑁)⊤ 𝑃 𝑥(𝑁) with 𝑃 ≻ 0 is a terminal cost function.
In this regard, let us define the 𝑁-length partial sequences of 𝐱 and
𝐮, which are obtained by taking 𝑁 consecutive states and inputs from
trajectory 𝑡 ∈  :

𝑝 ≜
{

𝐱 = {𝑥𝑡(𝑘), 𝑥𝑡(𝑘 + 1),… , 𝑥𝑡(𝑘 +𝑁)}
𝐮 = {𝑢𝑡(𝑘), 𝑢𝑡(𝑘 + 1),… , 𝑢𝑡(𝑘 +𝑁 − 1)}

,

and the performance of this sequence measured by (8) can be denoted
as 𝐽𝑁 (𝐱,𝐮).
3

b

2.2. Dual control law

We control the system realization (𝐴𝑖, 𝐵𝑖) using a data-based con-
troller that combines the trajectories contained in  . A robust feedback
controller is also employed to deal with disturbance differences 𝑤 due
to uncertain system realizations. Therefore, the control law becomes

𝑢(𝑥) = 𝑣(𝑥) + 𝑣𝑒(𝑥, 𝑧), (9)

where 𝑣(𝑥) corresponds to the first element of a sequence of control
actions generated by the data-based law, and 𝑣𝑒(𝑥, 𝑧) rejects the dif-
ferences between the system state 𝑥 and the nominal state 𝑧, which
is obtained from the database and follows disturbance-free dynamics:
𝑧+ = 𝐴𝑗 𝑧 + 𝐵𝑗 𝑣 (recall (3)). A block diagram of the proposed dual
control law is shown in Fig. 1. Sections 3 and 4 detail, respectively,
how 𝑣(𝑥) and 𝑣𝑒(𝑥, 𝑧) are obtained.

3. Data-based control law 𝒗(𝒙)

Let us consider a particular system realization (𝐴𝑖, 𝐵𝑖). In the most
restrictive case, there is no previous information in the database about
previous executions of this system, i.e., we need to rely on information
from other system realizations.

3.1. Trajectory robustness check

Since the sequences of any other system realization (𝐴𝑗 , 𝐵𝑗 ), with
𝑗 ≠ 𝑖 might not be feasible for (𝐴𝑖, 𝐵𝑖), we need to guarantee their robust
feasibility.

Therefore, any candidate trajectory {𝑥𝑡(𝑘), 𝑢𝑡(𝑘)}, with 𝑘 ∈ 𝑡 =
{1,… , 𝑘𝑡end}, must have enough margin respect to the constraints to
accommodate uncertainties given by the closed-loop dynamics of the
errors due to system discrepancies. One way to do this is to check the
following conditions:

𝑥𝑡(𝑘) ∈  ⊖𝛺𝑥,
𝑢𝑡(𝑘) ∈  ⊖𝛺𝑢,

(10)

for 𝑘 ∈ 𝑡, where 𝛺𝑥 and 𝛺𝑢 are given sets that define the desired
margin with respect to the state and input constraints, respectively.
Details on the calculation of 𝛺𝑥 and 𝛺𝑢 are given in Section 4.

By checking (10), we can find the set of robustly feasible trajectories
in the database.1 Let  ⊆  contain the IDs of these feasible trajectories.

Assumption 5. The set of robustly feasible trajectories  is assumed
to be nonempty.

3.2. Optimization problem

Conventional tube-based MPC employs a nominal model with tighter
constraints. If we considered a database that only contains information
about the nominal system, we could define, for nominal dynamics
𝑧+ = 𝐴𝑗 𝑧 + 𝐵𝑗 𝑣, an optimal control problem P𝑁 (𝑧) as [14]:

𝐽o
𝑁 (𝑧) = min

𝛬∈R𝑀

∑

𝑚∈̄

𝜆𝑚 𝐽𝑁 (𝐱𝑚,𝐮𝑚),

s.t.
∑

𝑚∈̄

𝜆𝑚𝑥𝑚(0) = 𝑧,

∑

𝑚∈̄

𝜆𝑚 = 1,

𝜆𝑚 ≥ 0, ∀𝑚 ∈ ̄ ,

(11)

where 𝑧 is the current state measurement, and 𝛬 ∈ R𝑀 is the set of
weights {𝜆1,… , 𝜆𝑀} for the convex combination of 𝑀 partial control

1 Feasible sequences can be extended with zeros so that their length
ecomes greater or at least equal to 𝑁 , i.e., 𝑘𝑡 ≥ 𝑁 .
end
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equences listed in set ̄ , which contains the indices of 𝑀 ≤ |𝑡| ⋅ | |

artial trajectories.
Here, however, we consider a database that lacks previous informa-

ion on the uncertain system 𝑥+ = 𝐴𝑗 𝑥 + 𝐵𝑗 𝑢 + 𝑤 being controlled.
herefore, the previous problem P𝑁 (𝑧) is transformed into P∗

𝑁 (𝑥):

∗
𝑁 (𝑥) = min

𝑧, 𝛬

∑

𝑚∈̄
𝜆𝑚 𝐽𝑁 (𝐱𝑚,𝐮𝑚), (12a)

s.t.
∑

𝑚∈̄
𝜆𝑚𝑥𝑚(0) = 𝑧, (12b)

∑

𝑚∈̄
𝜆𝑚 = 1, (12c)

𝑥 ∈ 𝑧 ⊕ 𝛺𝑥, (12d)

𝑧 ∈  ⊖𝛺𝑥, (12e)

𝜆𝑚 ≥ 0, ∀𝑚 ∈ ̄ , (12f)

where 𝑥 is the current state measurement, 𝑧 ∈ R𝑛𝑥 is the associated
nominal state, which is now a decision variable, and 𝛬 ∈ R𝑀 is the
set of weights for the combination of 𝑀 partial control sequences
contained in the set of robustly feasible trajectories ̄ , which gathers
the indices of 𝑀 ≤ |𝑡| ⋅ | | partial trajectories. Here, we bestow
problem P∗

𝑁 (𝑥) on an additional degree of freedom by optimizing the
nominal state, similar to [34,35]. Problem P∗

𝑁 (𝑥) can be solved very
efficiently, although in the case of stringent timing requirements and
large datasets, it may be necessary to perform parallel searches in the
database using GPU computing or specific hardware, e.g., FPGA.

Note that the feasible nominal sets of any given instance of Prob-
lem (12) are, respectively, a set of states and inputs that are obtained,
respectively, by convex combinations of database state and input trajec-
tories using coefficients of 𝛬 that satisfy the constraints. In particular,
let 𝑧∗ and 𝛬∗ = {𝜆∗1 , 𝜆

∗
2 ,… , 𝜆∗𝑀} be the minimizer of (12), provided that

it exists,2 then the nominal input partial trajectory for (3) is given by:

𝐯∗ =
∑

𝑚∈̄
𝜆∗𝑚𝐮𝑚, (13)

with the first element of 𝐯∗ = {𝑣∗(0),… , 𝑣∗(𝑁−1)} defining the nominal
control law:

𝑣(𝑥) = 𝑣∗(0), (14)

and the optimized current nominal state 𝑧∗(0) is defined as:

𝑧∗(0) =
∑

𝑚∈̄
𝜆∗𝑚𝑥𝑚(0).

At the next time instant, it is produced a new combination of partial se-
quences based on the most recent information available in the database
following a receding-horizon strategy.

2 The existence of the minimizer requires the database to be large enough
nd have data representative of the operating conditions of the system. This
ssue can also be mitigated by increasing the number of samples considered for
he combination (i.e., 𝑀) and using soft constraints to solve Problem P∗ (𝑥).
4

𝑁

3.3. Control algorithm

We summarize the robust predictive controller proposed based on
historical data in Algorithm 1, which is executed at each time instant.
Note that, as a selection criterion to limit the computational burden, we
consider that only the samples listed in ̄ can be combined to compute
the control inputs.

Let d ∶  ×  → R be a function that computes the distance
etween a system’s state 𝑥𝑖 and a trajectory’s partial state 𝑥𝑡. The set
̄ contains the indices of the 𝑀 feasible partial trajectories with the
mallest d

(

𝑥𝑖, 𝑥𝑡(𝑘)
)

for all 𝑘 ∈ 𝑡 ≜ {1,… , 𝑘𝑡end} and ∀𝑡 ∈  , and
̄ | = 𝑀 with 𝑀 ≤

∑

𝑡∈ |𝑡|.

Algorithm 1 Robust data-based predictive controller
Inputs: 𝑥𝑖,  , , 𝑄,𝑅, 𝑃 , 𝑁 ,  , 𝑀 , 𝐾,𝛺. Output: 𝑢.
1: For all 𝑡 ∈  , compute the distance d

(

𝑥𝑖, 𝑥𝑡(𝑘)
)

for 𝑘 ∈ 𝑡.
2: Gather in ̄ the indices of the 𝑀 feasible partial sequences (x𝑚,u𝑚)

with the lowest distance to 𝑥𝑖 .
3: Evaluate the cost 𝐽𝑁 (x𝑚,u𝑚) of each candidate 𝑚 ∈ ̄ .
4: Solve (12) to optimize the weight vector 𝛬∗ for the convex

combination of the 𝑀 control sequences, and the nominal state 𝑧∗.
5: Obtain v∗ by (13), and set the first element as 𝑣 = 𝑣∗(0).
6: Calculate the auxiliary control input term 𝑣𝑒 that penalizes the

deviation between 𝑥𝑖 and 𝑧∗ (see Section 4 for more details).
7: Obtain (9) and apply 𝑢 to the system.
8: Wait for the next sampling time and repeat from Step 1.

4. Auxiliary control law 𝒗𝒆(𝒙, 𝒛)

The tube-based strategy requires the auxiliary control law to keep
he evolution of the error confined within set 𝛺𝑥 using control actions

in set 𝛺𝑢 despite the role played by parametric uncertainties, which
lie within set  . Typically, the design of sets 𝛺𝑥 and 𝛺𝑢 is achieved
using a feedback controller 𝐾 and a robust positively invariant (RPI)
set, which, together with system (3), guarantee

(𝐴𝑗 + 𝐵𝑗𝐾)𝛺𝑥 ⊕ ⊆ 𝛺𝑥, (15)

here 𝛺𝑥 ⊂  and 𝛺𝑢 ≜ 𝐾 𝛺𝑥 ⊂  . That is, considering 𝑣𝑒(𝑥, 𝑧) =
𝐾(𝑥−𝑧) as the auxiliary control law, the system dynamics (𝐴𝑖, 𝐵𝑖) from
the viewpoint of 𝑗th system realization (3) and the double control law
(9) are

𝑥+ = 𝐴𝑗 𝑥 + 𝐵𝑗 (𝑣 +𝐾 𝑒) +𝑤, (16)

where 𝑒 = (𝑥 − 𝑧) ∈ 𝛺𝑥 captures the difference between the real
and nominal values of the state, and 𝑤 ∈  accounts for the model
mismatch between systems 𝑗 and 𝑖. As a consequence, the trajectory of
system realization 𝑖 will lie inside a tube around the nominal trajectory
generated by the data-based controller. The system will be recursively
feasible if there is a feasible solution in the database for its trajectory
toward the origin, thanks to the combination of the database sequences.
Finally, the system state will lie within a set 𝛺𝑥 around the origin.

The cornerstone of this approach is feedback gain 𝐾. The methods
for designing 𝐾 vary based on the availability and extent of prior infor-
mation about the system. In the following subsections, we will discuss
several strategies that can be effectively employed in this context.
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4.1. Redundancy of feedback gain

The role of 𝐾 is to guarantee that the closed-loop dynamics (𝐴𝑗 +
𝑗 𝐾) are stable. However, some systems are inherently stable (e.g., pas-

ive systems) and therefore, Eq. (15) holds even if no feedback gain is
pplied, i.e., 𝐾 = 0. This means that robustness can be attained if the
et of system realizations

(

𝐴(𝜃), 𝐵(𝜃)
)

is known to be stable. That being
aid, even in this case, feedback is often used in practice to improve
he system’s performance and robustness features.

.2. Empirical approach

For some systems, it may be possible to find a feedback controller 𝐾
or all system realizations empirically. In such a case, 𝛺𝑥 and 𝛺𝑢 could
e designed as balls of ratio 𝑟𝑥, 𝑟𝑢 > 0, respectively, i.e., 𝛺𝑥 = B𝑥 ≜ {𝑥 ∈
∶dist(𝑥, 0) ≤ 𝑟𝑥} and 𝛺𝑢 = B𝑢 ≜ {𝑢 ∈  ∶dist(𝑢, 0) ≤ 𝑟𝑢}. Here, 𝑟𝑥 and

𝑢 become tuning parameters that might be adjusted considering the
atabase trajectories to maintain system constraints in a robust manner.

.3. Data-based design

The design of the auxiliary control law and the invariant set can also
e derived from data. Nevertheless, typical approaches are not model-
ree because they often involve the implicit or explicit identification of
model based on the available data, which is then used to compute the

nvariant set and the control law. For example, in [36] a semidefinite
rogramming problem (SDP) is formulated to simultaneously find the
ncertain model, the feedback gain, and the corresponding invariant
ets. A concurrent approach is also proposed in [37,38] to compute an
pproximation of a minimal robust control invariant set (mRCI) from
xperimental data via linear programming (LP) and select a suitable
odel given a model structure.

.4. Model-based design

There are multiple well-known model-based design methods to
enerate a feedback gain that yields stable closed-loop dynamics for
particular realization, e.g., pole placement. In this regard, note that

his is all that is required by the proposed method. Likewise, given the
obust nature of the problem, it may be desirable to employ a robust
eedback controller 𝐾 valid for all system realizations, assuming that
nformation regarding the vertices of the uncertainty set is available.
his can be performed using linear matrix inequalities (LMIs) [39]

everaging Assumption 2, which makes the disturbance set of system
ealizations

(

𝐴(𝜃), 𝐵(𝜃)
)

polytopic. In particular, let set 𝛶 denote the
ertices of this set, so that the dynamics of the extreme realizations
an be expressed as:
+ = 𝐴𝜈 𝑥 + 𝐵𝜈 𝑢, 𝜈 ∈ 𝛶 . (17)

emma 1 (Optimal Feedback Controller [40]). Given system (𝐴𝜈 , 𝐵𝜈 ) and
tage cost matrices 𝑄 and 𝑅. If there are matrices 𝐻 = 𝐻⊤ ∈ R𝑛𝑥×𝑛𝑥 and
𝑌 ∈ R𝑛𝑢×𝑛𝑥 , such that the following constraints are satisfied

⎡

⎢

⎢

⎢

⎢

⎣

𝐻 𝐻𝐴⊤
𝜈 + 𝑌 ⊤𝐵⊤

𝜈 𝐻𝑄1∕2 𝑌 ⊤𝑅1∕2

𝐴𝜈𝐻 + 𝐵𝜈𝑌 𝐻 0 0
𝑄1∕2𝐻 0 I 0
𝑅1∕2𝑌 0 0 I

⎤

⎥

⎥

⎥

⎥

⎦

⪰ 0, ∀𝜈 ∈ 𝛶 ,

(18)

hen there exist an optimal feedback control 𝐾 = 𝑌𝐻−1, maximizing the
race of 𝐻 , that stabilizes the closed-loop system, and a Lyapunov function
(

𝑥
)

= 𝑥⊤𝑃 𝑥, with 𝑃 = 𝐻−1.

See [40, Appendix A] for the proof of Lemma 1.
5

Given the feedback gain 𝐾 and the bounded disturbances  lever-
ging Assumption 2, which makes the disturbance set of system real-
zations

(

𝐴(𝜃), 𝐵(𝜃)
)

polytopic, we seek to find now an RPI set (𝛺𝑥) as
mall as possible to reduce conservatism. For polytopic disturbances,
ethods such as the linear programming method proposed in [41] or

he outer approximation presented in [42] can be employed to compute
common minimal RPI set for the system realizations. Similarly, one

an find an RPI set for each vertex and then use the union of the RPI
ets in the checking steps (10).

. Recursive feasibility and stability

Regardless of the method employed to find feedback gain 𝐾 and sets
𝑥 and 𝛺𝑢, it is possible to prove recursive feasibility and stability.

ssumption 6. There exists, at least, a feedback controller 𝐾 that
an stabilize system (3) and a robust positively invariant (RPI) set
𝑥 for constraint sets ( , ,) under the control law 𝑢 = 𝐾𝑥 that

atisfies (15).

Without lost of generality, we here consider that the database
rajectories end in the origin although, as state in Assumption 4, it is
ot necessary. The only difference is the nominal state will be confined
nto a ball centered at the origin, therefore the uncertain system will
e ultimately bounded in that ball plus the set 𝛺𝑥.

The robust feasibility and stability properties of the proposed al-
orithm are inherited from tube-based MPC controllers [28], which
mpose the following constraints in the computation of the nominal
rajectory: (i) the linear model, (ii) the set of tighter constraints (10) and
12e), and (iii) a terminal region to guarantee stability and recursive
easibility. Here, the data-based controller provides a nominal trajec-
ory, which accounts for condition (i). The set of Eqs. (10) guarantees
hat only robustly feasible sequences are considered, and (12e) ensures
obustly feasible nominal states (condition ii). Likewise, there is no
eed for a terminal region because the generated trajectories reach the
rigin, so that recursive feasibility is guaranteed (condition iii). Finally,
he auxiliary control law is identical to that of tube-based MPC and
eals with the disturbances arising from the use of a nominal trajectory
hat belongs to a combination of trajectories from possibly different
ealizations of system (1).

.1. Recursive feasibility

For the feasibility analysis of the closed-loop system, let us first
efine the domain of the optimization problem P∗

𝑁 (𝑥). The feasible
nput set of problem (12), denoted as V𝑁 (𝑧), is a set of nominal input
rajectories {𝑣∗(0), 𝑣∗(1),… , 𝑣∗(𝑁 − 1)}, which are obtained from a
onvex combination of the database input trajectories using coefficients
f 𝛬∗ (recall (13)). Likewise, the feasible state set Z𝑁 = {𝑧 ∈  ⊖
𝑥 ∶V𝑁 (𝑧) ≠ ∅} is composed of nominal states that are obtained from a

onvex combination of the database state trajectories using coefficients
f 𝛬∗. The feasible state set for the real dynamics is X𝑁 = Z𝑁 ⊕𝛺𝑥. A
tate 𝑥 = (𝑧 + 𝑒) ∈ X𝑁 is said to be recursively feasible if V𝑁 (𝑧+) ≠ ∅
nd 𝑒+ ∈ 𝛺𝑥.

heorem 1 (Recursive Feasibility). Consider that Assumptions 1–6 hold.
uppose also 𝑥 = (𝑧 + 𝑒) ∈ X𝑁 at instant 𝑘 so that (𝑧∗(0), 𝐯∗), where
∗ = {𝑣∗(0), 𝑣∗(1),… , 𝑣∗(𝑁−1)} and its associated nominal state trajectory
∗ = {𝑧∗(0), 𝑧∗(1),… , 𝑧∗(𝑁)} are feasible for problem P∗

𝑁 (𝑥). Then, for all
+ = 𝐴𝑗 𝑥 + 𝐵𝑗 𝑢 +𝑤 with 𝑤 ∈  , problem P∗

𝑁 (𝑥+) is also feasible for the
ext instants.

roof. Given a feasible state 𝑥 ∈ 𝑧∗(0) ⊕ 𝛺𝑥, the successor state
+ ∈ 𝑧∗(1) ⊕ 𝛺𝑥 remains within the tube with the applied control
= 𝑣∗(0) + 𝐾(𝑥 − 𝑧∗(0)) (for a detailed proof, see [43, Proposition

]). Since there is a feasible solution (𝑧∗(0), 𝐯∗) at instant 𝑘, the system
rajectory toward the origin is recursively feasible for the next instants
s it is the combination of database trajectories.
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5.2. Robust exponential stability

Here, we analyze the robust stability of the controlled uncertain
system 𝑥+ = 𝐴𝑗𝑥 + 𝐵𝑗𝑢 +𝑤, ∀𝑤 ∈  , which will inherit the properties
of the database trajectories, so let us consider the next assumption to
prove stability.

Assumption 7. The trajectories in the database  are generated using
tabilizing controllers, and for all 𝑧 ∈ Z𝑁 , the value function 𝐽o

𝑁 (𝑧)
recall Eq. (11)) is Lyapunov, i.e.,
o
𝑁 (𝑧+) ≤ 𝐽o

𝑁 (𝑧) − 𝓁(𝑧, 𝑣), (19)

o there exist positive constants 𝑏 > 𝑎 > 0 such that

𝐽o
𝑁 (𝑧) ≥ 𝑎 ‖𝑧‖2,

𝐽o
𝑁 (𝑧) ≤ 𝑏 ‖𝑧‖2,

o
𝑁 (𝑧+) ≤ 𝐽o

𝑁 (𝑧) − 𝑎 ‖𝑧‖2.

(20)

In this way, the origin is exponentially stable for the controlled
ominal dynamics 𝑧+ = 𝐴𝑗 𝑧 + 𝐵𝑗 𝑣 for all 𝑧 ∈ Z𝑁 . Should there be
rajectories that do not satisfy Assumption 7, they can be removed
rom the database. Although Assumption 7 is restrictive, it is necessary
o inherit stability from the nominal trajectories generated by the
ata-based controller.

roposition 1. (i) For all 𝑥 ∈ X𝑁 , 𝐽 ∗
𝑁 (𝑥) = 𝐽o

𝑁 (𝑧∗(0)) and their
orresponding control solutions 𝐯∗(𝑥) = 𝐯o(𝑧∗(0)). (ii) 𝐽 ∗

𝑁 (⋅) is a Lyapunov
unction for dynamics 𝑥+ = 𝐴𝑗 𝑥 + 𝐵𝑗 𝑢 +𝑤, i.e.,

∗
𝑁 (𝑥+) ≤ 𝐽 ∗

𝑁 (𝑥) − 𝓁(𝑧∗(0), 𝑣∗(0)). (21)

roof. The result (i) follows from a direct consequence of the definition
f problems P𝑁 (𝑧) and P∗

𝑁 (𝑥). To prove (ii), consider Theorem 1 and
ote that 𝑥+ = 𝑧∗(1) ⊕ 𝛺𝑥 such that (𝑧∗(1), 𝐯o(𝑧∗(1))) is also feasible
or problem P∗

𝑁 (𝑥+), but 𝐽o
𝑁 (𝑧∗(1)) ≥ 𝐽 ∗

𝑁 (𝑥+). From (19), we have
o
𝑁 (𝑧∗(1)) ≤ 𝐽o

𝑁 (𝑧∗(0)) − 𝓁(𝑧∗(0), 𝑣∗(0)), which is lower bounded by
o
𝑁 (𝑥+) ≤ 𝐽o

𝑁 (𝑧∗(1)) ≤ 𝐽o
𝑁 (𝑧∗(0))−𝓁(𝑧∗(0), 𝑣∗(0)). Since 𝐽 ∗

𝑁 (𝑥) = 𝐽o
𝑁 (𝑧∗(0))

y (i), we conclude that (21) holds.

heorem 2 (Robust Exponential Stability). Consider that Assumption 7
olds. For all 𝑥 ∈ X𝑁 and 𝑤 ∈  , the control law 𝑢 = 𝑣∗(0)+𝐾(𝑥− 𝑧∗(0))
tabilizes the uncertain system 𝑥+ = 𝐴𝑗 𝑥+𝐵𝑗 𝑢+𝑤 exponentially in the set
𝑥.

roof. As proved in [34], since 𝐽 ∗
𝑁 (𝑥) = 𝐽o

𝑁 (𝑧∗(0)) (let us denote
∗(0) = 𝑧∗0(𝑥) to make explicit the dependence of the state 𝑥) for all
∈ X𝑁 , we obtain the following set of equations using (20) and (21):
∗
𝑁 (𝑥) = 𝐽o

𝑁 (𝑧∗0(𝑥)) ≥ 𝑎 ‖𝑧∗0(𝑥)‖
2, (22a)

∗
𝑁 (𝑥) = 𝐽o

𝑁 (𝑧∗0(𝑥)) ≤ 𝑏 ‖𝑧∗0(𝑥)‖
2, (22b)

∗
𝑁 (𝑥+) − 𝐽 ∗

𝑁 (𝑥) ≤ −𝓁(𝑧∗0(𝑥), 𝑣
∗
0(𝑥)) ≤ −𝑎 ‖𝑧∗0(𝑥)‖

2, (22c)

here 𝑏 > 𝑎 > 0. Let 𝑥(𝑘) = 𝑥+ denote the state system at instant 𝑘
iven an initial state 𝑥(0) = 𝑥 and 𝑤 ∈  ; from Theorem 1, 𝑥(𝑘) ∈ X𝑁

or all 𝑘. Let us define 𝑆𝛼 ≜ {𝑥∶ 𝐽 ∗
𝑁 (𝑥) ≤ 𝛼} for all 𝛼 ≥ 0. Then, 𝑆0 ∈ 𝛺𝑥

or 𝛼 = 0, and there is an 𝛼 > 0 such that 𝑆𝛼 ⊂  . From (22), we
ave 𝐽 ∗

𝑁 (𝑥(𝑘)) ≤ 𝜌𝑘𝐽 ∗
𝑁 (𝑥(0)), where 𝜌𝑘 ≜ (1 − (𝑎∕𝑏)) ∈ (0, 1). Iterating

from 𝑘 = 0 to 𝑘 and following 𝐽 ∗
𝑁 (𝑥(𝑘)) ≤ 𝜌𝑘𝐽 ∗

𝑁 (𝑥(0)), we have that
𝑎 ‖𝑧∗0(𝑥(𝑘))‖

2 ≤ 𝜌𝑘 𝑏 ‖𝑧∗0(𝑥(0))‖
2, e.g., ‖𝑧∗0(𝑥(𝑘))‖ ≤ 𝛿𝑘𝑐 ‖𝑧∗0(𝑥(0))‖, where

𝛿𝑘 =
√

𝜌 and 𝑐 =
√

𝑏∕𝑎 < ∞ for all 𝑥(0) = 𝑥 ∈ 𝛼 . Since X𝑁

is bounded, it yields from (22c) the existence of a finite integer 𝐷
such that 𝑥(𝑘) ∈ 𝛼 for all 𝑘 ∈ 𝐷, 𝑥 ∈ X𝑁 and 𝑤 ∈  . Due to
(𝑘) ∈ 𝑧∗0(𝑥(𝑘)) ⊕ 𝛺𝑥, the set 𝛺𝑥 is robustly exponentially stable for
he uncertain system with all 𝑥 ∈ X𝑁 .
6

s

6. Cooperative learning example

A potential application, for which the proposed approach can be
used as-is, is that of cooperative learning, where multiple controllers
share their previous experiences to attain better performance. Let us
consider a set of robots moving in a plane, so that their position
and velocities are, respectively, controlled and manipulated variables.
Moreover, the set of robots share a cloud-based database that col-
lects information from different robots’ controllers. We may model
such robots as a system with parametric uncertainties that is formed
nominally by two discrete-time linear integrators as follows:
[

𝑥1
𝑥2

]+

= 𝐴(𝜃)
[

𝑥1
𝑥2

]

+ 𝐵(𝜃)
[

𝑢1
𝑢2

]

, (23)

with state 𝑥 = [𝑥1, 𝑥2]⊤ and control input 𝑢 = [𝑢1, 𝑢2]⊤ both subject to
constraints:

[−2,−2]⊤ ≤ {𝑥, 𝑢} ≤ [2, 2]⊤.

Matrices 𝐴(𝜃) and 𝐵(𝜃) are, respectively, composed of the nominal
matrices 𝐴 = I and 𝐵 = I plus parametric uncertainties

𝛥𝐴𝜃 =
[

𝛥𝐴𝜃1 0
0 𝛥𝐴𝜃2

]

, 𝛥𝐵𝜃 =
[

𝛥𝐵𝜃1 0
0 𝛥𝐵𝜃2

]

,

where 𝛥𝐴𝜃1, 𝛥𝐴𝜃2, 𝛥𝐵𝜃1, 𝛥𝐵𝜃2 ∈ [0, 0.4].
For simulations, we consider the realizations of the nominal sys-

tem detailed in Table 2. The simulation length is 𝑁end = 30, the
prediction horizon is 𝑁 = 5, and the cost function is defined by (8)
with 𝑄 = 0.5 ⋅ I and 𝑅 = 5 ⋅ I. The optimal feedback controller 𝐾
for all system realizations (𝐴(𝜃), 𝐵(𝜃), 𝑄,𝑅) is calculated by solving
the set of LMIs (18) obtaining 𝐾 = −0.7257 ⋅ I. The RPI set 𝛺𝑥 is
calculated with the MPT toolbox of MATLAB taking into account
the set  defined by (5). Furthermore, we have created a database of
𝑇 = 100 trajectories from the nominal system (𝐴,𝐵) by using different
proportional controllers. Note that we consider the most restrictive case
in which there are no data from other realizations. These trajectories
start from different feasible initial states and reach the origin, i.e., 𝑥obj =
[0, 0]⊤. Each trajectory has 𝑘𝑡end–step information, where the value of
each 𝑘𝑡end depends on when its state error was below the threshold
𝜀 = 10−3. Hence, there is a total of ∑

𝑡∈ 𝑘𝑡end partial trajectories, but
the algorithm only considers 𝑀 = 1500 to combine them.

We test our robust data-based controller (Robust DBC) with the
data-based controller (DBC) previously proposed in [14]. For initial
state 𝑥(0) = [−1.8, 1.8]⊤, Fig. 2 shows a comparison of state trajec-
tories {𝑥(𝑘)} obtained by implementing both controllers for realiza-
tions {(𝐴,𝐵), (𝐴1, 𝐵1),… , (𝐴4, 𝐵4)}. We also show all trajectories in the
database ( ), the sequence of the optimized nominal state {𝑧∗0(𝑥(𝑘))}
centered in the RPI set 𝛺𝑥, and the constraint set  . Furthermore,
for all considered system realizations, Table 2 displays a numerical
comparison in terms of the maximum computing time to solve the
control problem (denoted as 𝐶𝑇max [s]), the absolute average error
(𝐸abs):

𝐸abs =
𝑁end
∑

𝑘=1

‖𝑥(𝑘) − 𝑥obj‖

𝑁end
,

nd the cumulative performance cost (𝐽acc):

acc =
𝑁end
∑

𝑘=1
𝑥(𝑘)⊤𝑄𝑥(𝑘) + 𝑢(𝑘)⊤𝑅𝑢(𝑘).

s shown in Table 2, the implementation of the Robust DBC results in
ower absolute average error and cumulative performance cost than the
BC method for all system realizations.

Moreover, as depicted in Fig. 2a, the DBC method fails to control
he system realizations (𝐴2, 𝐵2) and (𝐴4, 𝐵4) driving the states far from
he origin. In contrast, the Robust DBC control method successfully
teers the state toward the goal for all system realizations. These results
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Fig. 2. State trajectories with initial state 𝑥(0) = [−1.8, 1.8]⊤ for realizations {(𝐴,𝐵), (𝐴1 , 𝐵1),… , (𝐴4 , 𝐵4)} by implementing our Robust DBC and the DBC previously proposed in [14].
Table 2
R2.4 Numerical results comparison between the DBC method previously proposed in [14], and our Robust DBC strategy.

System
realizations

System parametric uncertainties DBC Robust DBC

Δ𝐴𝜃1 Δ𝐴𝜃2 Δ𝐵𝜃1 Δ𝐵𝜃2 𝐶𝑇max [s] 𝐸abs 𝐽acc 𝐶𝑇max [s] 𝐸abs 𝐽acc

(𝐴,𝐵) 0 0 0 0 0.0036 0.13 11.17 0.0256 0.11 10.30
(𝐴1 , 𝐵1) 0.4 0 0.4 0 0.0022 0.21 20.83 0.0217 0.14 13.88
(𝐴2 , 𝐵2) 0.4 0 0 0.4 0.0015 2.35 613.49 0.0221 0.20 22.77
(𝐴3 , 𝐵3) 0.4 0 0.4 0.4 0.0022 0.18 18.66 0.0203 0.12 12.67
(𝐴4 , 𝐵4) 0 0.4 0.4 0 0.0013 2.69 870.78 0.0192 0.29 24.58
(𝐴5 , 𝐵5) 0 0.4 0 0.4 0.0014 0.17 14.94 0.0187 0.12 11.70
(𝐴6 , 𝐵6) 0 0.4 0.4 0.4 0.0009 0.17 13.85 0.0192 0.12 10.13
(𝐴7 , 𝐵7) 0.4 0.4 0.4 0 0.0017 0.60 55.45 0.0242 0.24 23.56
(𝐴8 , 𝐵8) 0.4 0.4 0 0.4 0.0013 2.04 369.57 0.0195 0.27 28.92
(𝐴9 , 𝐵9) 0.4 0.4 0.4 0.4 0.0013 0.27 25.82 0.0186 0.16 15.57
Fig. 3. State trajectory with initial state 𝑥(0) = [−1.8, 1.8]⊤ for realization (𝐴2 , 𝐵2) by
implementing our Robust DBC with a feedback gain 𝐾 designed solving the LMIs [39]
for a particular different realization.

demonstrate that the original method can be very sensitive to problems
such as uncertainties or noise in the data, where the proposed method
is inherently more robust.
7

Finally, Fig. 3 illustrates how the controller is capable to stabilize
the system even if the feedback gain is poorly design for a different
particular realization. Specifically, we show how the proposed method
is applied to system realization: (𝐴2, 𝐵2). Here, it has been used as
an auxiliary controller the feedback gain 𝐾 = −0.2475 ⋅ I, which
was designed specifically for a different system realization within the
uncertain set, e.g., (𝐴10, 𝐵10):

𝐴10 =
[

1 0
0 1

]

, 𝐵10 =
[

1.4 0
0 1.4

]

,

solving the LMIs [39]. This case is interesting because this feed-
back gain would yield unstable closed-loop dynamics with eigenvalues
0.6536 and 1.1525 if it was used directly as main controller. Therefore,
this example illustrates one of the remarkable features of the proposed
method, which is to require only a feedback gain that stabilizes at least
one of the system realizations. Note also that the change of gain in this
example motivates the different shape of the invariant set.

7. Nonlinear-dynamics example

We consider the quadruple-tank plant presented in [44] as the case
study with non-linear dynamics.

The plant is formed by four interconnected tanks, where the upper
tanks (#3 and #4) discharge flow rates to the lower tanks (#1 and #2),
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Fig. 4. Scheme of the quadruple-tank plant.

and these, in turn, into a sinking tank. The plant is controlled by two
pumps that keep the water circulation between the tanks. There are
also two three-way valves that divide the flow into two ways (see
Fig. 4). Applying the mass balance and Bernoulli’s law to the plant,
the non-linear dynamics are:

𝑆
𝑑ℎ1
𝑑𝑡

= −𝑎1
√

2 𝑔ℎ1 + 𝑎3
√

2 𝑔ℎ3 + 𝛾a
𝑞a

3600
,

𝑆
𝑑ℎ2
𝑑𝑡

= −𝑎2
√

2 𝑔ℎ2 + 𝑎4
√

2 𝑔ℎ4 + 𝛾b
𝑞b

3600
,

𝑆
𝑑ℎ3
𝑑𝑡

= −𝑎3
√

2 𝑔ℎ3 + (1 − 𝛾b)
𝑞b

3600
,

𝑆
𝑑ℎ4
𝑑𝑡

= −𝑎4
√

2 𝑔ℎ4 + (1 − 𝛾a)
𝑞a

3600
,

(24)

where 𝑆 = 0.03 m2 is the cross section of the tanks, {ℎ1, ℎ2, ℎ3, ℎ4} are
the water levels of the tanks, and {𝑎1, 𝑎2, 𝑎3, 𝑎4} are the cross section of
the outlet pipes. The parameters {𝛾a, 𝛾b} ∈ [0, 1] refer to the opening
of the three-way valves (𝛾a = 0.3, 𝛾b = 0.4), 𝑔 = 9.81 m∕s2 is the
gravitational constant, and {𝑞a, 𝑞b} are the pump flow rate.

The dynamics of the non-linear system (24) can be linearized by its
Taylor expansion as:

𝑥̂+ = 𝐴𝑥̂ + 𝐵𝑢̂, (25)

where 𝑥̂ = [ℎ1 − ℎ01,… , ℎ4 − ℎ04]
⊤ and 𝑢̂ = [𝑞a − 𝑞0a , 𝑞b − 𝑞0b ]

⊤ around the
following reference point:

⎡

⎢

⎢

⎢

⎢

⎣

ℎ01
ℎ02
ℎ03
ℎ04

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0.5005
0.4704
0.5206
0.4319

⎤

⎥

⎥

⎥

⎥

⎦

m,
[

𝑞0a
𝑞0b

]

=
[

1.5355
1.6794

]

m3∕h.

Therefore, the discrete-time linear nominal system (𝐴,𝐵) with a sam-
pling time 𝑇s = 30 s is characterized by:

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0.6654 0 0.1919 0
0 0.5971 0 0.2250
0 0 0.7643 0
0 0 0 0.7077

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0684 0.0179
0.0254 0.0868

0 0.1461
0.1644 0

⎤

⎥

⎥

⎥

⎥

⎦

.

We consider the following state and control input constraints:

0 [m] ≤ {ℎ1, ℎ2, ℎ3, ℎ4} ≤ 1.2 [m],
3 3 (26)
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0 [m ∕h] ≤ {𝑞a, 𝑞b} ≤ 3 [m ∕h].
Fig. 5. Set of 100 trajectories of the nominal plant (𝐴,𝐵) that compose the database.

7.1. Control parameters and database

The control objective is to drive the states of tanks #1 and #2 to the
reference point:

ℎ0 ≜
[

ℎ01
ℎ02

]

=
[

0.5005
0.4704

]

m, (27)

while minimizing the control cost (8) subject to constraints (26). The
prediction horizon is 𝑁 = 5, matrices 𝑄 and 𝑅 are:

𝑄 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑅 =
[

0.01 0
0 0.01

]

,

the length of simulations is 𝑁end = 2010 s, and the sampling time of the
controller is 𝑇s = 30.

The database is composed of 𝑇 = 100 trajectories, which have
been obtained from the nominal plant (𝐴,𝐵) using PI controllers. These
trajectories start at different points and end at the reference point (27),
as illustrated in Fig. 5. Since the plant is a multiple-input multiple-
output (MIMO) system, we employ two discrete PI controllers, one to
manage tank level ℎ1 via pump 𝑞a and another to manage ℎ2 through
pump 𝑞b, whose parameters are randomized in the intervals: 𝐾p ∈
[2.25, 3.25] and 𝑇i ∈ [275, 475]. The procedure carried out to obtain the
trajectories can be divided into two steps. First, the system is brought to
a point that meets the constraints (26). Once in steady state, we apply
the PI controller to bring the system to the reference point (27) until the
sum of 100 consecutive absolute errors of ℎ1(𝑘) plus ℎ2(𝑘) is below the
threshold 𝜀 = 0.35. Note that despite using PIs to generate the database,
we may encounter minor offset in some of the trajectories.

Each trajectory has 7000 seconds of information on the plant op-
eration. Therefore, there is a total of 𝑇 ⋅ 7000∕𝑇s candidate partial
trajectories at each time step, but only 𝑀 = 1500 partial trajectories
are considered by the algorithm to compute the final control sequence.

Furthermore, we consider five different system realizations,
{(𝐴1, 𝐵1),… , (𝐴5, 𝐵5)}, to test the proposed control method, which are
obtained by slightly changing the cross section of the outlet pipes of
nominal system (𝐴,𝐵), as detailed in Table 3. Note that, for a practical
application of the control method, the difference between systems
should be small enough to apply robustness arguments.

The optimal feedback controller 𝐾 for all system realizations ob-
tained by solving LMIs (18) is

𝐾 =
[

−2.9758 −0.7966 −0.1686 −1.5448
−1.7242 −1.7282 −2.3000 0.3660

]

,

and 𝛺𝑥 is calculated with MPT toolbox taking into account 𝐾 and
the polytopic set  ≜ {𝑤 ∈ R𝑛𝑤 ∶ 𝑤 < 𝟎.𝟏}.
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𝑞

Fig. 6. Results for system realization (𝐴2 , 𝐵2) by implementing our Robust DBC and the previously proposed DBC.
Table 3
R2.4 Numerical results comparison between the DBC method proposed in [14] and our Robust DBC strategy.

System
realizations

Cross section of outlet pipes [m] DBC Robust DBC

𝑎1 ⋅ 10−4 𝑎2 ⋅ 10−4 𝑎3 ⋅ 10−4 𝑎4 ⋅ 10−4 𝐶𝑇max [s] 𝐸abs (%) 𝐽acc 𝐶𝑇max [s] 𝐸abs (%) 𝐽acc

(𝐴,𝐵) 1.301 1.597 0.876 1.026 0.0078 2.162 0.131 0.0236 0.751 0.039
(𝐴1 , 𝐵1) 1.341 1.627 0.896 1.108 0.0021 2.162 0.116 0.0238 0.706 0.038
(𝐴2 , 𝐵2) 1.236 1.488 0.807 0.997 0.0023 2.534 0.137 0.0320 0.751 0.041
(𝐴3 , 𝐵3) 1.236 1.627 0.807 1.108 0.0023 1.341 0.089 0.0267 0.714 0.038
(𝐴4 , 𝐵4) 1.683 1.691 0.964 0.940 0.0156 2.460 0.175 0.0219 0.869 0.053
(𝐴5 , 𝐵5) 1.475 1.845 0.896 1.208 0.0022 2.197 0.116 0.0243 0.668 0.037
7.2. Simulation results

We performed simulations for different system realizations to pro-
vide a numerical comparison between the data-based controller (DBC)
presented in [14], and our robust data-based controller (Robust DBC).

Fig. 6 shows the trajectories of tank levels and flow rates {𝑞a, 𝑞b},
considering the initial states (ℎ1(0) = 0.7005m and ℎ2(0) = 0.6704m,
with their corresponding ℎ3 and ℎ4 levels) for the system realization
(𝐴2, 𝐵2). Table 3 displays the mean absolute error (%) of the tank levels
𝑛 = {1, 2} calculated as:

𝐸𝑛
abs =

∑𝑁end∕𝑇s
𝑘=1

|

|

|

ℎ𝑛(𝑘) − ℎ0𝑛
|

|

|

𝑁end∕𝑇s
⋅ 100,

𝐸abs(%) = (𝐸1
abs + 𝐸2

abs)∕2,

and also the accumulated cost:

𝐽acc =
𝑁end∕𝑇s
∑

𝑘=1
ℎ̂(𝑘)⊤𝑄 ℎ̂(𝑘) + 𝑞(𝑘)⊤𝑅𝑞(𝑘),

where

ℎ̂(𝑘) = [ℎ1(𝑘), ℎ2(𝑘)] − [ℎ01, ℎ
0
2],

̂(𝑘) = [𝑞a(𝑘), 𝑞b(𝑘)] − [𝑞0a , 𝑞
0
b].

As displayed in Table 3, the mean absolute errors obtained with Robust
DBC are lower than those obtained with the original algorithm. In terms
of the accumulated cost, Robust DBC also outperforms the original
9

algorithm for all system realizations.
Finally, Figs. 6(a) and 6(b) show the simulated trajectories of state
and input for system realization (𝐴2, 𝐵2). Our robust data-based con-
troller is able to manage the plant with the information of the database
(see Fig. 6(b)), while the original controller offers a worse control,
as shown in Fig. 6(a). These results demonstrate the effectiveness of
the proposed robust data-based approach in dealing with challenging
aspects of systems, such as noise and parametric uncertainties.

8. Conclusions

The proposed approach extends a previously presented historian-
based method with tube-based MPC ideas to obtain new properties
such as robust constraint satisfaction, also paving the way for exten-
sions to linear parameter-varying systems and applications such as
cooperative learning. The main advantage of the new method is that
it is straightforward to implement, as it does not require additional
experiments, since historical data is typically available in most control
systems. Finally, our outcomes in the two case studies show promising
results and highlight the potential for data exchange between different
realizations of the system in this context.

In particular, our proposal uses closed-loop trajectories and an auxil-
iary control law; two ingredients analogous to the ones of classical MPC
methods (closed-loop predictions and semi-feedback strategies [45])
to reduce conservatism, exploiting the duality between parametric
uncertainties and additive uncertainties in the proposed setup.

The adopted approach somehow navigates between the model-
based and model-free paradigms. In particular, it is based on a dual

control approach where a nominal and an auxiliary controller are
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employed. While the former can be implemented using only the tra-
jectories contained in the database, the latter has to be designed
empirically if absolutely no prior information regarding the system
being controlled is available. However, as has been shown, there are
also methods to derive models, control laws and invariant sets from
data. In a less restrictive information setup, we only require the control
designer to have access to a particular system realization within the
uncertainty set – a very mild requirement – so that a feedback gain for
that system realization can be computed together with the correspond-
ing invariant set. Remarkably, as we have shown in the simulations,
this is enough to control other realizations that yield unstable closed-
loop dynamics with the previously mentioned feedback gain. As for
the set of possible system realizations and the corresponding additive
uncertainty, empirical bounds might be obtained if no prior information
is available. Note that this is often done in robust predictive control
approaches, since uncertainty sets are rarely known with precision.

Lastly, we discuss some of the potential limitations of our method.
The availability of one robust trajectory is necessary to guarantee at
least a feasible solution for the nominal problem. This assumption is
somewhat equivalent to the assumption that standard MPC has solution
at the first time instant to prove stability. Moreover, stable trajectories
are required to finish at a bounded distance from the origin, so that
trajectories with offset are also considered, in addition to the previously
mentioned need for a feedback gain 𝐾 for the auxiliary control law and
knowledge about the uncertainty set to apply the tube-based controller.
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