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Abstract. We consider the abstract integrodifferential equation

ü(t) +A
[
u(t) +

∫ ∞

0

µ(s)[u(t)− u(t− s)]ds
]

= 0

modeling the dynamics of linearly viscoelastic solids. The equation is known to generate
a semigroup S(t) on a certain phase space, whose asymptotic properties have been the
object of extensive studies in the last decades. Nevertheless, some relevant questions still
remain open, with particular reference to the decay rate of the semigroup compared to the
decay of the memory kernel µ, and to the structure of the spectrum of the infinitesimal
generator of S(t). This paper intends to provide some answers.
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1. Introduction

Let H be a real Hilbert space, and let A : H → H be a strictly positive selfadjoint
linear operator with dom(A) ⊂ H. For t > 0, we consider the abstract integrodifferential
equation in the unknown u = u(t) : R→ H

(1.1) ü(t) + A
[
u(t) +

∫ ∞
0

µ(s)[u(t)− u(t− s)]ds
]

= 0,

which serves as a model in the description of the dynamics of linearly viscoelastic solids.
Here, the dot stands for the derivative with respect to time, and the convolution -or
memory- kernel

µ : (0,∞)→ [0,∞)

is a summable nonincreasing function whose properties will be specified below. The
function u for negative times is regarded as an initial datum. As detailed later in this
paper, equation (1.1), properly translated in a suitable framework, gives rise to a strongly
continuous semigroup

S(t) = etA

acting on a certain Hilbert space H, that embodies the information on the past history
of the variable u. Defining the function

g(s) = 1 +

∫ ∞
s

µ(r)dr,

equation (1.1) is sometimes written in the equivalent form

(1.2) ü(t) + A
[
g(0)u(t) +

∫ ∞
0

g′(s)u(t− s)]ds
]

= 0.

Remark 1.1. A concrete realization of (1.2) is the boundary value problem∂ttu(t)− g(0)∆u(t)−
∫ ∞

0

g′(s)∆u(t− s)ds = 0,

u(t)|∂Ω = 0,

ruling the evolution of the relative displacement in a linearly viscoelastic solid occupying
a volume Ω ⊂ RN at rest [37]. In this case H = L2(Ω) and

A = −∆ with dom(A) = H2(Ω) ∩H1
0 (Ω).

Another relevant model, used for instance in the description of the vibrations of thin
viscoelastic rods, is obtained by adding an additional term to the equation, namely,∂ttu(t)− ν∆∂ttu(t)− g(0)∆u(t)−

∫ ∞
0

g′(s)∆u(t− s)ds = 0,

u(t)|∂Ω = 0,

with ν > 0 small (see [28]). The latter equation can be given the form (1.1) by setting

A = −(1− ν∆)−1∆.

Observe that now A is (or, more precisely, extends to) a bounded linear operator on
L2(Ω).
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The analysis of the semigroup S(t) and its asymptotic features has been carried out by
several authors since the Seventies of the last century. We mention in this direction the
works [2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 21, 24, 25, 26, 27, 28, 31, 32, 33, 34, 37]
but the list is far from being exhaustive. Concerning the decay properties of the semigroup,
necessary and sufficient conditions on the kernel µ, among a reasonably large class of
admissible kernels, are nowadays well known in order for S(t) to be stable or exponentially
stable (see [2, 34]). Nonetheless, in spite of the vast literature on the subject, there are
still some relevant issues that so far appear to be completely unexplored:

• How the decay rate of S(t) depends on the decay rate of the memory kernel µ?

• In particular, does a fast decay of µ translate into a fast decay of the semigroup
norm?

• If µ has a superexponential decay (e.g., µ is compactly supported), is it generally
true that the semigroup norm decays faster than any exponential? In other words,
are superexponential decays possible in the context of linear viscoelasticity? Inci-
dentally, this would give some insight on the persistence of the elastic force versus
viscoelastic effects.

• Are there nontrivial trajectories of S(t) vanishing in finite time? When this is not
the case, some authors talk of impossibility of localization of solutions (see e.g.,
[36]). Again, from the physical viewpoint this is related to the persistence of the
elastic force, and in mathematical terms to the backward uniqueness property of
the semigroup.

One of the reasons that might explain why the questions above have not been addressed
so far is that we have a very poor knowledge of the spectrum σ(A) of the infinitesimal
generator A, whose structure has a deep influence on the decay of the trajectories. Indeed,
as we will see, the presence of the memory, that confers the equation a nonlocal character,
introduces a certain degree of complexity. Such a complexity completely disappears in
the limit situations where g(s) − 1 equals the Dirac mass at zero. In which case, (1.2)
formally becomes

ü(t) + A
[
u(t) + u̇(t)

]
= 0,

known also as the Kelvin-Voigt model for viscoelasticity, whose semigroup possesses an
infinitesimal generator with a very simple spectrum (see, e.g., [9]).

The aim of the present paper is to address these points, providing in particular the full
characterization of σ(A), at least for the case of the exponential kernel.

Remark 1.2. One might argue that, for more generality, and since we are mostly inter-
ested in the decay properties of the solutions depending on the parameters in play, we
should have considered in place of (1.1) the equation

ü(t) + A
[
αu(t) +

∫ ∞
0

µ(s)[u(t)− u(t− s)]ds
]

= 0,

with α > 0, which is exactly the value of g(∞). But redefining the operator A to be αA
and µ(s) to be 1

α
µ(s), we boil down to (1.1). In particular, a multiplication of A or µ by

a positive constant does not affect in any way the decay properties of the semigroup.
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2. Preliminaries and Notation

2.1. Functional setting. We denote the inner product and the norm in the space H by
〈·, ·〉 and ‖ · ‖, respectively. Besides, we introduce the further Hilbert space

H1 = dom(A
1
2 ), 〈u, v〉1 = 〈A

1
2u,A

1
2v〉, ‖u‖1 = ‖A

1
2u‖.

Definition 2.1. A function µ : (0,∞)→ [0,∞) is said to be an admissible kernel if the
following hold:

- µ is nonincreasing and maps Lebesgue nullsets into nullsets;
- the set of the (possibly infinitely many) jump points of µ has empty interior;
- µ is summable with total mass

κ =

∫ ∞
0

µ(s)ds > 0.

We agree to choose the right-continuous representative of µ.

In what follows, µ is understood to be an admissible kernel. Notice that µ is a nonnull
and piecewise absolutely continuous function vanishing at infinity. In particular, µ is
differentiable almost everywhere with µ′ ≤ 0, but it can be unbounded about zero. We
define the number

(2.1) s? = sup
{
s > 0 : µ(s) > 0

}
∈ (0,∞],

namely, the supremum of the support of µ. The two situations s? <∞ (i.e., µ compactly
supported) and s? = ∞ (i.e., µ strictly positive) are referred to as finite and infinite
memory, respectively.

Definition 2.2. An admissible kernel µ is said to fulfill the δ-condition, for some δ > 0,
if there exists C ≥ 1 such that

(2.2) µ(t+ s) ≤ Ce−δtµ(s),

for every t ≥ 0 and s > 0.

Remark 2.3. It is readily seen that if s? < ∞ then µ fulfills the δ-condition for every
δ > 0. Observe also that (2.2) implies that µ exhibits an exponential decay of rate δ (at
least). Indeed, for s ≥ 1 we have

µ(s) = µ(1 + s− 1) ≤ Qe−δs,

with Q = Ceδµ(1).

For any given µ, we consider the L2-weighted space on (0, s?)

M = L2
µ(0, s?;H

1),

referred to as memory space, endowed with the inner product and norm

〈η, ζ〉M =

∫ s?

0

µ(s)〈η(s), ζ(s)〉1ds, ‖η‖M =
(∫ s?

0

µ(s)‖η(s)‖2
1ds
) 1

2
.

Finally, we define the extended memory space

H = H1 ×H ×M,
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endowed with the product norm

‖(u, v, η)‖2
H = ‖u‖2

1 + ‖v‖2 + ‖η‖2
M.

We will also denote the Banach spaces of bounded linear operators onM and H by L(M)
and L(H), respectively.

2.2. A convolution lemma. A key tool for our analysis is the following technical result.

Lemma 2.4. Let s? <∞, and let q ∈ L1(0, s? − ε) for every ε > 0 small. If the equality∫ s?

t

µ(s)q(s− t)ds = 0

holds for every t ∈ [0, s?], then q identically vanishes on [0, s?].

Proof. Without loss of generality, we assume s? = 1. For ε > 0 small, define

qε(s) =

{
q(s) if s ≤ 1− ε,
0 if s > 1− ε.

Since µ(s) = 0 for s > 1, setting

µε(s) = µ(s+ ε),

the equality above implies that

(2.3)

∫ 1

t

µε(s)qε(s− t)ds = 0, ∀t ∈ [0, 1].

Indeed, since µε(s) = 0 for s > 1− ε, the latter integral vanishes if t > 1− ε, whereas if
t ≤ 1− ε by a change of variable we get∫ 1

t

µε(s)qε(s− t)ds =

∫ 1

t+ε

µ(s)q(s− (t+ ε))ds = 0,

thanks to our hypotheses. Here we used the fact that, when s runs in the integration
interval, the argument s− (t + ε) of q remains less than or equal to 1− ε, meaning that
q and qε coincide. Extending now µε and qε on R to be zero outside [0, 1], and defining
then the reflection

q̃ε(s) = qε(−s),
we can rephrase (2.3) in terms of convolution on the real line as

supp(µε ∗ q̃ε) ⊂ [−1, 0].

Since µε, q̃ε ∈ L1(R), the Titchmarsh convolution theorem [42] provides the equality

max supp(µε ∗ q̃ε) = max supp(µε) + max supp(q̃ε).

Since max supp(µε) = 1− ε, we learn that

max supp(q̃ε) ≤ −1 + ε.

On the other hand, by construction,

supp(q̃ε) ⊂ [−1 + ε, 0].

This tells that q̃ε is identically zero, and so is qε. Meaning that the original function q
vanishes on [0, 1− ε]. Since ε > 0 is arbitrary, we are done. �
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3. The Right-Translation Semigroup on the Memory Space

We now introduce the right-translation semigroup R(t) acting on the memory space M,
which will play a crucial role in the definition of the dynamical system generated by the
viscoelastic equation (1.1). This is the one-parameter map

η ∈M 7→ R(t)η ∈M
defined as follows:

[R(t)η](s) =

{
0 0 < s ≤ t,

η(s− t) s > t.

Indeed, this map is well defined as µ is nonincreasing. We recall some known facts, which
hold true for any given admissible kernel µ (see [2, 19, 33]).

(i) R(t) is a contraction semigroup, that is, ‖R(t)‖L(M) ≤ 1 for all t ≥ 0. Besides,
R(t) is nilpotent if (and only if) s? <∞.

(ii) The infinitesimal generator of R(t) is the linear operator T on M defined as

[Tη](s) = −η′(s),
with domain

dom(T ) =
{
η ∈M : η′ ∈M, η(0) = 0

}
,

where the prime stands for the distributional derivative with respect to s, and
η(0) is the limit in H1 of η(s) as s→ 0.

(iii) R(t) is stable, that is, ‖R(t)η‖M → 0 as t→∞ for any η ∈M.

(iv) For C ≥ 1 and δ > 0, the exponential decay estimate

‖R(t)‖2
L(M) ≤ Ce−δt

holds if and only if (2.2) holds.

In the present work we want to understand more deeply in which terms the decay of µ
affects the decay of the norm of R(t).

Proposition 3.1. For every ε > 0 (and less than s?),

‖R(t)‖2
L(M) ≥

µ(t+ ε)

µ(ε)
.

Proof. Given a unit vector w ∈ H1, define the sequence of unit vectors ηn ∈M as follows:

ηn(s) = Cnχ[ε,ε+ 1
n

](s)w with Cn =
(∫ ε+ 1

n

ε

µ(s)ds
)− 1

2
.

Then, from the right-continuity of µ,

‖R(t)ηn‖2
M =

∫ ε+ 1
n

ε

µ(t+ s)ds∫ ε+ 1
n

ε

µ(s)ds

≥
µ(t+ ε+ 1

n
)

n

∫ ε+ 1
n

ε

µ(s)ds

→ µ(t+ ε)

µ(ε)
,
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as n→∞. Since for every n

‖R(t)‖L(M) ≥ ‖R(t)ηn‖M,
the claim follows.

In particular, Proposition 3.1 tells that if µ(0) < ∞ then there is a constant c > 0,

which is exactly 1/
√
µ(0), such that

(3.1) ‖R(t)‖L(M) ≥ c
√
µ(t) .

The lower bound (3.1) is generally false if µ(0) =∞, as the following example shows.

Example 3.2. Consider the (admissible) kernel

µ(s) =
e−s

2

√
s
.

Given any η ∈M of unit norm, we have

‖R(t)η‖2
M =

e−t
2

t

∫ ∞
0

µ(s)‖η(s)‖2
1Φ(s, t)ds,

where

Φ(s, t) =

√
t√

s+ t
e−2st
√
st ≤ e−2st

√
st ≤ K,

having set K = maxx>0 e
−2x
√
x. Accordingly,

‖R(t)η‖2
M ≤

Ke−t
2

t
=

K√
t
µ(t),

which tells that the decay rate of the norm of R(t) is faster than
√
µ(t).

However, even if µ(0) <∞, hence (3.1) holds, one can generally find nontrivial trajec-
tories whose energy decays faster than µ(t).

Example 3.3. Consider the kernel µ(s) = e−s
2
, and choose η(s) = w with ‖w‖1 = 1.

Then

‖R(t)η‖2
M =

∫ ∞
0

e−(t+s)2ds =

√
π

2
−
∫ t

0

e−s
2

ds ∼ 1

2t
µ(t),

as t→∞.

We will compare the decay rate of the norm of R(t) with the one of the semigroup
generated by the viscoelastic equation (1.1).

4. The Solution Semigroup: A Brief Survey

4.1. The equation in the past history framework. The standard way to recast
equation (1.1) in order to obtain a solution semigroup is working in the so-called history
space framework, devised by Dafermos in [5]. This amounts to introducing an auxiliary
variable η = ηt(s), formally defined as,

ηt(s) = u(t)− u(t− s), t ≥ 0, s ∈ (0, s?),
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with s? given by (2.1), which keeps track of the past history of u, and is assigned as an
initial datum at t = 0. Then (1.1) translates into the system

(4.1)

ü+ A
[
u+

∫ s?

0

µ(s)η(s)ds
]

= 0,

η̇ = Tη + u̇.

Introducing the linear operator A on H acting as

A(u, v, η) =
(
v,−A

[
u+

∫ s?

0

µ(s)η(s)ds
]
, T η + v

)
,

with domain

dom(A) =

(u, v, η) ∈ H

∣∣∣∣∣∣
v ∈ H1

u+
∫ s?

0
µ(s)η(s)ds ∈ dom(A)

η ∈ dom(T )

 ,

system (4.1) can be equivalently written as the ODE in H
d

dt
u(t) = Au(t).

For every initial datum u0 = (u0, v0, η0) ∈ H, such an ODE is known to possess a unique
weak solution

t 7→ u(t) = (u(t), ut(t), η
t) ∈ C([0,∞),H).

Besides, the third component ηt fulfills the explicit representation form

(4.2) ηt(s) =

{
u(t)− u(t− s) 0 < s ≤ t,

η0(s− t) + u(t)− u0 s > t.

Accordingly, (4.1) generates a strongly continuous semigroup S(t) : H → H acting by the
rule [11, 35]

S(t)u0 = u(t),

and whose infinitesimal generator is the linear operator A. The energy at time t corre-
sponding to the initial datum u0 reads

E(t) =
1

2
‖S(t)u0‖2

H =
1

2

[
‖u(t)‖2

1 + ‖ut(t)‖2 +

∫ s?

0

µ(s)‖ηt(s)‖2
1ds
]
.

Indeed, S(t) is actually a contraction semigroup, meaning that E(t) is a nonincreasing
function for all initial data. We address the reader to the works [19, 32, 33] for more
details.

4.2. Exponential stability. Since S(t) is contraction semigroup, either its operator
norm is always equal to 1, or S(t) is exponentially stable, that is,

(4.3) ‖S(t)‖L(H) ≤Me−ωt,

for some M ≥ 1 and ω > 0. For every admissible kernel µ, a necessary and sufficient
condition for the exponential stability of S(t) has been established. This is the content
of the following theorem proved in [34].
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Theorem 4.1. Assume that µ is not completely flat, that is, the set

{s > 0 : µ′(s) < 0}
has positive measure. Then S(t) is always stable, and it is exponentially stable if and only
if (2.2) holds.

If µ is completely flat, we have a different picture, depending whether the operator A
is unbounded or not. In the first case, it is generally true that S(t) is not exponentially
stable. Instead, when A is bounded, the semigroup turns out to be exponentially stable
whenever it is stable. Lack of stability occurs for a certain class of flat kernels, called
resonant, where trajectories with conserved energy arise. We will not go into deeper
details here, rather addressing the reader to [2, 34] for more information.

Definition 4.2. We define the (exponential) decay rate of the semigroup to be the non-
negative number

ω? = sup
{
ω ≥ 0 : ‖S(t)‖L(H) ≤Me−ωt

}
,

for some M = M(ω). The number −ω? is usually called the growth bound of S(t).

Thus, S(t) is exponentially stable if and only if ω? > 0, whereas if ω? = 0 then it has
unitary operator norm for all t.

Remark 4.3. The decay rate of S(t) can also be computed via the formula (see [11, 35])

ω? = − lim
t→∞

log ‖S(t)‖L(H)

t
.

In principle, it might happen that ω? = ∞, meaning that the decay of the semigroup is
faster than any exponential. We will discuss this situation in the final Section 10.

The next result is basically contained in [33], although not explicitly written.

Proposition 4.4. For every admissible kernel µ, we have the inequality

‖S(t)‖L(H) ≥ c‖R(t)‖L(M),

for some c > 0.

Proof. If s? < ∞ and t ≥ s? then R(t) = 0. If t < s?, choose u0 = (0, 0, η0) ∈ H of unit
norm. Exploiting (4.2),

‖S(t)u0‖2
H ≥

∫ s?

t

µ(s)‖η0(s− t) + u(t)‖2
1ds

≥ 1

2

∫ s?

t

µ(s)‖η0(s− t)‖2
1ds− κ‖u(t)‖2

1

≥ 1

2
‖R(t)η0‖2

M − κ‖S(t)u0‖2
H.

Hence

‖S(t)‖2
L(H) ≥ ‖S(t)u0‖2

H ≥
1

2(1 + κ)
‖R(t)η0‖2

M.

Taking the supremum over the η0 ∈M of unit norm, we are done.
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In view of point (iv) of the previous Section 3, Proposition 4.4 has an immediate
consequence.

Corollary 4.5. If (4.3) holds for some ω > 0, then (2.2) necessarily holds for some
δ ≥ 2ω.

5. The Spectrum of the Infinitesimal Generator

In this section we discuss the spectrum σ(A) of (the complexification of) the infinitesimal
generator A of the semigroup S(t). The knowledge of σ(A) plays an important role in
concern with the decay rate of S(t). Indeed, defining the spectral bound

σ? = sup
{
Re(z) : z ∈ σ(A)

}
,

it is well known that the following inequality holds:

ω? ≤ −σ?,

providing an upper bound to the decay rate ω? of S(t). Observe that, being S(t) a
contraction semigroup, σ? ≤ 0.

With standard notation (see e.g. [40]), the spectrum σ(A) decomposes into the disjoint
union

σ(A) = σp(A) ∪ σc(A) ∪ σr(A),

where

- σp(A) is the point spectrum: z ∈ σp(A) if and only if z is an eigenvalue of A;

- σc(A) is the continuous spectrum: z ∈ σc(A) if and only if the operator z − A is
injective but not surjective, and the closure of its range is H;

- σr(A) is the residual spectrum: z ∈ σr(A) if and only if the operator z − A is
injective and the closure of its range is strictly contained in H.

Another interesting subset of σ(A) is the approximate point spectrum

σap(A) = {z ∈ C : z − A is not bounded below},

whose elements are called approximate eigenvalues. We recall that both σp(A) and σc(A)
are contained in σap(A), while σr(A) and σap(A) are generally askew. Moreover, it is a
general fact that the topological boundary of σ(A) is contained in σap(A) (see e.g. [11]).

Let now µ be a fixed admissible kernel of total mass κ. For δ > 0, we define the open
half-plane

Πδ =
{
z ∈ C : Re(z) > − δ

2

}
,

along with the function Lµ : Πδ → C given by

Lµ(z) = 1 + κ −
∫ s?

0

e−zsµ(s)ds.

This function is certainly well defined if (2.2) holds true. Then we consider three subsets
of Πδ, depending on the spectrum σ(A) = σp(A) ∪ σc(A) of the operator A (recall that
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σr(A) = ∅ as A is selfadjoint); namely,

Wp =
⋃

λ∈σp(A)

{
z ∈ Πδ : λLµ(z) + z2 = 0

}
,

Wc =
⋃

λ∈σc(A)

{
z ∈ Πδ : λLµ(z) + z2 = 0

}
,

Z =

{{
z ∈ Πδ : Lµ(z) = 0

}
if A is unbounded,

∅ if A is bounded.

Note that, as Lµ(0) = 1, the value z = 0 does not belong to either set.

If the memory kernel µ complies with (2.2), then the spectrum of A in the half-plane Πδ

is known explicitly. This result has been originally proved in [25], within a more restrictive
condition than (2.2), and then in [7] in the version reported here below.1

Theorem 5.1. Assume that (2.2) holds. Then σ(A) ∩ Πδ decomposes into the disjoint
union

σ(A) ∩ Πδ = Wp ∪Wc ∪ Z.
In particular, 0 belongs to the resolvent set of A.

Nonetheless, the result does not say anything on the structure of the spectrum. This
is done in the next theorem.

Theorem 5.2. Assume that (2.2) holds. Then

σp(A) ∩ Πδ = Wp, σc(A) ∩ Πδ = Wc ∪ Z, σr(A) ∩ Πδ = ∅.

Before entering the details of the proof, let us fix z ∈ C, with z 6= 0. Then, for any
given vector û = (û, v̂, η̂) ∈ H, we consider the resolvent equation

(5.1) (z − A)u = û.

in the unknown u = (u, v, η) ∈ dom(A). Componentwise,

(5.2) zu− v = û,

(5.3) zv + A
[
u+

∫ s?

0

µ(s)η(s)ds
]

= v̂,

(5.4) zη − Tη − v = η̂.

Integrating the last equation with η(0) = 0, a constraint coming from the fact that we
want η ∈ dom(T ), we find

(5.5) η(s) =
1

z
v − e−zs

z

[
v − z

∫ s

0

ezrη̂(r)dr
]
.

Substituting (5.2) and (5.5) into (5.3), we arrive at

(5.6) z2u+ Lµ(z)Au = AΘ(û, v̂, η̂),

1This is actually proved in [7] by restricting Πδ on the closed left complex half-plane and for A
unbounded, but it is readily seen from the proof therein that the result holds as written here.
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where

Θ(û, v̂, η̂) = A−1[v̂ + zû] +
[Lµ(z)− 1

z

]
û−

∫ s?

0

µ(s)

∫ s

0

e−z(s−r)η̂(r)dr ds.

Up to now, the calculations are only formal. However, if µ complies with (2.2) and
z ∈ Πδ \ {0}, the paper [7] proves the following facts:

- Θ(û, v̂, η̂) ∈ H1;

- if u ∈ H1 solves (5.6), then u = (u, v, η) with v given by (5.2) and η given by (5.5)
is the unique solution to the resolvent equation (5.1).

We can now proceed with the proof of Theorem 5.2.

Proof of Theorem 5.2. We divide the argument in four steps. In what follows, we always
take z 6= 0, as z = 0 does not belong to σ(A).

Step 1. We first show that
σp(A) ∩ Πδ = Wp.

Let z ∈ Wp be fixed, namely,

z2 = −λ0Lµ(z),

for some λ0 ∈ σp(A). It is readily seen from (5.2)-(5.4) that z is an eigenvalue of A
with eigenvector u = (u, zu, η), where u is an eigenvector of A corresponding to λ0 and
η(s) =

[
1 − e−zs

]
u. This proves that Wp ⊂ σp(A) ∩ Πδ. For the reverse inclusion, let

z ∈ Πδ be an eigenvalue of A with eigenvector u = (u, v, η). Then u solves (5.1) with
û = 0, so that u solves (5.6) with null right-hand side. Note that u 6= 0 (otherwise u = 0),
forcing Lµ(z) 6= 0. Hence u is an eigenvector of A with eigenvalue

λ0 = − z2

Lµ(z)
,

that is, z ∈ Wp.

Step 2. Next, we show that
Z ⊂ σc(A) ∩ Πδ.

Assume that A is unbounded, otherwise there is nothing to prove, and take any z ∈ Z.
Since Z ∩Wp = ∅, we know from Step 1 that z 6∈ σp(A). We claim that the resolvent
equation (5.1) can be solved whenever û = (û, v̂, η̂) belongs to the dense subset of H

dom(A
3
2 )× dom(A)× L2

µ(0, s?; dom(A
3
2 )).

Indeed, being Lµ(z) = 0, equation (5.6) becomes

u =
1

z2
AΘ(û, v̂, η̂) =

1

z2
Θ(Aû,Av̂, Aη̂) ∈ H1,

and equation (5.1) is solved. Thus, ran(z − A) = H, as desired.

Step 3. Finally, we prove that

Wc ⊂ σc(A) ∩ Πδ.

To this end, let z ∈ Wc be fixed, namely,

(5.7) z2 = −λ0Lµ(z),



13

for some λ0 ∈ σc(A). Since Wc ∩Wp = ∅, Step 1 tells that z 6∈ σp(A). We now consider
the family of sets depending on ε > 0

∆ε = (−∞, λ0 − ε] ∪ [λ0 + ε,∞).

For every û = (û, v̂, η̂) ∈ H, we call

(5.8) ûε = EA(∆ε)û, v̂ε = EA(∆ε)v̂, η̂ε = EA(∆ε)η̂,

where EA is the spectral measure of A (see e.g. [38]). Since EA({λ0}) = 0, otherwise λ0

would be an eigenvalue of A, we have that

ûε → û in H1 and v̂ε → v̂ in H,

as ε→ 0. By the same token, η̂ε(s)→ η̂(s), and since ‖η̂ε(s)‖1 ≤ ‖η̂(s)‖1, the Dominated
Convergence theorem yields

η̂ε → η̂ in M.

In summary, the set of vectors of the form (5.8), for ε > 0 and û ∈ H, is dense in H.
Accordingly, in view of our scopes, we can limit ourselves to consider (5.1) with

û = (û, v̂, η̂) ∈ EA(∆ε)H
1 × EA(∆ε)H × EA(∆ε)M,

for some ε > 0. Recalling (5.7), equation (5.6) takes the form

u− 1

λ0

Au =
1

z2
AΘ(û, v̂, η̂).

Observing that

Θ(û, v̂, η̂) ∈ EA(∆ε)H
1,

exploiting the functional calculus of A we get

u =
λ0

z2

[ ∫
σ(A)∩∆ε

λ

λ0 − λ
dEA(λ)

]
Θ(û, v̂, η̂),

which belongs to H1, for

sup
λ∈σ(A)∩∆ε

λ

|λ0 − λ|
<∞.

Then the resolvent equation (5.1) is solved.

Step 4. Collecting the previous steps,

σp(A) ∩ Πδ = Wp and Wc ∪ Z ⊂ σc(A) ∩ Πδ.

Invoking Theorem 5.1, we conclude that σc(A) ∩ Πδ = Wc ∪ Z and σr(A) ∩ Πδ = ∅. �

One might ask what happens instead in the complement of Πδ. This issue has been
partially addressed in [20] for the particular case of the exponential kernel (or of a finite
sum of exponentials). But in general, the question is not completely well posed, as one
should first find the largest δ for which (2.2) is verified. Accordingly, the best possible
result is seemingly as follows.
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Theorem 5.3. Suppose that for some ν > 0∫ ∞
0

eνsµ(s)ds =∞.

If Re(z) ≤ −ν
2

then z ∈ σc(A) ∪ σr(A).

Proof. Let z ∈ C with Re(z) ≤ −ν
2

be given. Choosing any vector of the form û = (0, v̂, 0),
we look for a solution u = (u, v, η) ∈ dom(A) to the resolvent equation (5.1). In view
of (5.5),

η(s) =
1

z

[
1− e−zs

]
v.

Since for large s

|1− e−zs|2 ∼ e−2Re(z)s ≥ eνs,

the only possibility for η to belong to M is that v = 0, hence η = 0. In which case,
we learn from (5.2) that u = 0 as well, and (5.3) becomes 0 = v̂. Therefore, we have a
solution if and only if v̂ = 0, and the solution is the trivial one. This means that z belongs
to the spectrum and it is not an eigenvalue.

Example 5.4. Let µ(s) be a subexponential kernel, in the following sense∫ ∞
0

eδsµ(s)ds =∞, ∀δ > 0.

For instance,

µ(s) =
1

(1 + s)2
.

Then, according to Theorem 5.3 and using the fact that the spectrum is a closed set, we
have

σ(A) =
{
z ∈ C : Re(z) < 0

}
∪ iR,

where the first set is contained in σc(A) ∪ σr(A). Besides, since S(t) is a contraction
semigroup, by a well-known result from [1] we infer that iR ∩ σr(A) = ∅. If in addition
S(t) is stable (cf. Theorem 4.1), as in the case of the particular kernel µ(s) considered
above, then iR ∩ σp(A) = ∅ as well.

6. Solutions of Pure Memory Type

We now dwell on some particular solutions to the viscoelastic equation.

Definition 6.1. A solution (u(t), u̇(t), ηt) to (4.1) is said to be of pure memory type if u
is identically zero.

Clearly, for such solutions, we also have u̇ ≡ 0. Accordingly, the system exhibits an
empty dynamics, since only the evolution of the memory term survives. Indeed, in light
of (4.1) and (4.2), a solution of pure memory type is of the form (0, 0, ηt), where

(6.1) ηt(s) = [R(t)η0](s) =

{
0 0 < s ≤ t,

η0(s− t) s > t,
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for s < s? with s? as is (2.1), and η0 satisfies

(6.2)

∫ s?

0

µ(t+ s)η0(s)ds = 0, ∀t ≥ 0.

A first issue is whether or not, besides the trivial one, solutions of this kind exist.

Example 6.2. Consider the exponential kernel µ(s) = e−s. Let u0 ∈ H1, and let φ(s) be
any function such that ∫ ∞

0

e−sφ(s)ds = 0.

Then (0, 0, ηt) with ηt given by (6.1) with initial datum η0(s) = φ(s)u0 is of pure memory
type, as it fulfills (6.2). By the same token, one can construct solutions of pure memory
type for a kernel made by a linear combination of negative exponentials.

The question is now if this situation can occur with kernels of different type. If the
kernel is compactly supported the answer is negative. In fact, a stronger result holds.

Theorem 6.3. Let s? <∞, and let (u(t), u̇(t), ηt) be a solution to (4.1) such that u(t) = 0
for every t ≥ t?, for some t? ≥ 0. Then such a solution is the trivial one.

Proof. We preliminary show that such a solution is of pure memory type. To this end,
without loss of generality, we assume t? ≥ s?, and we prove that u(t) = 0 for every
t ≥ t? − s?. The thesis then follows by finite recursion. Indeed, when u(t) = 0 for every
t ≥ t?, we read from (4.1) together with (4.2) that∫ s?

0

µ(s)u(t− s)ds = 0, ∀t ≥ t?.

Choosing any vector w ∈ H, and setting p(s) = 〈u(s), w〉, we get∫ s?

0

µ(s)p(t− s)ds = 0, ∀t ≥ t?.

Since p(t) = 0 for t ≥ t?, we deduce that∫ s?

t−t?
µ(s)p(t− s)ds = 0, ∀t ∈ [t?, t? + s?].

Denoting
q(s) = p(t? − s),

we rewrite the latter relation as∫ s?

t

µ(s)q(s− t)ds = 0, ∀t ∈ [0, s?].

Lemma 2.4 then yields q(s) = 0 for all s ∈ [0, s?], that is,

p(s) = 0, ∀s ∈ [t? − s?, t?].
Since the vector w ∈ H is arbitrarily chosen, then

u(s) = 0, ∀s ∈ [t? − s?, t?].
At this point, knowing that u ≡ 0, we set

q(s) = 〈η0(s), w〉, w ∈ H,
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and we infer from (6.2) that∫ s?

t

µ(s)q(s− t)ds = 0, ∀t ∈ [0, s?].

Again, we are in the hypotheses of Lemma 2.4. Therefore, q(s) = 0 for all s ∈ [0, s?].
From the arbitrariness of w ∈ H, we conclude that η0(s) = 0 for all s ∈ [0, s?]. In turn,
this implies that ηt is zero for every t ≥ 0.

The theorem has an immediate corollary.

Corollary 6.4. If s? <∞ then system (4.1) does not possess nontrivial solutions of pure
memory type.

Let us see what happens instead for a relevant nonvanishing kernel different from the
exponential one.

Example 6.5. Let µ(s) = e−s
2
. We show that in this case system (4.1) does not possess

nontrivial solutions of pure memory type. Indeed, let (0, 0, ηt) be such a solution. Then,
defining for an arbitrarily given w ∈ H

q(s) = e−s
2〈η0(s), w〉,

equation (6.2) yields ∫ ∞
0

e−2tsq(s)ds = 0, ∀t ≥ 0,

meaning that the Laplace transform of q, and hence q, is identically zero. Hence, we
conclude that η0 ≡ 0.

Still, we can produce examples of kernels that are not linear combinations of exponen-
tials, but for which nontrivial solutions of pure memory type do exist.

Example 6.6. Consider the kernel

µ(s) = e−s(1 + as),

with a > 0 small enough to guarantee that µ is nonincreasing. Define

φ(s) = 2− 4s+ s2,

noting that ∫ ∞
0

e−sφ(s)ds =

∫ ∞
0

se−sφ(s)ds = 0.

It is then apparent that, for any u0 ∈ H1, the function η0(s) = φ(s)u0 fulfills (6.2).
Accordingly, (0, 0, ηt) with ηt given by (6.1) is of pure memory type.

The example can be easily extended to any kernel of the form

(6.3) µ(s) =
N∑
n=1

pn(s)e−bns,

where bn > 0 and pn are polynomials. The situation is quite different if we consider an
infinite sum of exponential kernels.
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Example 6.7. Consider the kernel

µ(s) =
∞∑
n=1

ane
−bns,

where an > 0 is the general term of a convergent series, and bn > 0 is a strictly increasing
sequence satisfying

∞∑
n=1

1

bn
=∞.

Such a bn is called a Münz sequence. Let (0, 0, ηt) be a solution of pure memory type. As
before, choosing any vector w ∈ H, we set q(s) = 〈η0(s), w〉. Then we have the equality

∞∑
n=1

cne
−bnt = 0,

where

cn = an

∫ ∞
0

e−bnsq(s)ds.

It is readily seen that the latter equality, valid for every t ≥ 0, is possible if and only if
cn = 0 for every n. In other words, the Laplace transform of q is zero at every point bn.
By a famous theorem due to Münz (see [43]), this implies that q ≡ 0, so that η0 ≡ 0.

We now discuss the analogue of Theorem 6.3 for s? = ∞. Here, we know that pure
memory solutions can exist, at least for certain kernels. Nonetheless, one might ask if
u(t) eventually zero forces the solution to be of pure memory type. In general, this seems
a hard question to cope with. We have a (positive) answer for the exponential kernel.

Theorem 6.8. Let µ(s) = e−s, and let (u(t), u̇(t), ηt) be a solution to (4.1) such that
u(t) = 0 for every t ≥ t?, for some t? ≥ 0. Then such a solution is of pure memory type.

Proof. For an arbitrarily given w ∈ H1, let us denote

ξ(t) = 〈u(t), w〉 and ξ1(t) = 〈u(t), w〉1.
Borrowing an idea from [8], we multiply (4.1) by etw in H. Exploiting the representation
formula (4.2), we obtain the equality

etξ̈(t) + 2etξ1(t)−
∫ t

0

esξ1(s)ds = G,

where

G =

∫ ∞
0

e−s
[
ξ1(0)− 〈η0(s), w〉1

]
ds

is independent of t. Taking the derivative with respect to time, and then multiplying by
e−t, we are led to ...

ξ + ξ̈ + 2ξ̇1 + ξ1 = 0.

This is nothing but the weak formulation of the equation

(6.4)
...
u + ü+ 2Au̇+ Au = 0.
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The latter is a particular instance of the Moore-Gibson-Thompson (MGT) equation
...
u + αü+ βAu̇+ γAu = 0,

which is known to generate a strongly continuous semigroup on the space H1 ×H1 ×H,
for all parameters α, β, γ > 0 (see, e.g., [8, 23, 29, 30, 39, 41]). In fact, the recent paper [4]
shows that for the generation of the semigroup it is enough to require β > 0, whereas α, γ
can be arbitrary real numbers. Hence, as

...
u and βAu̇ keep the same sign under temporal

inversion, the MGT equation actually generates a strongly continuous group of solutions.
Accordingly, if u(t) = 0 for every t ≥ t? in (6.4), then the whole energy vanishes at t?,
and consequently u ≡ 0. Meaning that the solution to (4.1) is of pure memory type. �

Incidentally, the fact that the MGT equation generates a group allows us to draw
a conclusion on the viscoelastic system (4.1) which at first glance might seem rather
surprising. Namely, it is possible to have a nonempty dynamics where the position u(t)
and the velocity u̇(t) simultaneously vanish at a given positive time. This is detailed in
the next example.

Example 6.9. Let µ(s) = e−s, and select a smooth element w1, say, w1 ∈ dom(A). Then,
there exists a solution to the MGT equation (6.4) such that

(u(1), u̇(1), ü(1)) = (0, 0, w1).

Then, setting η0(s) = ü(0), which is as regular as needed, and defining ηt via (4.2), by
recasting the argument of the proof of Theorem 6.8 the other way around, we see that
(u(t), u̇(t), ηt) solves (4.1). This solution cannot be of pure memory type, otherwise u(t)
would be the null solution to (6.4), but nonetheless it fulfills u(1) = u̇(1) = 0.

7. The Backward Uniqueness Property

An important issue on the viscoelastic equation, which seems to have never been discussed
in full detail, concerns with the backward uniqueness property. Let us recall the definition.

Definition 7.1. The semigroup S(t) generated by system (4.1) satisfies the backward
uniqueness property if the initial condition E(0) > 0 implies that E(t) > 0 for all t > 0.

In particular, if the semigroup complies with the definition above, then it cannot be
nilpotent. The following theorem holds.

Theorem 7.2. For any admissible kernel µ, the semigroup S(t) satisfies the backward
uniqueness property.

For the case s? =∞, we need a preliminary result which, although preparatory to the
proof of Theorem 7.2, has a clear interest by itself.

Theorem 7.3. Let s? = ∞, and assume that u 6≡ 0. Then, there exists τ > 0 and a
constant c > 0, depending on the particular solution, such that

E(t) ≥ cµ(t), ∀t ≥ τ.

Proof. Since u 6≡ 0, there exists τ > 0 such that

ν =

∫ τ

0

‖u(s)‖2
1ds > 0.



19

Since µ is decreasing, for t ≥ τ we have

2E(t) ≥
∫ t

0

µ(s)‖u(t)− u(t− s)‖2
1ds

≥ 1

2

∫ t

0

µ(s)‖u(t− s)‖2
1ds− κ‖u(t)‖2

1

≥ 1

2
µ(t)

∫ t

0

‖u(s)‖2
1ds− 2κE(t)

≥ ν

2
µ(t)− 2κE(t).

The thesis follows by setting c = ν
4(1+κ)

.

Proof of Theorem 7.2. We consider two cases separately.

Case s? = ∞. If u 6≡ 0, the claim follows directly from Theorem 7.3 together with
the fact that the energy is nonincreasing. If u ≡ 0 and (u(t), u̇(t), ηt) is not the trivial
solution, then it is of pure memory type. Therefore, on account of (6.1), we infer that

E(t) =
1

2

∫ ∞
0

µ(t+ s)‖η0(s)‖2
1ds > 0,

as η0 6≡ 0.

Case s? <∞. If E(t?) = 0 for some t? > 0, then E(t) = 0 for every t ≥ t?. In particular,
u(t) = 0 for every t ≥ t?. Hence, E ≡ 0 by Theorem 6.3.

Remark 7.4. Theorem 7.2 is particularly relevant for the case s? < ∞, as it tells that
the energy survives even though the kernel is eventually vanishing. It is also clear from
the proof that a stronger form of the backwards uniqueness property holds when s? <∞.
Namely, in order to conclude that E(0) = 0 it is enough to know that u(t) eventually
vanishes.

We finally state an immediate consequence of Theorem 7.3.

Theorem 7.5. If s? =∞ then

‖S(t)‖L(H) ≥ c
√
µ(t) ,

for some c > 0 and every t > 0 large.

Clearly, after Theorem 7.2, the same is true, and in a much stronger form, if s? < ∞.
Observe that the situation here is different from what we saw in concern with the right-
translation semigroup R(t) (cf. Example 3.2).

8. The Exponential Kernel: Analysis of the Decay Rate

The simplest possible situation, but at the same time the most significant from the physical
viewpoint, is the one of the exponential kernel

µ(s) = κ%e−%s,
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where κ, % > 0. Observe that κ is exactly the mass of µ. In connection with (1.2), this
is the same as taking

g(s) = 1 + κe−%s.
Such a kernel clearly satisfies (2.2) with C = 1 and δ = %, but (2.2) does not hold
for any δ > %. Accordingly, the related semigroup S(t) is exponentially stable, and by
Corollary 4.5 its decay rate fulfills the bound

ω? ≤
%

2
,

which can also be deduced from Theorem 7.5. In fact, from our previous analysis, we
know that for any initial datum u0 6= 0 the decay of ‖S(t)u0‖H cannot be faster than
e−

%
2
t. And such a decay is actually attained whenever S(t)u0 is a solution of pure memory

type, since in that case u0 = (0, 0, η0) and

‖S(t)u0‖H = ‖R(t)η0‖M.
Then, two natural questions arise:

• Is ω? exactly equal to %
2
?

• And, if not, how ω? depend on % and κ?

The answer to the first question is negative. This was already noted in [25], but only for
A unbounded. Here, we provide a much simpler proof, covering also the case A bounded.

Theorem 8.1. The decay rate of the semigroup complies with the bound

ω? <
%

3
.

Proof. With reference to Section 5, it is enough showing that σ(A) contains an element
z0 with Re(z0) > −%

3
. For this particular kernel,

Lµ(z) = 1 + κ − κ%
z + %

,

so that we infer from Theorem 5.1 that σ(A) contains the set⋃
λ∈σ(A)

{
z ∈ Π% : p(z) = 0

}
,

where

(8.1) p(z) = z3 + %z2 + λ(1 + κ)z + λ%.

We will reach our conclusion by proving that, for an arbitrarily fixed λ ∈ σ(A), the
polynomial p has a root with real part greater than −%

3
. Incidentally, since S(t) is a

contraction semigroup, the real part of this root cannot be positive. Let then λ ∈ σ(A)
be fixed. Performing the change of variable

w = z +
%

3
,

one can check that p(z) = 0 turns into

w3 + w
[
λ(1 + κ)− %2

3

]
+

2

27
%3 − 1

3
%λ(κ − 2) = 0.
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The latter is a third-order equation lacking the second-order term, and this readily implies
the existence of a root w0 with positive real part. The corresponding z0 is then the sought
root of p.

Nonetheless, in order to understand the behavior of ω? in dependance of % and κ, we
need to enter more deeply into the structure of the spectrum. Clearly, we already know
that ω? → 0 as % → 0. It is also easy to see that the same occurs when κ → ∞, as in
that case p exhibits a real root

z ∼ − %

1 + κ
.

The full picture is described by the following theorem.

Theorem 8.2. The decay rate ω? deteriorates to zero when

(i) %→ 0 or %→∞, for any fixed κ > 0; and
(ii) κ → 0 or κ →∞, for any fixed % > 0.

Proof. We only need to consider the limits κ → 0 and % → ∞. Again, let λ ∈ σ(A) be
given. Writing z = x+ iy, the equation p(z) = 0, with p given by (8.1), is equivalent to{

x3 − 3xy2 + %(x2 − y2) + λ(1 + κ)x+ λ% = 0,

y(3x2 − y2 + 2%x+ λ+ λκ) = 0.

Looking for a solution with y 6= 0, from the second equation we get

y2 = g(x) = 3x2 + 2%x+ λ+ λκ,
which, substituted into the first one, yields

f(x) = 8x3 + 8%x2 + 2x(λ+ λκ + %2) + λ%κ = 0.

Observe that f(0) = λ%κ > 0, and the parabola g(x) takes its minimum at x = −%
3
. At

this point, we split the argument in two cases.

First, we assume that κ → 0, and we choose

ξ = −%
2

( κ
1 + κ

)
→ 0.

Since

f(ξ) = − κ%3

(1 + κ)3
< 0,

there exists x0 ∈ (ξ, 0) such that f(x0) = 0 and g(x0) ∼ λ > 0. Accordingly, the complex
conjugate numbers

z±0 = x0 ± i
√
g(x0)

are roots of p.
Instead, if %→∞, we choose

ξ = −λ(1 + κ)

2%
→ 0.

By direct computations,

f(ξ) = − λ
%3

[
%4 − %2(1 + κ)2λ+ (1 + κ)3λ2

]
∼ −λ% < 0,
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hence there is x0 ∈ (ξ, 0) such that f(x0) = 0. Besides, as ξ eventually satisfies ξ > −%
3
,

we have that
g(x0) > g(ξ) = 3ξ2 > 0,

and we get z±0 as before.

In all cases, it is apparent that

0 > Re(z0) = x0 > ξ → 0,

either when κ → 0 or when %→∞.

9. The Exponential Kernel: The Spectrum

Theorem 5.2 tailored for the exponential kernel µ(s) = κ%e−%s reads

σp(A) ∩ Π% = Wp, σc(A) ∩ Π% = Wc ∪ Z, σr(A) ∩ Π% = ∅,
where

Wp =
⋃

λ∈σp(A)

{
z ∈ Π% : p(z) = 0

}
,

Wc =
⋃

λ∈σc(A)

{
z ∈ Π% : p(z) = 0

}
,

with p(z) given by (8.1), and

Z =

{{
− %

1+κ

}
if A is unbounded and κ > 1,

∅ otherwise.

Besides, we know from Theorem 5.3 that the complement of Π% belongs to the spectrum,
and more precisely to σc(A) ∪ σr(A). Our aim here is to provide the full characterization
of σ(A). To this end, we introduce the special number

λ? =
%2

4(κ − 1)
,

clearly defined only when κ 6= 1. For convenience, we agree to set λ? = 0 if κ = 1.

Theorem 9.1. The following hold:

(I) If z = x+ iy with x < −%
2

then z ∈ σr(A) but z 6∈ σap(A).

(II) If z = −%
2

+ iy with y 6= 0 then z ∈ σc(A).

(III) If z = −%
2

and λ? 6∈ σp(A) then z ∈ σc(A).

(IV) If z = −%
2

and λ? ∈ σp(A) then z ∈ σr(A) and z ∈ σap(A).

Remark 9.2. Incidentally, the result indicates that the semigroup has somehow bad
spectral properties, as we know that no trajectory but the trivial one can have a decay
faster than e−

%
2
t.

Defining the sets

Xc =
{
z = −%

2
+ iy : y 6= 0

}
and Xr =

{
z = x+ iy : x < −%

2

}
,

we have now the complete picture:
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• If λ? is not an eigenvalue of A then

σp(A) = Wp, σc(A) = Wc ∪ Z ∪Xc ∪
{
− %

2

}
, σr(A) = Xr.

• If λ? is an eigenvalue of A then

σp(A) = Wp, σc(A) = Wc ∪ Z ∪Xc, σr(A) = Xr ∪
{
− %

2

}
.

• In all cases, Xr is the only part of the spectrum that does not belong to σap(A).

The main tool needed in the proof of Theorem 9.1 is the linear operator Λ :M→ H1,
depending on z ∈ C with Re(z) ≤ −%

2
, defined as

Λη = −z(1 + κ + z2A−1) Φη + κ%zΨη,

where

Φη =

∫ ∞
0

ezsη(s)ds,

Ψη =

∫ ∞
0

e−(%+z)s

∫ ∞
s

ezrη(r)dr ds,

with domain

dom(Λ) =
{
η ∈M : Φη ∈ H1 and Ψη ∈ H1

}
.

It is apparent that dom(Λ) contains the set

M0 =
{
η ∈M : η(s) eventually vanishes

}
.

Hence Λ is always densely defined.

A word of warning. It is understood that Φη ∈ H1 means that the integral exists in
H1 in the sense of Bochner, namely,∫ ∞

0

eRe(z)s‖η(s)‖1ds <∞.

And the same for Ψη ∈ H1.

Notation. If λ? is an eigenvalue of A, which can occur only when κ > 1, we will denote
by V the eigenspace relative to λ?, and by P and P⊥ the projections onto V and its
orthogonal complement V ⊥, respectively.

We need some preparatory lemmas.

Lemma 9.3. If Re(z) < −%
2

then Λ is a bounded operator.

Proof. Let z = x + iy ∈ C with x < −%
2

be given, and let η ∈ M be an arbitrary unit
vector. Then, from the Hölder inequality, we have

‖Φη‖1 ≤
∫ ∞

0

e(x+ %
2

)se−
%
2
s‖η(s)‖1ds ≤

(∫ ∞
0

e(2x+%)sds

) 1
2 1
√κ%

‖η‖M =
1√

(−2x− %)κ%
.
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This proves the continuity of Φ. Concerning Ψ, we write

‖Ψη‖1 ≤
∫ ∞

0

e−(%+x)s

∫ ∞
s

exr‖η(r)‖1dr ds

=

∫ ∞
0

exr‖η(r)‖1

∫ r

0

e−(%+x)sds dr.

Observe that ∫ r

0

e−(%+x)sds ≤

{
r if %+ x ≥ 0,

1
−%−x e

−(%+x)r if %+ x < 0.

Therefore, exploiting again the Hölder inequality, if %+ x ≥ 0 we get

‖Ψη‖1 ≤
∫ ∞

0

re(x+ %
2

)re−
%
2
r‖η(r)‖1dr ≤

(∫ ∞
0

r2e(2x+%)rdr

) 1
2 1
√κ%

=

√
2

(−2x− %)
3
2
√κ%

,

whereas if %+ x < 0 we are led to

‖Ψη‖1 ≤ −
1

%+ x

∫ ∞
0

e−
%
2
re−

%
2
r‖η(r)‖1dr ≤ −

1

%(%+ x)
√
κ
.

In both cases the continuity of Ψ is established.

Lemma 9.4. If either z = −%
2

+ iy with y 6= 0, or z = −%
2

and λ? 6∈ σp(A), then for any
u ∈ H1 there is a sequence ηn ∈M0 such that

ηn → 0 in M and Ληn → u in H1.

In particular, Λ is unbounded.

Proof. We first observe that, if we can prove the lemma for u in a dense subset of H1, by
a simple argument the claim follows for every u ∈ H1. Let then z = −%

2
+ iy be given,

and let u belong to some dense subset of H1. Aiming to find ηn, we consider the sequence
of nonnegative functions

φn(s) =
1

s
χ[n,ne](s),

which satisfy ∫ ∞
s

φn(s)ds =


1 if s ≤ n,

log ne
s

if n < s ≤ ne,

0 if ne < s.

For w ∈ H1 to be chosen later, we define

ηn(s) = we−zsφn(s).

Letting n→∞, we have

‖ηn‖2
M = κ%‖w‖2

1

∫ ne

n

1

s2
ds ≤ κ%

n
‖w‖2

1 → 0.

Moreover

Ψηn = w

∫ n

0

e−(%+z)sds+ w

∫ ne

n

e−(%+z)s log
ne

s
ds→ 1

%+ z
w,
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while

Φηn = w

∫ ne

n

1

s
ds = w.

Therefore

Ληn → −
z

%+ z

[
%+ z + κz + (%z2 + z3)A−1

]
w.

Denoting û = −%+z
z
u for simplicity, the proof is finished if we can find a solution w ∈ H1

to the equation

(9.1)
[
%+ z + κz + (%z2 + z3)A−1

]
w = û.

Exploiting the functional calculus of A, as we did in Section 5, we obtain

w =

∫
σ(A)

λ

pz(λ)
dEA(λ) û,

where EA is the spectral measure of A, and

pz(λ) = z3 + %z2 + λ(1 + κ)z + λ%

is exactly the third-order polynomial in z encountered in (8.1), but now considered as a
function of λ. To have w ∈ H1 it suffices that

sup
λ∈σ(A)

λ

|pz(λ)|
<∞.

Since σ(A) is closed, this occurs if and only if

z 6= − %

1 + κ
, if A is unbounded,

and

pz(λ) 6= 0, ∀λ ∈ σ(A).

The first condition is always satisfied unless z = −%
2

and κ = 1. The second condition is
certainly satisfied if y 6= 0. Indeed, recalling the proof of Theorem 8.2,

f(−%
2
) = −λ% 6= 0 ⇒ pz(λ) 6= 0.

Hence the lemma is proved when y 6= 0. Let us focus on y = 0, that is, z = −%
2
. We first

tackle the case κ = 1, or equivalently λ? = 0, which occurs only when A is unbounded.
Then (9.1) is solved by

w =
8

%3
Aû,

that belongs to H1 whenever û ∈ dom(A
3
2 ), a dense subspace of H1. For the remaining

cases, we see by direct computations that

pz(λ) = 0 ⇔ λ = λ?.

Hence if λ? 6∈ σ(A) we find w ∈ H1. We are left to consider the case λ? ∈ σc(A).
Introducing the family of sets depending on ε > 0

∆ε = (−∞, λ? − ε] ∪ [λ? + ε,∞),
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we know that the space
⋃
ε>0 EA(∆ε)H

1 is dense in H1. Given any ε > 0 and any
û ∈ EA(∆ε)H

1, we get

w =

∫
σ(A)∩∆ε

λ

pz(λ)
dEA(λ) û,

which belongs to H1 since

sup
λ∈σ(A)∩∆ε

λ

|pz(λ)|
<∞.

This finishes the proof.

Lemma 9.5. If z = −%
2

and λ? ∈ σp(A), then the restriction of the operator Λ on PM
is a bounded operator with values in PH1.

Proof. Integrating by parts in Ψη, which is allowed in the domain of Λ, we get

Ψη =
2

%
Φη − 2

%

∫ ∞
0

e−%sη(s)ds,

so that

Λη = − %3

8λ?
(1− λ?A−1) Φη + κ%

∫ ∞
0

e−%sη(s)ds.

If η ∈ PM, then Φη is an eigenvector of A corresponding to the eigenvalue λ?. Then we
reduce to

Λη = κ%
∫ ∞

0

e−%sη(s)ds.

Using the Hölder inequality, as we did in the proof of Lemma 9.3, we conclude that Λ
restricted on PM is a bounded operator, whose range is obviously contained in PH1. �

We can finally proceed to the

Proof of Theorem 9.1. Let z = x + iy ∈ C with x ≤ −%
2

be given. Recall that, after
Theorem 5.3, we already know that z ∈ σc(A) ∪ σr(A). Take any

û = (û, v̂, η̂) ∈ H1 ×H × dom(Λ).

Such vectors are clearly dense in H, and by Lemma 9.3 they cover the whole H whenever
x < −%

2
. If u = (u, v, η) ∈ dom(A) is the solution to the equation

(z − A)u = û,

that is, to system (5.2)-(5.4), then η must fulfills (5.5). On the other hand,

lim
s→∞

∫ s

0

ezrη̂(r)dr = Φη̂,

where the convergence occurs in H1. Accordingly, if v 6= zΦη̂, then the asymptotic relation

η(s) ∼ 1

z
v − e−zs

z

[
v − zΦη̂

]
,

holds as s→∞. Since x ≤ −%
2
, this implies that η 6∈ M. Thus, in order to have η ∈M,

it is necessary that
v = zΦη̂.
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Accordingly, (5.5) becomes

(9.2) η(s) = Φη̂ − e−zs
∫ ∞
s

ezrη̂(r)dr.

Observe that η̂ ∈ dom(Λ) does not automatically imply η ∈ M. This certainly true
however if η̂ ∈M0. Substituting v and η into (5.2) and (5.3) we obtain

u =
1

z
û+ Φη̂,

but also

u = −(κ + z2A−1) Φη̂ + κ%Ψη̂ + A−1v̂.

Hence the solution u exists if and only if its third component η given by (9.2) belongs to
M, and the compatibility condition

(9.3) û = Λη̂ + zA−1v̂

is satisfied. At this point, we consider cases (I)-(IV) separately.

Case (I). On account on Lemma 9.3 and the fact that A−1 : H → H1 is continuous, the
linear functional Γ : H ×M→ H1 defined as

Γ(v̂, η̂) = Λη̂ + zA−1v̂

is bounded. Hence its graph

G =
{

(û, v̂, η̂) ∈ H : û = Γ(v̂, η̂)
}

is closed and strictly contained in H. Therefore, by (9.3) we get

ran(z − A) ⊂ G 6= H,
implying that z ∈ σr(A). Actually, we have the equality

ran(z − A) = G,
which guarantees (by the Inverse Mapping theorem) that the operator z − A is bounded
below, i.e., z 6∈ σap(A). To see that, it is enough proving that, for any η̂ ∈M, the vector
η given by (9.2) lies in M as well. Since Φη̂ ∈ M, the conclusion follows if the same is
true for

ζ(s) = e−zs
∫ ∞
s

ezrη̂(r)dr.

Indeed, calling a = −x− %
2
> 0, we have

‖ζ(s)‖1 ≤ e( %
2

+a)s

∫ ∞
s

e−( %
2

+a)r‖η̂(r)‖1dr.

Hence,

‖ζ‖2
M ≤ κ%

∫ ∞
0

|F (s)|2ds,

having set

F (s) =

∫ ∞
s

ea(s−r)e−
%
2
r‖η̂(r)‖1dr.
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Extending F (s) to be zero for s < 0, all we need is showing that F ∈ L2(R). To this end,
defining the functions

f(s) =

{
e−

%
2
s‖η̂(s)‖1 if s ≥ 0,

0 if s < 0,

and

g(s) =

{
0 if s ≥ 0,

eas if s < 0,

we rewrite F as the convolution on the real line

F = f ∗ g,

noting that f ∈ L2(R) and g ∈ L1(R). From a classical result of the convolution theory
(see, e.g., [22]), we deduce that F ∈ L2(R). �

Cases (II)-(III). In order to conclude that z ∈ σc(A) we show that

ran(z − A) ⊃ H1 ×H ×M0,

which readily yields

ran(z − A) = H.
Let us then take

û = (û, v̂, η̂) ∈ H1 ×H ×M0,

telling in particular that the vector η given by (9.2) belongs toM. Exploiting Lemma 9.4,
there is a sequence η̂n ∈M0 such that

η̂n → 0 in M and Λη̂n → û− Λη̂ − zA−1v̂ in H1.

Next, define

ûn = (Λ(η̂ + η̂n) + zA−1v̂, v̂, η̂ + η̂n).

By construction,

ûn → û in H,
and ûn ∈ ran(z − A).

Case (IV). We write H as the orthogonal sum H = V ⊕ V⊥, where

V = PH1 × PH × PM and V⊥ = P⊥H1 × P⊥H × P⊥M.

Since both V and V⊥ are invariant under the action of A, we have the decomposition

A = A|V ⊕ A|V⊥ ,

so that

ran(−%
2
− A) = ran(−%

2
− A|V)⊕ ran(−%

2
− A|V⊥).

On the other hand, Lemma 9.5 ensures that Λ|PM : PM → PH1 is bounded. Observe
also that PM is nothing but L2

µ(0,∞;PH1). Therefore, as far as A|V is concerned, we
fall exactly into the situation of Case I. Accordingly,

ran(−%
2
− A|V) = G?,
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where G? is the graph of a bounded linear operator, hence closed and strictly contained
in V . In summary,

ran(−%
2
− A) ⊂ G? ⊕ V⊥ 6= H,

meaning that −%
2
∈ σr(A). We are left to show that −%

2
∈ σap(A). For this we exploit

once more the proof of Theorem 8.2, from which we learn that given any z′ = x′+ iy′ with
x′ > −%

2
and y′ 6= 0, if f(x′) 6= 0 then z′ 6∈ σ(A) (recall that Z ⊂ R). Since f(−%

2
) = −λ%

and f is continuous, the resolvent set of A contains the set{
z′ = x′ + iy′ : −%

2
< x < −%

2
+ ε, y 6= 0

}
,

for some ε > 0. Thus the point −%
2

belongs to the topological boundary of the spectrum,
besides to the spectrum, and so it is an approximate eigenvalue.

10. Superexponential Kernels

We finally want to explore the possibility for the semigroup S(t) generated by system (4.1)
to exhibit a decay faster than any exponential.

Definition 10.1. We say that S(t) is superstable if it has a decay rate ω? =∞.

After Corollary 4.5, we know that a necessary condition for the superstability of the
semigroup is that the underlying kernel µ complies with the following definition.

Definition 10.2. An admissible kernel µ is superexponential if the δ-condition (2.2) holds
for every δ > 0.

Paradigmatic examples of superexponential kernels are µ(s) = e−s
2

and any compactly
supported admissible kernel, that is, with s? <∞. However, it might be not so immediate
to check in general if a given kernel is superexponential. Introducing the (nonincreasing)
function2

α(t) = lim sup
s→∞

µ(t+ s)

µ(s)
,

the next result provides a characterization which seems to be more handy.

Theorem 10.3. The kernel µ is superexponential if and only if the limit

(10.1) lim
t→∞

eδtα(t) = 0

holds for every δ > 0.

Proof. One direction is pretty much obvious. Indeed, if µ satisfies the δ-condition, then
for some C = C(δ) we have that

µ(t+ s)

µ(s)
≤ Ce−δt, ∀s > 0.

To prove the converse, define the strictly positive function

β(t) = 2α(t) + e−t
2

,

2If s? <∞ the limit is interpreted equal to zero for every t > 0.
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which, on account of (10.1), is easily seen to fulfill

lim
t→∞

log β(t)

t
= −∞.

Let then δ > 0 be arbitrarily fixed, and let t0 > 0 large enough that

log β(t0)

t0
≤ −δ.

By the very definition of α, there is s0 > 0 such that

µ(t0 + s) ≤ β(t0)µ(s) ≤ e−δt0µ(s), ∀s ≥ s0.

Given any t ≥ 0, we write
t = nt0 + τ,

for some integer n and τ ∈ [0, t0). Since µ is nonincreasing, for every s ≥ s0 we get

µ(t+ s) = µ(nt0 + τ + s) ≤ µ(nt0 + s).

On the other hand,

µ(nt0 + s) = µ(t0 + (n− 1)t0 + s) ≤ e−δt0µ((n− 1)t0 + s) ≤ · · · ≤ e−δnt0µ(s).

Therefore
µ(t+ s) ≤ e−δnt0µ(s) ≤ eδt0e−δtµ(s).

This is exactly the desired conclusion for s ≥ s0. If s < s0 and t ≥ s0, invoking again the
monotonicity of µ, we learn from the latter inequality that

µ(t+ s) = µ(t− s0 + s+ s0) ≤ eδt0e−δ(t−s0)µ(s+ s0) ≤ eδ(t0+s0)e−δtµ(s).

Finally, if s < s0 and t < s0,

µ(t+ s) ≤ µ(s) ≤ eδs0e−δtµ(s).

Summarizing,
µ(t+ s) ≤ Ce−δtµ(s),

for every t ≥ 0 and s > 0, with C = eδ(t0+s0).

Remark 10.4. It is easy to construct (admissible) kernels decaying faster than any ex-
ponential, but not superexponential according to our definition. Indeed, it is enough to
take a kernel µ(s) ≤ e−t

2
constant on infinitely many intervals In of length n. In which

case, one gets α(t) = 1 for every t > 0.

Remark 10.5. In concrete cases, a superexponential kernel actually satisfies a stronger
condition than (10.1), namely,

(10.2) α(t) = 0, ∀t > t0,

for some t0 ≥ 0. In fact, let aside pathological situations, (10.2) usually holds for t0 = 0.

This is for instance the case of the superexponential kernel µ(s) = e−s
2
, or trivially of any

compactly supported kernel. It is also worth noting that (10.2) with t0 = 0 is equivalent
to the condition3

lim
t→∞

1

µ(t)

∫ ∞
t

µ(s)ds = 0.

3If s? <∞ the limit is taken for t→ s?.
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We leave the proof of this fact to the interested reader.

Nonetheless, even if µ is superexponential, the superstability phenomenon cannot occur
in the context of viscoelasticity. This is perhaps one of the most interesting results of this
paper.

Theorem 10.6. For any admissible kernel µ, the decay rate ω? of S(t) is always finite.
In other words, S(t) is never superstable.

Proof. We assume µ superexponential, which we know to be a necessary condition for
superstability. Recalling that ω? ≤ −σ?, it is enough showing that σ(A) is nonempty. Here
the superexponential kernel comes into the picture. Indeed, having (2.2) for every δ > 0,
the results of Section 5 hold for every Πδ. In particular, we deduce from Theorem 5.1,
that

σ(A) ⊃
{
x ∈ R : ψ(x) = 0

}
,

where

(x) = λ+ λκ − λ
∫ s?

0

e−xsµ(s)ds+ x2,

for an arbitrarily given λ ∈ σ(A), hence λ > 0. Since

(0) = λ > 0,

and ψ is continuous, the conclusion certainly follows if we show that ψ(x) becomes negative
for some x < 0. To this end, fixing ε > 0 (and ε < s?) and x = −n with n ∈ N, we note
that ∫ s?

0

ensµ(s)ds ≥
∫ ε

0

ensµ(s)ds ≥ µ(ε)
enε − 1

n
.

Hence,

(−n) ≤ λ+ λκ − λµ(ε)
enε − 1

n
+ n2 → −∞,

as n→∞.

Remark 10.7. As already mentioned in the proof above, if µ is superexponential then
the results of Section 5, and in particular Theorem 5.2, hold in every Πδ, hence in the
whole complex plane. Accordingly, the spectrum of A is the disjoint union

σ(A) = Wp ∪Wc ∪ Z,
hence there is no residual spectrum. In particular, if H is finite dimensional, so that both
A and A−1 are compact, then σ(A) reduces to Wp.
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