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A NOTE ON THE MOORE-GIBSON-THOMPSON
EQUATION WITH MEMORY OF TYPE II

FILIPPO DELL’ORO, IRENA LASIECKA AND VITTORINO PATA

Abstract. We consider the Moore-Gibson-Thompson equation with memory of type II

∂tttu(t) + α∂ttu(t) + βA∂tu(t) + γAu(t)−
∫ t

0

g(t− s)A∂tu(s)ds = 0

where A is a strictly positive selfadjoint linear operator (bounded or unbounded) and
α, β, γ > 0 satisfy the relation γ ≤ αβ. First, we prove well-posedness of finite energy
solutions, without requiring any restriction on the total mass ϱ of g. This extends
previous results in the literature, where such a restriction was imposed. Second, we
address an open question within the context of longtime behavior of solutions. We
show that an “overdamping” in the memory term can destabilize the originally stable
dynamics. In fact, it is always possible to find memory kernels g, complying with the
usual mass restriction ϱ < β, such that the equation admits solutions with energy growing
exponentially fast, even in the regime γ < αβ where the corresponding model without
memory is exponentially stable. In particular, this provides an answer to a question
recently raised in the literature.

1. Introduction

Let (H, ⟨·, ·⟩, ∥ · ∥) be a separable real Hilbert space, and let

A : D(A) ⊂ H → H

be a strictly positive selfadjoint linear operator (bounded or unbounded). We consider
the Moore-Gibson-Thompson (MGT) equation with memory of type II

(1.1) ∂tttu(t) + α∂ttu(t) + βA∂tu(t) + γAu(t)−
∫ t

0

g(t− s)A∂tu(s)ds = 0,

where α, β, γ are strictly positive fixed constants subject to the structural constraint

(1.2) γ ≤ αβ,

and the so-called memory kernel g : [0,∞) → [0,∞) is an absolutely continuous nonin-
creasing function of total mass

ϱ =

∫ ∞

0

g(s)ds > 0.

The MGT equation (1.1) is an abstract version of a wave-type equation studied in the
context of acoustic wave propagation with the so-called second sound, where the para-
dox of the infinite speed of propagation is eliminated by replacing the Fourier law by
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2 F. DELL’ORO, I. LASIECKA AND V. PATA

the Maxwell-Cattaneo one. As a consequence, the resulting PDE accounts for a small
time relaxation parameter τ > 0, appearing in the unscaled equation in the form τ∂tttu,
contributing to the presence of the third-order time derivative in the model. The model
itself, originally introduced by Stokes [23], has received considerable attention in recent
years, due to plethora of applications in nonlinear acoustic and related inverse problems,
including lithotripsy, high intensity focused ultrasounds (see the review article [9] with
many references therein). On the other hand, the mathematical properties of the resulting
dynamics are intricate and drastically different from the one derived via the Fourier law,
the latter exhibiting parabolic effects.

The MGT equation without memory (i.e. with g ≡ 0) has been intensively studied in
the recent literature (see e.g. [9, 10, 11, 16, 20]). In particular, the consequences of the
hyperbolicity induced by the second sound have been shown to have profound implications
on existence/stability results in both linear and nonlinear versions of the model. Much less
is known about the effects of the memory on the dynamics, due to molecular relaxation
[8], and intrinsically present in an acoustic environment. It is a well-known (although
nonintuitive) fact that the effects of the memory may compromise the stability properties
of the original dynamics. This has been eloquently demonstrated in [6] for a second-
order hyperbolic dynamics, where the decay rates for the energy of a wave equation with
frictional damping are compromised by the memory.

In the case of a third-order equation, the modeling of memory effects is more complex
and subtle. The memory may affect the variable u, or the variable ∂tu, or even a com-
bination of both. Accordingly, the corresponding models are labeled as memory of type
I, type II, and type III. This raises a fundamental question on the impact of the memory
terms on the stability properties of the corresponding evolutions. Stabilizing effects of the
memory are well known in the literature (see e.g. [2, 18, 22]). However, a quantification of
the stability results (via decay rates) reveals that the memory may deteriorate the stabil-
ity properties of an otherwise stable systems. An already mentioned classical example is
the damped wave equation which, under the influence of memory, may loose exponential
stability to become only polynomially stable, as shown by Fabrizio and Polidoro [6]. In
the case of the third-order equation, the scenario is much richer and complex. Indeed,
for the conservative MGT dynamics in the critical case corresponding to γ = αβ, the
introduction of memory of type I can only produce strong stability (not exponential), a
fact recently discovered in [3, Theorem 4.1 and Corollary 6.2]. However, an addition of
memory of type I to a stable dynamics (i.e. where γ < αβ) retains the stability of the
system, and it does not lead to a deterioration of the rates [14, Theorem 1.4]. Memory of
type II is shown to sustain stability for an already stable dynamics, provided however that
the size of ϱ is sufficiently small [14, Theorem 1.6]. This raises the following questions:

• What happens when a larger amount of type II memory term is introduced?
• Would it be sufficient to stabilize a conservative dynamics?
• Would stability of an already stable dynamics be retained?

These issues have been raised in [3] for the case of finite memory, and in [1] for the case
of infinite memory.

In this paper, we show that there is threshold of type II memory, where the memory itself
starts acting as an antidamper, destabilizing completely an otherwise stable dynamics, a
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much stronger negative effect than in the case of the second-order dynamics. However, it
is not true that the memory of type II is always acting as a destabilizer. Indeed, if it is
paired with the memory of type I, it may stabilize a critically unstable wave. These results
are neither intuitive nor predictable. Their proofs rely on a careful quantitative analysis
of the damping mechanism, with the aid of energy methods and some counterexamples.

2. The Model and the Literature

The MGT equation without memory, i.e.

(2.1) ∂tttu+ α∂ttu+ βA∂tu+ γAu = 0,

is a model arising in acoustics and accounting for the second sound effects and the associ-
ated thermal relaxations in viscous fluids [7, 17, 23, 24]. The case γ < αβ is referred to as
subcritical, since in this regime the associated solution semigroup exhibits an exponential
decay in the natural weak energy space

H = D(A
1
2 )×D(A

1
2 )×H.

On the contrary, the case γ = αβ is critical, since stability (even the nonuniform one)
is lost [10, 16]. Finally, in the supercritical case γ > αβ, there exist trajectories whose
energy blows up exponentially [4, 10, 16]. If additional molecular relaxation phenomena
are taken into account, integral terms pop up in the MGT equation, leading to (1.1) with
a nonnull memory kernel [8, 12, 13, 14, 15, 19]. In more generality, the convolution term

appearing in (1.1) can be taken of the form
∫ t

0
g(t− s)Aw(s) ds, where the variable w is

of the following three types:

w(s) =


u(s) (type I),

∂tu(s) (type II),

ku(s) + ∂tu(s) for k > 0 (type III).

For the memory of type I, the picture is quite understood. As shown in [14], in the
subcritical case and under proper decay assumptions on the kernel g all the solutions
converge exponentially to zero. Instead, in the critical case the decay is only strong, with a
counterexample to exponential stability if the operator A is unbounded [3]. An interesting
question becomes what is the effect of the memory of type II. Here, in the subcritical case
and with strong restrictions on the mass of memory kernel including ϱ ≪ β, one shows
the exponential decay of the energy [14]. In the critical case, exponential stability holds,
but with a very special choice of memory of type III, namely w = γβ−1u+ ∂tu.

It is worth noting that in all the results mentioned above a structural restriction on ϱ
is required. For the case of memory of type II, such a restriction reads

ϱ < β.

To better understand this issue, an interesting comparison can be made with the MGT
equation without memory (2.1), which is shown to be ill-posed in H if A is unbounded
and β = 0 (but the same is true if β ≤ 0), in the sense that the equation does not generate
a strongly continuous semigroup (see [10, Theorem 1.1]). And indeed, equation (2.1) with
(β− ϱ)A∂tu in place of the term βA∂tu can be considered the limiting case of (1.1) when
the kernel g converges to a multiple ϱ of the Dirac mass at 0+. This would somehow
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indicate that some problems might arise when ϱ ≥ β. Quite unexpectedly, as it will be
shown in this work, it is instead possible to have existence and uniqueness of solutions in
the natural weak energy space H, no matter how is the size of ϱ. In fact, the same picture
occurs for the MGT equation with memory of type I or III.

A second intriguing problem is to fully understand the effects of the memory of type
II on the longtime dynamics, within the restriction ϱ < β (indeed, if ϱ ≥ β, blow up
at infinity is the general rule). In particular, whether this damping alone is able to
stabilize the equation in the critical case. As we shall see in this paper, the answer is
negative. Even more is true: a subcritical MGT equation can be exponentially destabilized
by “large” effects of the memory of type II. Hence, a posteriori, for such an equation we
may say that no critical value changing the asymptotic dynamics exists, in the sense
that blow up of solutions appears, both in the subcritical and in the critical regimes. In
particular, this provides an answer to a question raised in [3]. Actually, in the same paper
[3] a heuristic explanation was given, by noting that the action of the memory of type II
can be interpreted as an addition of a “stabilizer” and of an “antidamper” to the MGT
equation. To wit, observe that

−
∫ t

0

g(t− s)A∂tu(s)ds = −g(0)Au(t) + g(t)Au(0)−
∫ t

0

g′(t− s)Au(s)ds.

The above formula indicates that the memory of type II provides two opposite effects. The
static damping term g(0)Au moves the original critical value γ = αβ to the noncritical

region γ = αβ−g(0). On the other hand, the viscoelastic term −
∫ t

0
g′(t− s)Au(s)ds acts

as an antidamper, due to the negative sign of g′. This renders the issue quite interesting,
as it is not clear which “damping” wins the game. Of course, the value g(0) and g′(t) will
play a crucial role.

Comparison with the previous literature. The recent paper [1] is concerned with the
existence, uniqueness and stability of the MGT equation with infinite memory, i.e. with
a more general convolution term of the form

∫ t

−∞ g(t− s)Aw(s)ds. In the case of memory
of type I, Theorem 3.7 therein proves the exponential decay of solutions in the subcritical
case. This result has been already shown for finite memory of type I in [14] (see also
[13] for more general relaxation kernels leading to uniform but not exponential decays).
In the case of memory of type II, the same [1, Theorem 3.7] establishes the exponential
decay of the energy in the subcritical case, but under strong “smallness” type restrictions
imposed on the mass of kernel ϱ. Here, again, this is an extension to infinite memory
of the results obtained in [14] for the case of finite memory. In short, this “smallness”
condition requires a rather fast decay of the kernel g with respect to the strictly positive
value αβ − γ. For exponentially decaying kernels of the form g(t) = ϱδe−δt with δ > 0,
this condition translates into ϱ < β − γα−1.

Regarding the negative result in the case of memory of type II (conjectured in [3]), the
paper [1] evokes the lack of dissipativity of the generator for larger values of ϱ. One should
note that dissipativity is a property of the considered inner product and, alone, cannot
prove the conjecture stated in [3, Remark 1.3], i.e. to disprove exponential stability. In
summary, the analysis carried out in [1] is inconclusive with respect to the open question
under consideration. The goal of the present paper is to provide a rigorous proof not
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only of the lack of exponential stability, but of the existence of solutions which exhibit
exponential blow up at infinity, which would have been exponentially stable without the
effects of the memory of type II. This gives the definite answer to the question asked.

Coming instead to the MGT equation with memory of type II in the critical case, it is
still unknown whether exponential stability could be achieved with suitably calibrated re-
laxation kernel (fast decay and small mass). Positive results are available in the literature
but only in either subcritical regime (see [1, 14]) or critical with an addition of suitably
calibrated memory of type I.

Notation. We define the family of nested Hilbert spaces depending on a parameter r ∈ R

Hr = D(A
r
2 ), ⟨u, v⟩r = ⟨A

r
2u,A

r
2v⟩, ∥u∥r = ∥A

r
2u∥.

The index r will be always omitted whenever zero. Along the paper, the Hölder, Young
and Poincaré inequalities will be tacitly used in several occasions. The phase space of our
problem is

H = H1 ×H1 ×H,

endowed with the (Hilbert) product norm

∥(u, v, w)∥2H = ∥u∥21 + ∥v∥21 + ∥w∥2.

3. Well-Posedness

The existence and uniqueness result for (1.1) is ensured by the following theorems.

Theorem 3.1. If the derivative g′ is bounded on bounded intervals, then for every initial
datum U0 ∈ H, equation (1.1) admits a unique weak solution

U = (u, ∂tu, ∂ttu) ∈ C([0, T ],H)

on the interval [0, T ], for any T > 0.

Theorem 3.2. Assume the mass restriction ϱ < β. Then, for every initial datum U0 ∈ H,
equation (1.1) admits a unique weak solution

U = (u, ∂tu, ∂ttu) ∈ C([0,∞),H)

whose corresponding energy

F(t) = ∥u(t)∥21 + ∥∂tu(t)∥21 + ∥∂ttu(t)∥2 +
∫ t

0

g(t− s)∥∂tu(t)− ∂tu(s)∥21ds

satisfies the energy inequality

(3.1) F(t) ≤ KF(0)eωt,

for some structural constants K,ω > 0 and for all t ≥ 0.

As already mentioned in the Introduction, the first Theorem 3.1 above, within a very
mild assumption on the derivative g′ of the memory kernel, provides existence and unique-
ness of solutions in the space H without imposing the usual restriction ϱ < β on the size
of the mass of g. In which case, the solutions will be typically unbounded in time and
exhibit a “rough” asymptotic behavior as t → ∞. To the best of our knowledge, this



6 F. DELL’ORO, I. LASIECKA AND V. PATA

is the first well-posedness result obtained for the MGT equation with memory without
assuming “smallness” restrictions imposed on the relaxation kernel.

If instead we assume ϱ < β, then the second Theorem 3.2 provides existence and
uniqueness of solutions in H which enjoy an exponential-type growth at infinity.

In order to prove the theorems, we first show a well-posedness result in the more regular
space

Ĥ = H2 ×H1 ×H,

by constructing solutions to a memoryless nonhomogeneous MGT equation exploiting the
so-called MacCamy trick (see e.g. [21]).

Lemma 3.3. For every initial datum U0 ∈ Ĥ (and every ϱ > 0), equation (1.1) admits a
unique weak solution

U = (u, ∂tu, ∂ttu) ∈ C([0, T ], Ĥ)

on the interval [0, T ], for any T > 0.

Proof. Let T > 0 be arbitrarily fixed, and let Rµ(t) denote the resolvent operator associ-
ated with the kernel

µ(s) = − 1

β
g(s).

This means that Rµ solves the equation

Rµ(t) +

∫ t

0

µ(t− s)Rµ(s) ds = µ(t), ∀t ≥ 0.

We now rewrite (1.1) in the form

A
1
2∂tu(t) +

∫ t

0

µ(t− s)A
1
2∂tu(s)ds = Y (t),

where

Y (t) = − 1

β

[
A− 1

2∂tttu(t) + αA− 1
2∂ttu(t) + γA

1
2u(t)

]
.

If we knew in advance that Y ∈ C([0, T ], H), then the function X(t) = A
1
2∂tu(t), being

the solution to the Volterra equation on [0, T ]

X(t) +

∫ t

0

µ(t− s)X(s) ds = Y (t),

has the explicit representation

X(t) = Y (t)−
∫ t

0

Rµ(t− s)Y (s) ds.

Applying βA
1
2 to both sides, we conclude that the function U = (u, ∂tu, ∂ttu) satisfies the

equation

(3.2) ∂tttu+ α∂ttu+ βA∂tu+ γAu = QU ,

having set

QU(t) =

∫ t

0

Rµ(t− s)[∂tttu(s) + α∂ttu(s) + γAu(s)] ds.
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Integrating by parts the first term above, we obtain

QU(t) =

∫ t

0

R′
µ(t− s)∂ttu(s) ds−Rµ(t)∂ttu(0) +Rµ(0)∂ttu(t)

+

∫ t

0

Rµ(t− s)[α∂ttu(s) + γAu(s)] ds.

At this point, we observe that Rµ(0) = µ(0) < 0. Thus, calling α̂ = α−Rµ(0) > 0 and

Q̂U(t) =

∫ t

0

R′
µ(t− s)∂ttu(s) ds−Rµ(t)∂ttu(0)(3.3)

+

∫ t

0

Rµ(t− s)[α∂ttu(s) + γAu(s)] ds,

equation (3.2) reads

(3.4) ∂tttu+ α̂∂ttu+ βA∂tu+ γAu = Q̂U .

Introducing the three-component vector

QU = (0, 0, Q̂U),

we can write (3.4) in the abstract form

(3.5)
d

dt
U = AU +QU ,

where

AU = (∂tu, ∂ttu,−α̂∂ttu− βA∂tu− γAu).

It is known from [10, Theorem 1.4] that the MGT equation without memory generates a

strongly continuous semigroup S(t) = eAt on Ĥ. Hence, its nonhomogeneous version (3.5)

driven by a generic forcing term Q ∈ L1(0, T ; Ĥ) admits a unique solution

U = (u, ∂tu, ∂ttu) ∈ C([0, T ], Ĥ),

and the map Q 7→ U is continuous from L1(0, T ; Ĥ) into C([0, T ]; Ĥ). We shall use this
fact in order to construct a fixed point solution to the equation (3.5). To this end, note

that for U ∈ C([0, T ], Ĥ) one has QU ∈ L1(0, T ; Ĥ), as this is the same as saying that

Q̂U ∈ L1(0, T ;H), and the latter relation follows from (3.3). Indeed, if U ∈ C([0, T ], Ĥ)

since Rµ is bounded and R′
µ is summable on [0, T ], it is even true that Q̂U ∈ L∞(0, T ;H)

(note that if U ∈ C([0, T ], Ĥ) then u ∈ C([0, T ], H2) and ∂ttu ∈ C([0, T ], H) by the very

definition of Ĥ). Accordingly, from the variation-of-constant formula we end up with

U(t) = S(t)U0 +

∫ t

0

S(t− s)QU(s)ds,

to which we apply Banach contraction principle first on the space

X =
{
U ∈ C([0, T0], Ĥ) : U(0) = U0

}
,

with T0 sufficiently small, and then reiterated (due to the linearity) to the intervals
[nT0, (n+ 1)T0] until T is reached. �
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The next step is extending the result of Lemma 3.3 to the whole space H. This will be
easily accomplished by standard density arguments, once a priori estimates involving ini-
tial data belonging to H are established. Here, different arguments are needed depending
whether we are in the framework of Theorem 3.1 or of Theorem 3.2.

Proof of Theorem 3.1. Let T > 0 be arbitrarily fixed. We start from equation (3.4) of the
previous proof, that is,

∂tttu+ α̂∂ttu+ βA∂tu+ γAu = Q̂U ,

whose solution U (which is in fact the solution to the original equation) exists in Ĥ for

initial data U0 ∈ Ĥ. Then, we multiply by 2∂ttu in H, and we add to both sides the term
2m⟨u, ∂tu⟩1 for m > 0 to be fixed later. We obtain the differential equality

d

dt
Vm + 2α̂∥∂ttu∥2 = 2γ∥∂tu∥21 + 2m⟨u, ∂tu⟩1 + 2⟨Q̂U , ∂ttu⟩,

where we set

Vm(t) = ∥∂ttu(t)∥2 + β∥∂tu(t)∥21 + 2γ⟨u(t), ∂tu(t)⟩1 +m∥u(t)∥21.

It is readily seen that, up to choosing m > 0 sufficiently large, there exist κ2 > κ1 > 0
such that

(3.6) κ1∥U(t)∥2H ≤ Vm(t) ≤ κ2∥U(t)∥2H.

Accordingly,

(3.7)
d

dt
Vm ≤ CVm + 2⟨Q̂U , ∂ttu⟩,

for some C > 0. We now claim that the inequality

(3.8)

∫ t

0

⟨Q̂U(s), ∂ttu(s)⟩ds ≤
1

4
Vm(t) + CTVm(0) + CT

∫ t

0

Vm(s)ds

holds for every t ∈ [0, T ]. Here and till the end of the proof, CT > 0 denotes a generic
constant, independent of the initial data, but depending on T . Then, integrating (3.7) on
[0, t], we end up with

Vm(t) ≤ CTVm(0) + CT

∫ t

0

Vm(s)ds, ∀t ∈ [0, T ],

and the standard Gronwall lemma together with (3.6) entail

∥U(t)∥H ≤ CT∥U(0)∥H, ∀t ∈ [0, T ].

We are left to prove (3.8). Recalling (3.3), we limit ourselves to show the more difficult
estimate of the higher-order term, namely,

I :=

∫ t

0

∫ s

0

Rµ(s− y)⟨u(y), ∂ttu(s)⟩1dyds.
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We write∫ s

0

Rµ(s− y)⟨u(y), ∂ttu(s)⟩1dy =
d

ds

[ ∫ s

0

Rµ(s− y)⟨u(y), ∂tu(s)⟩1dy
]

−Rµ(0)⟨u(s), ∂tu(s)⟩1 −
∫ s

0

R′
µ(s− y)⟨u(y), ∂tu(s)⟩1dy.

Note that, within the boundedness assumption on g′, we have that R′
µ (as well as Rµ) is

bounded on [0, T ]. Then, integrating on [0, t] the identity above, we are led to

I =

∫ t

0

Rµ(t− s)⟨u(s), ∂tu(t)⟩1ds−Rµ(0)

∫ t

0

⟨u(s), ∂tu(s)⟩1ds

−
∫ t

0

∫ s

0

R′
µ(s− y)⟨u(y), ∂tu(s)⟩1dyds.

We finally estimate the three terms in the right-hand side as follows:∫ t

0

Rµ(t− s)⟨u(s), ∂tu(t)⟩1ds−Rµ(0)

∫ t

0

⟨u(s), ∂tu(s)⟩1ds

≤ ε∥U(t)∥2H +
CT

ε

∫ t

0

∥U(s)∥2Hds,

for any ε > 0 small, and

−
∫ t

0

∫ s

0

R′
µ(s− y)⟨u(y), ∂tu(s)⟩1dyds ≤ CT

∫ t

0

∥U(s)∥H
∫ s

0

∥U(y)∥Hdyds

≤ CT

(∫ t

0

∥U(s)∥Hds
)2

≤ CT

∫ t

0

∥U(s)∥2Hds.

Therefore,

I ≤ ε∥U(t)∥2H +
CT

ε

∫ t

0

∥U(s)∥2Hds.

The remaining terms of
∫ t

0
⟨Q̂U(s), ∂ttu(s)⟩ds, as we said, are controlled in a similar (in

fact easier) way, and at the end one has to use (3.6). Only at that point, one fixes ε in
order to get the desired coefficient 1/4 (or smaller) in front of Vm(t). This finishes the
proof. �

Proof of Thorem 3.2. We only need to show the energy inequality (3.1). To this aim,
similarly to the proof of Theorem 3.1, we take the product in H of (1.1) and 2∂ttu, and
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we add to both sides the term 2m⟨u, ∂tu⟩1 for m > 0 to be fixed later. This yields

d

dt

[
∥∂ttu(t)∥2 + β∥∂tu(t)∥21 +m∥u(t)∥21 + 2γ⟨u(t), ∂tu(t)⟩1

]
− 2

∫ t

0

g(t− s)⟨∂tu(s), ∂ttu(t)⟩1 ds

= 2γ∥∂tu(t)∥21 − 2α∥∂ttu(t)∥2 + 2m⟨u(t), ∂tu(t)⟩1

≤ 2(γ +m)F(t).

Next, calling G(t) =
∫ t

0
g(s) ds, we compute the integral in the left-hand side as

− 2

∫ t

0

g(t− s)⟨∂tu(s), ∂ttu(t)⟩1 ds

=
d

dt

[ ∫ t

0

g(t− s)∥∂tu(t)− ∂tu(s)∥21 ds−G(t)∥∂tu(t)∥21
]

+ g(t)∥∂tu(t)∥21 −
∫ t

0

g′(t− s)∥∂tu(t)− ∂tu(s)∥21 ds.

Setting

Em(t) = ∥∂ttu(t)∥2 + (β −G(t))∥∂tu(t)∥21 +m∥u(t)∥21 + 2γ⟨u(t), ∂tu(t)⟩1

+

∫ t

0

g(t− s)∥∂tu(t)− ∂tu(s)∥21 ds,

since g is nonnegative and nonincreasing we arrive at the inequality

d

dt
Em ≤ 2(γ +m)F.

Recalling that G(t) ≤ ϱ < β, is then clear that, up to choosing m large enough,

κ1F(t) ≤ Em(t) ≤ κ2F(t),

for some κ2 > κ1 > 0. The desired conclusion follows by an application of the Gronwall
lemma. �

Remark 3.4. One might wonder why the fixed point argument cannot be directly applied
to find a solution in the space C([0, T ],H). The reason is that, in order to apply the Banach
contraction principle to (3.5), we need a forcing term QU ∈ L1(0, T ;H). But in general
this is not the case, since if we take initial data in H we only know that the component
u belongs to H1. Therefore the term QU is not a priori in the energy space H, as well as
the multipliers employed in the proof of Theorem 3.1. Hence the calculations would be
only formal. Accordingly, the strategy is first finding a solution in the more regular space
C([0, T ], Ĥ), and then drawing the desired conclusion by means of energy estimates.

Remark 3.5. If A is a bounded operator, the conclusions of Theorem 3.2 are easily
attained removing the restriction ϱ < β.
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Remark 3.6. As a final comment, it is interesting to observe that the trick of multiplying
both sides of the equation by ⟨u, ∂tu⟩1, employed in the proofs above, allows to provide
a two-line proof of the well-posedness of the strongly damped wave equation with the
“wrong” sign of Au, namely,

∂ttu+ A∂tu− Au = 0,

which highlights the essential parabolicity of the original equation. This is not the case
if one has a lower-order dissipation. Indeed, the equation

∂ttu+ Aϑ∂tu− Au = 0

is ill-posed for ϑ < 1, as the real part of the spectrum of the associated linear operator is
not bounded above.

4. The Case of the Exponential Kernel

We now dwell on the particular case of the exponential kernel

g(s) = ϱδe−δs,

with
ϱ ∈ (0, β) and δ > 0.

For this choice, equation (1.1) reads

(4.1) ∂tttu(t) + α∂ttu(t) + βA∂tu(t) + γAu(t)− ϱδ

∫ t

0

e−δ(t−s)A∂tu(s)ds = 0.

In the same spirit of [3], taking the sum ∂t(4.1)+δ(4.1) we obtain the fourth-order equation

(4.2) ∂ttttu+ (α + δ)∂tttu+ αδ∂ttu+ βA∂ttu+ (γ + δβ − ϱδ)A∂tu+ γδAu = 0.

Note that
γ + δβ − ϱδ > 0,

as ϱ < β. Introducing the 4-component space

V = H1 ×H1 ×H1 ×H,

it is known from [5, Theorem 3.1] that (4.2) admits a unique (weak) solution

Û = (u, ∂tu, ∂ttu, ∂tttu) ∈ C([0,∞),V),

for every initial datum Û0 ∈ V . Besides, the analysis in [5] provides necessary and suffi-
cient conditions in order for (4.2) to be (exponentially) stable, depending on two stability
numbers κ and ϖ, which in turn depend only on the (positive) structural constants of
the equation. For this particular case, the two stability numbers read

κ =
αβ − γ + ϱδ

α + δ
> 0 and ϖ =

αβδ2 − γδ2 − αϱδ2

γ + δβ − ϱδ
.

In particular, if ϱ ∈ (β − γ
α
, β) and δ is large enough, then

ϖ < −λ1κ
where λ1 > 0 is the smallest element of the spectrum σ(A) of the operator A. In this
regime, the results of [5] predict the existence of solutions growing exponentially fast,
which gives a clear indication that our energy F might blow up exponentially for some
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initial data. At the same time, the equivalence between (4.1) and (4.2) is, at this stage,
only formal. The next proposition establishes such an equivalence in a rigorous way.

Proposition 4.1. Let U0 = (u0, v0, w0) ∈ H1 × H1 × H1 be an arbitrarily fixed vector
satisfying the further regularity assumption

βv0 + γu0 ∈ H2.

Then the projection U = (u, ∂tu, ∂ttu) onto the first three components of the solution

Û = (u, ∂tu, ∂ttu, ∂tttu) to (4.2) with initial datum

(u0, v0, w0,−αw0 − A(βv0 + γu0)) ∈ V
is the unique solution to (4.1) with initial datum U0.

Proof. We introduce the auxiliary variable

ϕ(t) = ∂tttu(t) + α∂ttu(t) + βA∂tu(t) + γAu(t).

Since u solves (4.2), the function ϕ fulfils the identity

∂tϕ+ δϕ− ϱδA∂tu = 0.

A multiplication by eδt yields

d

dt
[eδtϕ(t)]− ϱδeδtA∂tu(t) = 0.

Noting that ϕ(0) = 0, an integration on [0, t] leads at once to (4.1). �
Still, this is not enough to conclude that F can grow exponentially fast, since one has to

verify that this occurs for a particular trajectory of (4.2), with initial conditions complying
with the assumptions above.

5. Exponentially Growing Solutions

In this section, we state and prove the second main result of the paper. Namely, we
produce an example of memory kernel g for which equation (1.1) admits solutions with
energy growing exponentially fast. To this end, we consider the exponential kernel g(s) =
ϱδe−δs of the previous section. For simplicity, we also assume that the spectrum of the
operator A contains at least one eigenvalue λ > 0, which is always the case in concrete
situations.

Theorem 5.1. Let ϱ ∈ (β − γ
α
, β) be arbitrarily fixed. Then, for every δ > 0 sufficiently

large, there exist ε > 0, an initial datum U0 ∈ H and a sequence tn → ∞ such that the
energy F(t) associated to the solution to (4.1) originating from U0 satisfies the estimate

F(tn) ≥ λeεtn , ∀n ∈ N.
Remark 5.2. According to [14], for this particular kernel exponential stability occurs in
the subcritical case, within the following assumption: there exist k ∈ ( γ

β
, α) and θ > k

δ

such that

ϱ ≤
(
β − γ

k

)
min

{
1,

2

k(2 + θ)

}
.

The reader will have no difficulties to check that the condition above implies that ϱ < β− γ
α
,

which contradicts ϱ ∈ (β − γ
α
, β) assumed in Theorem 5.1.
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In order to prove the theorem, we introduce the fourth-order polynomial in the complex
variable ξ

(5.1) P(ξ) = ξ4 + (α + δ)ξ3 + (αδ + βλ)ξ2 + λ(γ + δβ − ϱδ)ξ + λγδ.

Moreover, for all x ≥ 0, we set

(5.2) q(x) =

√
4x3 + 3(α + δ)x2 + 2(αδ + βλ)x+ λ(γ + δβ − ϱδ)

α + δ + 4x
> 0.

The next algebraic result will be crucial for our purposes.

Lemma 5.3. Let ϱ ∈ (β − γ
α
, β) be arbitrarily fixed. Then, for every δ > 0 sufficiently

large, there exists p > 0 such that the complex number

ξ̂ = p+ iq(p)

solves the equation P(ξ̂) = 0.

Proof. For all x ≥ 0, by direct calculations we find the equalities

Im [P(x+ iq(x))] = 0 and Re [P(x+ iq(x))] = f(x),

where

f(x) = x4 + (α + δ)x3 + (αδ + βλ)x2 + (γ + δβ − ϱδ)λx+ γδλ+ q(x)4

− (6x2 + 3(α + δ)x+ αδ + βλ)q(x)2.

By means of direct computations, with the aid of (5.2) and the assumption ϱ > β − γ
α
, it

is readily seen that
lim

x→+∞
f(x) = −∞

and

f(0) = γδλ+ q(0)4 − (αδ + βλ)q(0)2 ∼ δλ(γ − αβ + αϱ) > 0, as δ → +∞.

As a consequence, being f continuous on [0,∞), once δ > 0 has been fixed sufficiently
large there exists p > 0 such that

0 = f(p) = Re [P(p+ iq(p))].

The proof is finished. �
Proof of Theorem 5.1. Denoting by w ∈ H the normalized eigenvector of A corresponding
to λ, we consider the function

u(t) = ept [r sin(qt) + cos(qt)]w.

Here, p > 0 is given by Lemma 5.3, q = q(p) > 0 is given by (5.2) and

r = r(p) =
p3 − 3pq2 + α(p2 − q2) + βλp+ γλ

q3 − 3p2q − 2αpq − βλq
.

Note that r is well defined, since (1.2) and (5.2) ensure that

q3 − 3p2q − 2αpq − βλq =
−q(8p3 + 8αp2 + 2α2p+ 2βλp+ λϱδ + λ(αβ − γ))

α + δ + 4p
< 0.
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The function u defined above solves the fourth-order equation (4.2). Indeed, calling for
simplicity

ψ(t) = ept [r sin(qt) + cos(qt)]

and recalling that due to Lemma 5.3 the complex number p+iq is a root of the polynomial
P defined in (5.1), we have

∂ttttu+ (α + δ)∂tttu+ αδ∂ttu+ βA∂ttu+ (γ + δβ − ϱδ)A∂tu+ γδAu

=
[d4ψ

dt4
+ (α + δ)

d3ψ

dt3
+ (αδ + βλ)

d2ψ

dt2
+ λ(γ + δβ − ϱδ)

dψ

dt
+ λγδψ

]
w

= 0.

Moreover, being

u(0) = w,

∂tu(0) = (p+ rq)w,

∂ttu(0) = (p2 + 2rpq − q2)w,

∂tttu(0) = (p3 + 3rp2q − 3pq2 − rq3)w,

thanks to the choice of r it is true that

∂tttu(0) = −α(p2 + 2rpq − q2)w − βλ(p+ rq)w − γλw

= −α∂ttu(0)− βA∂tu(0)− γAu(0).

Invoking Lemma 4.1, the function u turns out to be the unique solution to (4.1) corre-
sponding to the initial datum

z0 = (w, (p+ rq)w, (p2 + 2rpq − q2)w).

Finally, setting

tn =
2nπ

q
→ +∞ and ε = 2p > 0,

we conclude that

F(tn) ≥ ∥u(tn)∥21 = λeεtn .

The proof of Theorem 5.1 is finished. �
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