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Abstract

This manuscript, the second of a two-part series, shows how a discrete-time cir-

cuital model of loudspeakers, which is extensively analyzed in the first part, can

be exploited to develop a method for loudspeaker virtualization. This method

can be used to alter the behavior of a physical loudspeaker in such a way to

match that of a target loudspeaker. Examples of applications include loud-

speaker equalization or linearization. The method is characterized by a structure

called Direct-Inverse-Direct Chain, which is composed of three blocks: a digital

model of the target loudspeaker; a digital model of the inverse loudspeaker; and

the physical loudspeaker. The inverse loudspeaker model is derived from the

equivalent circuit of the direct system using a two-port element known in circuit

theory as “nullor”. We show how this inverse model can be efficiently imple-

mented in the discrete-time domain with no iterative solvers by exploiting Wave

Digital Filter principles. The proposed virtualization algorithm is extensively

tested both through simulations and applications to real loudspeakers. In par-

ticular, we show how the algorithm can reduce the distortion of the transducer

output pressure signal, and how it can make a loudspeaker sound like a target

loudspeaker with a desired nonlinear behavior.
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1. Introduction

Loudspeakers are transducers that convert electrical audio signals into sound

waves. This transduction process is, in fact, nonlinear and it may introduce

several modifications in the output signal, which are typically manifested as

alterations of the frequency content and distortions [1]. As this is an undesired5

behavior in many application scenarios, algorithms have been proposed and

developed to preprocess the audio signal for the purpose of reducing the impact

of nonidealities in the electroacoustic transduction [2].

In particular, many digital signal processing methods have been proposed

for loudspeaker linearization. The most traditional approach relies on feedback10

linearization [3], recently reformulated based on output flatness and trajectory

planning [4, 5]. To overcome the limitations of feedback-based approaches, open-

loop alternatives have emerged starting from the seminal works by Klippel [6].

Among open-loop methods, we can identify contributions based on a black-

box modeling approach [7, 8, 9] and contributions based on a signal processing15

inverse of the nonlinear physical model [6, 10, 11, 12, 13]. Moreover, a family of

hybrid methods have been investigated, where the feedback signals are computed

as the output of nonlinear models of the system [14, 15].

Other works in the literature focus on the problem of designing digital equal-

ization techniques for loudspeaker systems [6, 16, 17]. Similarly to the aforemen-20

tioned loudspeaker linearization approaches, these methods consist of inserting

a digital filter before the electroacoustic transducer.

In fact, both loudspeaker linearization and loudspeaker equalization prob-

lems can be thought of as particular cases of the more general problem of forcing

a desired transduction behavior into the loudspeaker without altering its phys-25

ical and geometrical components. We refer to this general task of modifying
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the behavior of a physical loudspeaker, through digital signal preprocessing al-

gorithms, in such a way to match that of a target loudspeaker, as loudspeaker

virtualization.

In this manuscript we present a novel methodology for loudspeaker virtual-30

ization that is based on the design and the efficient digital implementation of

the inverse circuital model of a loudspeaker electrical equivalent. The lumped

loudspeaker model that we consider for this purpose has been extensively de-

scribed in the first part of this work [18] and it will be called the Direct System.

It is composed of three subcircuits covering the electrical domain, the mechani-35

cal domain, and the acoustic domain of the transducer, respectively. The input

signal of the Direct System is the input voltage applied to the coil of the trans-

ducer, while the output signal is the voltage across the acoustic impedance of

the model, corresponding to a pressure signal. We show how the Inverse System,

i.e., the exact inverse of the nonlinear Direct System, can be readily designed40

by properly adding an ideal two-port circuit element, known in circuit theory

as nullor [19], to the circuit of the Direct System.

We then discuss how the nonlinear Direct System described in [18] and the

Inverse System presented in this manuscript can be combined to perform loud-

speaker virtualization. As examples of applications of the proposed approach,45

we show how the designed precompensation algorithm can reduce the distortion

of the transducer output pressure signal, and how it can make a loudspeaker

sound like a target loudspeaker with a desired nonlinear behavior.

It is important to underline that the methodological approach that we present

in this article can be adopted to design the inverse of any physical model that is50

formulated in the form of an equivalent circuit. We will show that the inversion

that we achieve is exact, therefore the validity of this approach can only be

limited by the validity of the circuital model itself.

The discrete-time implementation of the Inverse System that we propose is

based on the same principles of Wave Digital Filter (WDF) theory [20, 21, 22,55

23], used for implementing the Direct System in [18], and it is fully explicit,

which means that it does not rely on any iterative solver.

3



This manuscript is a continuation of [18], although it has been organized

in such a way to be as self-contained as possible. Section 2 provides the back-

ground on a general inversion theorem [24] that, given a Direct System repre-60

sented as a circuit with an input signal and an output signal characterized by

a one-to-one relation, allows us to design the inverse of the Direct System by

properly connecting a nullor to the Direct System circuit. Given the nonlinear

loudspeaker model described in [18], Section 3 shows how to apply the inver-

sion theorem discussed in Section 2 in order to derive the circuit of the inverse65

loudspeaker system. Section 4 presents an explicit WDF implementation of

the inverse loudspeaker system. Section 5 describes the proposed loudspeaker

virtualization algorithm. In particular, the algorithm is based on the so called

Direct-Inverse-Direct Chain (DIDC) that is composed of: one digital filter block

implementing the direct target loudspeaker system, one digital filter block im-70

plementing the inverse loudspeaker system, and a physical block representing

the real direct system, i.e., the actual loudspeaker. Section 6 shows how the

proposed DIDC-based approach can be employed for loudspeaker linearization.

The effectiveness of the method is verified both through simulations and the

application of the algorithm to two real loudspeakers; moreover, an analysis of75

algorithm performance degradation in presence of model parameter uncertainty

is performed. Section 7 presents a further application of the proposed DIDC-

based virtualization approach in which a target distortion behavior is imposed

to two different real loudspeakers. Section 8 concludes this manuscript.

2. Background on the Nullor-based Inversion of Nonlinear Systems80

In this Section we revise a general method presented in [24] to derive the

inverse of a reference Direct System represented as a linear or nonlinear electrical

circuit. The inversion method makes use of an ideal two-port circuit element

called nullor, which is widely used in the literature of circuit theory to develop

ideal representations of multi-port elements such as operational amplifiers or85

transistors [19, 25].
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Figure 1: A nullor consisting of a nullator (represented with an ellipse) paired with a norator

(represented with two contiguous circles).

Hereafter we provide some background on nullors, followed by a reformula-

tion of the theorem on which the nullor-based inversion method relies on.

2.1. Background on Nullors

A nullor [19] is a theoretical linear two-port circuit element composed of two

one-ports: the nullator and the norator. Fig. 1 shows its graphical symbol, where

the ellipse represents the nullator, while the pair of adjacent circles represents

the norator. The nullator can be thought of as simultaneously an open and

a short circuit, as both its port current and port voltage are identically zero.

Conversely, the norator is a nonreciprocal one-port with arbitrary port voltage

and current. The constitutive equation of a nullor is therefore


v1
i1


 =


0 0

0 0




v2
i2


 , (1)

where v1 is the voltage across the nullator, v2 is the voltage across the norator,90

i1 is the current through the nullator and i2 is the current through the norator.

Nullors are widely used to build ideal macromodels of more complex multi-

ports, such as operational amplifiers (opamps), transconductance amplifiers or

transistors [19, 25, 26, 27]. For example, an ideal opamp can be modeled using

a nullor as shown in Fig. 2, where v1+, v1− and v2+ are the potentials at the95

two input terminals and the output terminal of the opamp, respectively [26].

2.2. Inversion Theorem

Techniques for implementing inverse circuital models have been explored in

the literature [28, 29], especially with the purpose of developing synchroniza-

tion methods for chaotic systems [30]. A generalization of the inverse circuit100
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Figure 2: (a) represents an ideal opamp, while (b) is an equivalent nullor-based representation

of the same ideal opamp in (a).

approach used in [28, 29] was proposed in [24], to design the inverse of a cir-

cuital system containing at least one nullor. The theorem presented in [24] is

here reformulated in similar fashion as in [31].
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Figure 3: (a) shows the Direct System. The input signal Vin(t) drives a voltage source, while

the output signal Vout(t) is the voltage across the norator. (b) shows the inverse of the system

in (a). Letters A, B, C, D, E, and F indicate the same nodes of the nonlinear network both

in (a) and (b).

We refer to the system to be inverted as Direct System, and we assume that it

can be represented as in Fig. 3(a), where the Direct System is made of a generic105

linear or nonlinear non-autonomous network, with at least one nullator-norator

pair connected to it. A single input signal Vin(t) is injected into the system using

a voltage source, while the output signal Vout(t) is the voltage measured across

the norator. The Inverse System, shown in Fig. 3(b), is obtained by replacing

the input voltage source of the Direct System with the norator; and the norator110

with a voltage-controlled voltage source, whose control signal is Vout(t). For the

circuits in Fig. 3, we can state the following theorem:

Theorem 1. If the two nonlinear dynamical systems in Fig. 3 have unique

bounded solutions, then, for any pair of signals Vin(t) and Vout(t), the system

in Fig. 3(b) is the inverse of the system in Fig. 3(a). This means that for any115
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input signal Vin(t) and every initial state vector x(0) for the Direct System in

Fig. 3(a), there is an initial state vector x̂(0) for the Inverse System in Fig. 3(b)

such that V̂in(t) = Vin(t).

In other words, less formally, we can state that, under the conditions ex-

pressed in Theorem 1, if the input of the Inverse System is the output of the120

Direct System, then the output of the Inverse System equals the input of the

Direct System. A formulation and a proof of Theorem 1 are offered in Section 3

of [24]. A reworded version of the same theorem is offered in [31].

3. Nonlinear Inverse Model of the Loudspeaker

Let us consider the equivalent circuit of the nonlinear Direct System mod-125

eling the transduction process of the loudspeaker, extensively described in the

first part of this two-part work [18] and shown in Fig. 4. The electrical input

voltage Vin and the acoustic pressure signal Pout (which is a voltage in the cir-

cuital model) are the input and the output of the system, respectively. Since a

nullator and a norator in series are equivalent to an open circuit [26], we can130

add them to the circuit in Fig. 4 without altering its behavior. The result is

the circuit shown in Fig. 5, which is fully equivalent to that of Fig. 4. We can

now use Theorem 1 by Leuciuc [24], discussed in Section 2, to obtain the circuit

shown in Fig. 6, which represents the inverse system of that in Fig. 5 and also of

that of Fig. 4. It is evident from Fig. 6 that the input of the Inverse System is135

the acoustic pressure signal Pout driving the voltage source, while the output is

the voltage V̂in. Notice that, according to the properties of the nullator [19, 26],

we have that Pal = Pout. Considering an ideal operational amplifier modeled as

in Fig. 2, the circuit of Fig. 6 can be redrawn as in Fig. 7. Therefore, under the

assumption that the operational amplifier is ideal, the two circuits in Fig. 6 and140

Fig. 7 are equivalent.
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Figure 4: Circuital model of the nonlinear Direct System.
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Figure 5: Circuital model of the nonlinear Direct System augmented with a nullor. This

circuit is equivalent to the one in Fig. 4.
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Figure 6: Circuital model of the nonlinear Inverse System with nullor.
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Figure 7: Circuital model of the nonlinear Inverse System with opamp. If the opamp is ideal,

the circuit is equivalent to the one in Fig. 6.

4. Wave Digital Realization of the Nonlinear Inverse System

The WDF realization of the Inverse System shares many aspects with the

one of the Direct System characterized by the circuit in Fig. 4 and extensively

discussed in [18].145
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Figure 8: Circuital model of the nonlinear Inverse System with nullor and added resistors

Rrd and Rser. Because of the properties of nullators and norators, the circuit with the two

added resistors do have the same behavior of the circuit in Fig. 6.

When designing the WDF model of the Inverse System, it is worth remem-

bering that in a WDF structure we do not have direct access to potentials at

nodes, as it happens with other circuit simulation methods, like the Modified

Nodal Analysis, but just to port voltages (i.e., differences of potentials) [20]. In

order to solve this problem, we add the two resistors with resistances Rrd = 100150

kΩ and Rser = 1Ω to the reference circuit in Fig. 6, as shown in Fig. 8. The

resistor Rrd is added in parallel to the norator in order to simplify the reading

of the signal V̂in which is equal to the voltage across it. Notice that, irrespective

of the resistance value, Rrd does not modify the behavior of the reference circuit

in Fig. 6 because of the properties of the norator [19, 26]. On the other hand,155

the resistor Rser is added in series to the nullator in order to combine it with

the generator Pout, which can then be modeled as a resistive voltage source.

This allows us to adapt the voltage source in the Wave Digital (WD) domain by

breaking the local delay-free-loop that would otherwise arise if Pout were mod-

eled as an ideal voltage source (in fact, ideal sources cannot be made reflection160

free in the WD domain [20]). Also the added resistor Rser does not affect the

behavior of the original circuit because of the properties of the nullator [19, 26].

The WDF realization of the Inverse System is shown in Fig. 9. As far as

the WD modeling of the elements of the Inverse System is concerned, they are

characterized by the same scattering relations used in the WDF implementation

of the Direct System presented in [18]. The nonlinearities Bl(x), Le(x), and

Cms(x) are characterized by the same polynomial functions of the Direct System

[18] and need to be updated at each sampling step, once an estimate of the

9



WD 5-port Nonreciprocal
Scattering Junction

R2

5

2

3

14

S2

P1 S3S1

Ccab
Ral

Rcab

Le Cms Rms

Mms

Re

+−

Pout Rser Rrd

1

Figure 9: WDF realization of the Inverse System.

Ie

+−ImsBl

+− IeBl

j2
v2+ −

j5
v5+ −

Ims

+−v3Sd ImsSd

+

−

j1

v1

+

−

j3

v3

+

−

j4

v4

F EDCBA

O

1

Figure 10: 5-port connection network implemented with WD R2 adaptor.

diaphragm displacement x is computed. Also the series and parallel junctions

S1, S2, S3, and P1 are modeled as in the Direct System. In addition to Rrd and

Rser, the only new block of the WDF in Fig. 9 is the junction R2 implementing

the 5-port non-reciprocal connection network in Fig. 10 that embeds a gyrator,

a transformer, and a nullor. In Fig. 9 the port numbers of R2 are indicated in

gray. The scattering matrix SR2 of the WD junction R2 is derived using the

approach described in [22] obtaining

SR2
=




−1 − 2Z5

Bl − 2(Bl2+Z2Z5)
BlSdZ3

2(Bl2+Z3Z5S
2
d+Z2Z5)

BlSdZ3
+2

0 +1 2Z2

SdZ3
− 2Z2

SdZ3
0

0 0 −1 +2 0

0 0 0 +1 0

0 − 2Z5

Bl − 2Z2Z5

BlSdZ3

2Z5(Z3S
2
d+Z2)

BlSdZ3
+1




(2)

where Z1, . . . , Z5 are the reference port resistances at the five ports of the junc-
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Figure 11: Processing structure for the validation of the nonlinear Inverse System block.

tion R2. The argument x of the Bl(x) parameter in the coefficients of SR2 is

omitted for the sake of compactness.165

The WD structure in Fig. 9 is implemented similarly to the one designed for

the Direct System; the leaves are all the adapted one-ports, the nodes are the

series and the parallel adaptors while the root is R2.

4.1. Inverse System Model Validation

In order to validate the WDF implementation of the nonlinear Inverse Sys-170

tem, we use the configuration shown in Fig. 11; we put the Direct System and

the Inverse System in cascade and we verify whether the input signal of the

Direct System Vin is the same of the output signal of the Inverse System named

V̂in, given the output signal of the Direct System Pout as input to the Inverse

System.175

In our experiments, we consider the two loudspeaker systems already de-

scribed in the first part of this work [18] and characterized by the two drivers

LaVoce FSF122.02-8 and LaVoce FSN020.71-4 of significantly different sizes.

As in [18], the two loudspeakers will be referred to as Spk-1 and Spk-2. The

circuit parameters are the same reported in Table 2 and Table 4 of [18]. The180

sampling frequency of the discrete-time simulations is Fs = 96 kHz.

Similarly to what done in [18], the input signals used in all the experiments

of the manuscript are in the form

Vin(t) = Ain
sin(t)

rms{sin(t)} (3)

11
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Figure 12: Inverse System validation test. Comparisons between Vin and V̂in with reference

to Fig. 11. Upper plots show comparisons in the time domain. The second row, the third

row, and the fourth row of plots show the spectrograms of Vin, Pout, and V̂in, respectively.

(a) refers to Spk-1. (b) refers to Spk-2.
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where Ain is an amplitude parameter in Vrms, rms{.} is an operator returning

the root mean square value of the argument. In this section, sin(t) is always an

exponential sine sweep defined as [32]

sin(t) = sin

[
2πf1L exp

(
t

L

)]
, (4)

where L = T
log(f2/f1)

, being f1 = 10 Hz, f2 = 20 kHz, and T = 5 s the initial

frequency, the final frequency, and the duration of the sweep, respectively.

Fig. 12 contains the validation results. Fig. 12(a) refers to Spk-1 and Ain =

11.5 Vrms, while Fig. 12(b) refers to Spk-2 and Ain = 3 Vrms. The plots in the185

first row show a zoomed portion of the signals Vin, V̂in, and Pout in the time

domain. The plots in the second, the third, and the fourth rows, instead, show

the spectrograms of Vin, Pout, and V̂in, respectively. We can notice that, for

both Spk-1 and Spk-2, Vin and V̂in are perfectly matching. This is evident from

the plots in the time domain where Vin and V̂in are superimposed. Also looking190

at the spectrogram images, we notice that those in the second row are equal to

those in the fourth row. It is worth highlighting that in the spectrograms of

Pout additional curves are present due to the distortion introduced by the direct

system, and that they nicely disappear in the spectrograms of V̂in. The matching

between Vin and V̂in is further verified by computing the Normalized Root Mean195

Square Error (NRMSE) between the two signals, which is NRMSE = 5.3×10−12

for Spk-1 and NRMSE = 4.3× 10−14 for Spk-2.

5. Direct-Inverse-Direct Chain

Let us now describe the proposed loudspeaker virtualization method that is

characterized by the signal flow in Fig. 13 referred to as Direct-Inverse-Direct200

Chain (DIDC). The DIDC is composed of three main input-output processing

blocks. The two blocks above the gray horizontal line, i.e., the Target Direct

System and the Inverse System, represent the digital preprocessing structure

to be implemented, and they can be realized using the WDFs described in the

first part [18] of this two-part work and in Section 4 of this manuscript. The205
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Figure 13: Direct-Inverse-Direct Chain representation.

last Direct System block below the gray line, instead, represents the actual

loudspeaker, i.e., the physical transduction process. The scalar coefficient g is

an amplification gain modeling the audio amplifier that is certainly present in

real application scenarios. At the last step of the digital preprocessing stage the

signal is rescaled by the coefficient 1/g. The output signal P̂out of the physical210

Direct System is equal to the output signal Pout of the digital (virtual) Target

Direct System, provided that the cascade of the Inverse System and the Direct

System is equivalent to the identity operator. The design of the Target Direct

System varies according to the application; in fact, the proposed virtualization

method could be used for different tasks, including: loudspeaker equalization,215

loudspeaker linearization, or the forcing of a desired distortion behavior. It

follows that, depending on the application, the Target Direct System might

be linear or nonlinear. As a first example of virtualization, in the following

section, we consider the task of loudspeaker linearization in which the Target

Direct System is linear, while the Inverse System is nonlinear since it is ideally220

the exact inverse of the physical nonlinear Direct System. In the next section,

instead, we will consider a further application of the proposed DIDC-based
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algorithm in which the Target Direct System has a desired nonlinear behavior.

As far as the efficiency performance of the proposed DIDC-based method

is concerned, the MATLAB implementation of the cascade of the Target Direct225

System and the Inverse System runs with an average execution time of approxi-

mately 0.66 µs per sample, which is lower than Ts = 1/Fs = 1/(96kHz) = 10.417

µs. This means that the MATLAB implementations of the proposed DIDC-

based algorithms discussed in the following sections can be executed on the

fly.230

6. DIDC-based Linearization of Loudspeakers

This section presents several experiments for the validation of the DIDC-

based linearization algorithm. We will consider the two already described loud-

speaker systems Spk-1 and Spk-2 in all the experiments. The Target Direct

System is the WDF realization of the linear loudspeaker model described in235

Section 3 of [18]. The Inverse System is the nonlinear WDF described in Sec-

tion 4 of this manuscript. Depending on the experiment, the Direct System is

either one of the two physical loudspeakers Spk-1 and Spk-2 or the WDF model

of nonlinear loudspeakers discussed in Section 5 of [18].

In case real loudspeakers are used, the measurement setup employed for240

sensing the output pressure of loudspeakers is the same described in Appendix A

of [18]. The digital preprocessing algorithm, i.e., the digital portion of the DIDC

including the Target Direct System and the Inverse System, is implemented in

MATLAB and it is contained in the block “PC” of the scheme in Fig. A.9 of

[18].245

The scalar parameter g of the DIDC is set equal to the gain between the

output voltage of the audio interface and the input voltage of the loudspeaker.

With reference to the employed measurement setup, such a gain is 74.3 V/V in

the frequency range from 5 Hz to 40 kHz.

The sampling frequency for digital preprocessing is Fs = 96 kHz.250
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6.1. Simulation Results

Validation results discussed in this subsection refer to the case in which the

physical Direct System is simulated using the WDF model of nonlinear loud-

speakers discussed in Section 5 of [18]. The effectiveness of the proposed lin-

earization algorithm based on predistortion is firstly verified by performing two255

tests: one referred to Spk-1 and one to Spk-2. In both cases we drive the DIDC

with a sinusoidal signal Vin defined as in equation (3) with sin(t) = sin(2πfint).

We compare the power spectrum of the output pressure of the nonlinear Direct

System when no preprocessing is performed and when the proposed DIDC-based

precompensation algorithm is active, along with the corresponding values of To-260

tal Harmonic Distortion (THD). The simulation results are reported in Fig. 14;

the plots on the left refer to Spk-1, while the plots on the right to Spk-2. The

values of Ain and fin in the two experiments are written on the plots. We can

state that the proposed linearization algorithm works perfectly in both cases,

since the harmonics are suppressed while preserving the content at the funda-265

mental frequency fin. The THD reduction, in fact, turns out to exceed 230 dB

in the first experiment, and over 280 dB in the second experiment.

With the purpose of verifying that the proposed algorithm have similar per-

formance also when input sinusoids Vin with different fundamental frequencies

are considered, each subfigure in Fig. 15 shows a comparison between the THD270

curve of the output pressure of the nonlinear Direct System (blue line with circles

indicated with “Non Compensated”) and the THD curve of the output of the

DIDC (red line with stars indicated with “Compensated”) both as functions of

frequency in the range [10 Hz, 3 kHz]. Fig. 15(a) refers to Spk-1 and the input si-

nusoids used to produce the THD curves have amplitude Ain = 11.5 Vrms, while275

Fig. 15(b) refers to Spk-2 and the input sinusoids have amplitude Ain = 3 Vrms.

6.2. Measurements

In this subsection the third block of the DIDC, i.e., the Direct System, is one

of the two physical loudspeakers Spk-1 and Spk-2. The output pressure of the280
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Figure 14: DIDC-based linearization algorithm tested with simulated nonlinear Direct System.

Upper subplots show the power spectra of the output pressure of the nonlinear Direct System

when no preprocessing is performed. Lower subplots are obtained when the precompensation

algorithm is active. (a) refers to Spk-1. (b) refers to Spk-2.

10
2

10
3

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

(a) Spk-1 (FSF122.02-8)

10
2

10
3

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

(b) Spk-2 (FSN020.71-4)

Figure 15: DIDC-based linearization algorithm tested with simulated nonlinear Direct System.

Both subfigures show THD curves of the output pressure of the nonlinear Direct System (blue

line with circles) and of the output of the DIDC (red line with stars) as functions of frequency.

(a) refers to Spk-1; input sinusoids have amplitude Ain = 11.5 Vrms. (b) refers to Spk-2; input

sinusoids have amplitude Ain = 3 Vrms.
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loudspeakers is sensed using the measurement setup described in Appendix A

of [18]. Fig. 16 shows the results of the experiments for input sinusoids at

different frequencies and with different amplitudes. Fig. 16(a) refers to Spk-

1, while Fig. 16(b) refers to Spk-2. The left column of plots indicated with

“Non Compensated” refers to the output pressure signals measured from the285

real loudspeakers in a configuration with no digital preprocessing. The left

column of plots indicated with “Compensated” refers to the output pressure

signals measured from the real loudspeakers when the DIDC-based linearization

algorithm is active. The values of Ain and fin for each experiment are written

on the plots.290

It is evident from Fig. 16 that even with real loudspeakers the DIDC-based

linearization algorithm is effective in all the performed tests. In particular, in

the experiments wherein the loudspeaker systems with no digital preprocessing

are characterized by highest THD (i.e., the cases with highest amplitude Ain

and lowest frequency fin), the proposed algorithm reduces the THD of more295

than 20 dB for Spk-1, when Ain = 11.5 Vrms and fin = 28.75 Hz, and of more

than 25 dB for Spk-2, when Ain = 3 Vrms and fin = 81.4 Hz.

6.3. DIDC Robustness to Parameter Uncertainty

So far we assumed that the optimal values of the nonlinear circuital model of

the physical loudspeaker are known. Of course, this assumption is not valid in

many application scenarios. In fact, although modern systems for the analysis

of loudspeakers, such as the Klippel Analyzer [1], are characterized by high

accuracy (as extensively confirmed by the results presented in [18]), the values

of the parameters of the employed equivalent circuits can only be estimated

with a certain degree of uncertainty. Moreover, short-term phenomena (such as

temperature variations) and long-term phenomena (such as loudspeaker aging)

can modify the loudspeaker behavior and cause the parameter values to further

deviate from the optimal configuration. For this reason, in this subsection we

perform a robustness analysis of the proposed linearization algorithm based on

simulations. This means that, as third block of the DIDC, we use the WDF

18
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Figure 16: DIDC-based linearization algorithm tested with real loudspeakers. Plots on the

left are the power spectra of the output pressure of the loudspeakers when no preprocessing

is performed. Plots on the right show are obtained when the algorithm is active. (a) refers to

Spk-1. (b) refers to Spk-2. 19



realization of the nonlinear Direct System already employed in Subsection 6.1

and we model each circuital parameter as follows

popt = pest + perr (5)

where popt is the optimal parameter value, pest is the measured parameter value,

e.g., returned by the Klippel Analyzer system [1] or another system for the300

estimation of circuital parameters, while perr is the measurement error. The

parameters of the linear Target Direct System are set as in Table 2 of [18], while

the parameters of the nonlinear Inverse System are set according to Table 2 and

Table 4 of [18]. Each parameter of the third block of the DIDC (the nonlinear

Direct System), instead, is computed as in equation (5), where pest is taken305

from Table 2 and Table 4 of [18], while the error perr that models the parameter

uncertainty is a zero mean random variable with uniform distribution. We

consider perr to be uniformly distributed in the interval [−0.05×pest, 0.05×pest],
which means that each parameter is assumed to have a maximum percentage

error of 5%.310

As in the experiments of the previous two subsections, the input signals

are sinusoids with amplitude Ain and fundamental frequency fin. The first

results of the robustness analysis are shown in Fig. 17 that contains two plots:

Fig. 17(a) referred to an experiment with Spk-1 in which we set Ain = 11.5

Vrms and fin = 28.75 Hz; and Fig. 17(b) referred to an experiment with Spk-2315

in which we set Ain = 3 Vrms and fin = 81.4 Hz. Both plots are obtained by

running 1000 simulations of the single nonlinear Direct System and of the DIDC,

and by computing the two resulting normalized histograms which approximate

the probability density functions of THD (blue bars refer to the output of the

single nonlinear Direct System and red bars refer to the output of the DIDC). In320

Fig. 17 we notice that, despite the discrepancy between the values of the circuital

parameters of the nonlinear Inverse System and those of the nonlinear Direct

System, the THD of the output signal of the DIDC is generally significantly

lower than the THD of the output of the single nonlinear Direct System.

Such a behavior is confirmed by Fig. 18(a) and Fig. 18(b) that show com-325

20



parisons between the THD curve of the output signal of the nonlinear Direct

System (blue lines with circles and error bars) and the THD curve of the output

of the DIDC (red lines with stars and error bars) both as functions of frequency

in the range [10 Hz, 3 kHz]. Also in these experiments, circuital parameters are

modeled as uniform random variables according to (5) and each parameter is330

assumed to have a maximum percentage error of 5%. For each fin value, 1000

realizations of random parameter variables are considered. Circles and stars

represent mean values, while vertical bars centered on the mean values repre-

sent the standard deviations over the 1000 realizations. Fig. 18(a) refers to

Spk-1 and Ain = 11.5 Vrms for all input sinusoids. Fig. 18(b) refers to Spk-2335

and Ain = 3 Vrms for all input sinusoids.

The previous two experiments related to Fig. 18(a) and Fig. 18(b) are re-

peated after increasing the maximum percentage error of each parameter of the

nonlinear Direct System model to 10%; this means that the variable perr referred

to each parameter is uniformly distributed in the interval [−0.1×pest, 0.1×pest].340

The results of these two further experiments are reported in Fig. 18(c) for Spk-1

and Fig. 18(d) for Spk-2.

Although the performance of the proposed algorithm is generally reduced

with respect to the ideal scenario of Fig. 15 with no parameter uncertainty, we

still achieve a THD reduction (averaged over frequency) of ≈ 20 dB for Spk-1345

and of ≈ 22 dB for Spk-2 when the maximum percentage error of each parameter

is 5%, and of ≈ 15 dB for Spk-1 and of ≈ 17 dB for Spk-2 when the maximum

percentage error of each parameter is 10%. We can therefore conclude that

the DIDC-based linearization algorithm proves to be remarkably beneficial even

under considerable parameter uncertainty.350

7. DIDC-based Virtualization of Loudspeakers

In this section, we consider a further application of the proposed DIDC-based

algorithm in which the Target Direct System has a desired nonlinear behavior.

The Target Direct System is therefore the WDF realization of the nonlinear
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(a) Spk-1 (FSF122.02-8) (b) Spk-2 (FSN020.71-4)

Figure 17: Analysis of robustness to parameter uncertainty. Normalized histograms estimating

the THD probability density functions referred to the output of the nonlinear Direct System

(blue bars) and the output of the DIDC (red bars) obtained through 1000 simulations of both

systems. (a) refers to Spk-1. (b) refers to Spk-2.

loudspeaker model described in Section 5 of [18] with modified parameters. Both

for Spk-1 and for Spk-2, the parameters of nonlinearities of the target virtual

loudspeaker are denoted by a˜and are expressed as functions of the measured

parameters of real loudspeakers, as follows

B̃l1 = Bl1/100 , B̃l2 = Bl2/2 , B̃l3 = Bl3/100 , B̃l4 = Bl4/2 , (6)

K̃ms1 = Kms1/100 , K̃ms2 = Kms2/2 , K̃ms3 = Kms3/100 , K̃ms4 = Kms4/2 ,

L̃e1 = Le1/100 , L̃e2 = Le2/2 , L̃e3 = Le3/100 , L̃e4 = Le4/2 .

All the other parameters of the Target Direct System that are not listed in (6)

are those measured from real loudspeakers and reported in Table 2 of [18]. The

Inverse System is the nonlinear WDF described in Section 4 of this manuscript.

As in the previous section, depending on the experiment, the Direct System is355

either one of the two physical loudspeakers Spk-1 and Spk-2 or the WDF model

of nonlinear loudspeakers discussed in Section 5 of [18]. Also here we always set

g = 74.3 V/V and Fs = 96 kHz.

In a first set of experiments, the Direct System is simulated using the non-

linear WDF model presented in [18]. As input signals Vin we use sinusoids with360

different fundamental frequencies fin chosen by picking 24 frequency values per
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Figure 18: Analysis of robustness to parameter uncertainty. THD curves of the output signal

of the nonlinear Direct System (blue lines with circles) and of the output of the DIDC (red

lines with stars) as functions of frequency when circuital parameters of the Direct System are

modeled as random variables. For each fundamental frequency fin, circles and stars represent

mean values, while vertical bars centered on the mean values represent the standard deviations

over 1000 realizations. (a) and (c) refer to Spk-1. (b) and (d) refer to Spk-2. (a) and (b) are

obtained with a parameter uncertainty of 5%, while (c) and (d) of 10%.
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Figure 19: DIDC-based virtualization tests in which the Direct System, i.e., the third block

of the DIDC, is simulated. Amplitude responses of the output pressure signal of: the Direct

System when the virtualization algorithm is not active (“No Preprocessing”), the Target Direct

System (“Target”), and the Direct System when the DIDC-based virtualization algorithm is

active (“Virtualized”). (a) refers to Spk-1. (b) refers to Spk-2.

octave. The resulting signals are used to estimate the amplitude response of

the output pressure in different configurations as shown in Fig. 19. The line

indicated with “No Preprocessing” is the amplitude response of the output of

the Direct System when the virtualization algorithm is not active. The line365

indicated with “Target” is the amplitude response of the output of the Target

Direct System, i.e., the first block of the DIDC. The line indicated with “Vir-

tualized” is the amplitude response of the output of the Direct System when

the DIDC-based virtualization algorithm is active. Fig. 19(a) refers to Spk-1,

while Fig. 19(b) to Spk-2. The values of the amplitude parameter Ain for each370

experiment are reported on the plots. We notice that in both cases the vir-

tualized loudspeaker is characterized by an output amplitude response that is

superimposed to the one of the Target Direct System.

The second set of experiments is similar to the first one, but we substitute

the simulated Direct System (i.e., the third block of the DIDC) with one of375

the two real loudspeakers Spk-1 or Spk-2, again using the measurement setup

described in Appendix A of [18]. The results are shown in Fig. 20. We notice

that both in the case of Spk-1 (Fig. 20(a)) and of Spk-2 (Fig. 20(b)), the output

signal of the virtualized loudspeaker matches that of the Target Direct System.

380

In the third set of experiments, we use the exponential sine sweep defined in
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Figure 20: DIDC-based virtualization tests in which the Direct System, i.e., the third block

of the DIDC, is a real loudspeaker. Amplitude responses of the output pressure signal of:

the Direct System when the virtualization algorithm is not active (“No Preprocessing”), the

Target Direct System (“Target”), and the Direct System when the DIDC-based virtualization

algorithm is active (“Virtualized”). (a) refers to Spk-1. (b) refers to Spk-2.

equations (3) and (4) as input signal Vin. The Direct System is again simulated

using the nonlinear WDF model presented in [18]. The results are shown in

Fig. 21. Upper plots show time domain comparisons between the output of the

Target Direct System and the output of the Direct System when the virtual-385

ization algorithm is active. The same two signals are represented below using

spectrograms. Spectrograms in the second row show Pout, which is the output

of the Target Direct System. Spectrogram in the third row show P̂out, which is

the output of the DIDC. Fig. 21(a) refers to Spk-1, while Fig. 21(b) refers to

Spk-2. The values of the amplitude parameter Ain are reported in the titles of390

subfigures. We notice that, in both cases, Pout and P̂out are superimposed in

the time domain and their spectrogram images look the same. The matching

between Pout and P̂out is further verified by computing the NRMSE between the

two signals, which is NRMSE = 1.6×10−13 for Spk-1 and NRMSE = 5.4×10−13

for Spk-2.395

The fourth set of experiments is similar to the third one, but we substitute

the simulated Direct System (i.e., the third block of the DIDC) with one of the
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Figure 21: DIDC-based virtualization tests in which the Direct System, i.e., the third block of

the DIDC, is simulated. Comparisons between Pout and P̂out. Upper plots show comparisons

in the time domain. The second row and the third row of plots show the spectrograms of Pout

and P̂out, respectively. (a) refers to Spk-1. (b) refers to Spk-2.

two real loudspeakers Spk-1 or Spk-2. The results are shown in Fig. 22. We

notice that both in the cases of Spk-1 (Fig. 22(a) and Fig. 22(c)) and of Spk-2

(Fig. 22(b) and Fig. 22(d)), the output signal of the virtualized loudspeaker400

matches that of the Target Direct System. The matching between Pout and

P̂out is further verified by computing the NRMSE between the two signals for

each experiment. We get: NRMSE = 0.0024 for Spk-1 and Ain = 4 Vrms,

NRMSE = 0.0041 for Spk-1 and Ain = 11.5 Vrms, NRMSE = 0.1119 for Spk-2

and Ain = 1 Vrms, and NRMSE = 0.0451 for Spk-2 and Ain = 3 Vrms.405

8. Conclusions and Future Work

In this manuscript, the second of a two-part work, we proposed a signal

processing method operating in the discrete-time domain, for virtualizing the

behavior of physical dynamic loudspeakers. The transduction process is here

described using the nonlinear circuital model that was extensively discussed in410

the first manuscript [18] of this two-part work. This model includes an electri-
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Figure 22: DIDC-based virtualization tests in which the Direct System, i.e., the third block

of the DIDC, is a real loudspeaker. Comparisons between Pout and P̂out. Upper plots show

comparisons in the time domain. The second row and the third row of plots show the spec-

trograms of Pout and P̂out, respectively. (a) and (c) refer to Spk-1. (b) and (d) refer to

Spk-2.
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cal part, driven by an input voltage signal; a mechanical part; and an acoustic

part, which includes the output pressure signal. The proposed loudspeaker vir-

tualization method relies on the exact inversion of the reference circuital model

of the transducer. The inverse model is, in fact, obtain by adding an ideal415

two-port circuit element called nullor to the electrical equivalent of the loud-

speaker. In particular, the virtualization algorithm is based on the so called

Direct-Inverse-Direct Chain (DIDC) composed of the digital Target Direct Sys-

tem, which models the desired loudspeaker behavior; the digital nonlinear In-

verse System; and the actual physical Direct System. The Target Direct System420

and the Inverse System are implemented in the WD domain in a fully explicit

fashion (i.e., without any iterative solver) by exploiting both traditional WDF

principles and novel discretization techniques that were never discussed in the

literature. Depending on the virtualization application (e.g., equalization, in-

troduction of desired distortion, linearization) the Target Direct System might425

be linear or nonlinear. In this manuscript, we discussed one of the most chal-

lenging virtualization applications, that is loudspeaker linearization, in which

the Target Direct System is linear. We also discussed another application of

the proposed DIDC-based virtualization approach in which the Target Direct

System is characterized by a nonlinear behavior different from the one of the430

physical loudspeaker. The proposed algorithms have been extensively validated

through experiments based on simulations and applications to real loudspeakers.

As far as future works are concerned, we are planning to test the proposed

DIDC-based virtualization approach with other electrical equivalents of loud-

speaker systems modeling further transduction nonidealities that have not been435

considered in this work [33].
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