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A B S T R A C T

A reinforcement learning approach to design optimised graded metamaterials for mechanical energy confine-
ment and amplification is described. Through the proximal policy optimisation algorithm, the reinforcement
agent is trained to optimally set the lengths and the spacing of an array of resonators. The design optimisation
problem is formalised in a Markov decision problem by splitting the optimisation procedure into a discrete
number of decisions. Being the physics of graded metamaterials governed by the spatial distribution of
local resonances, the space of possible configurations is constrained by using a continuous function for
the resonators arrangement. A preliminary analytical investigation has been performed to characterise the
dispersive properties of the analysed system by treating it as a locally resonant system. The outcomes of the
optimisation procedure confirms the results of previous investigations, highlighting both the validity of the
proposed approach and the robustness of the systems of graded resonators when employed for mechanical
energy confinement and amplification. The role of the resonator spacing is shown to be secondary with
respect to the resonator lengths or, in other words, with respect to the oscillation frequencies of the resonators.
However, it is also demonstrated that reducing the number of resonators can be advantageous. The outcomes
related to the joint optimisation of the resonator lengths and spacing, thanks also to the adaptive control
of the analysis duration, overcome significantly the performance of previously known systems by working
almost uniquely on enlarging the time in which the harvester oscillations take place without amplifying these
oscillations. The proposed procedure is suitable to be applied to a wide range of design optimisation problems
in which the effect of the design choices can be assessed through numerical simulations.
1. Introduction

In the last two decades metamaterial concepts have witnessed an in-
creasing popularity to control the propagation of waves across much of
physics and engineering, with multiple realisations in electromagnetism
(Smith et al., 2004; Pendry et al., 1999; Pendry, 2000), acoustics (Liu
et al., 2000; Craster and Guenneau, 2016) and elasticity (Craster and
Guenneau, 2017). In the context of elasticity, considerable effort has
been devoted to the investigation of novel mechanisms to manipulate
elastic waves for numerous applications of technological relevance
such as, nondestructive evaluation (Molerón and Daraio, 2015; Syed
Akbar Ali and Rajagopal, 2021), vibration isolation (Laude, 2015; Mat-
lack et al., 2016), seismic protection (Brûlé et al., 2014; Marco et al.,
2016; Brûlé et al., 2020) and cloaking (Farhat et al., 2009; Stenger
et al., 2012; Quadrelli et al., 2021) to name a few. Concurrently, op-
timal design solutions have been developed (Krushynska et al., 2014),
together with advanced modelling methods for complex metamaterials
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(Matouš et al., 2017; Sridhar et al., 2016; Liu et al., 2021). Meta-
materials are often combined with multi-physics materials, leveraging
energy conversion phenomena between mechanical deformations and,
for instance, electrical stimuli via piezoelectric coupling. In this context,
multifunctional metamaterials have been recently proposed for energy
harvesting purposes, thanks to their ability to simultaneously provide
vibration isolation and mechanical energy enhancement (Carrara et al.,
2013; Mikoshiba et al., 2013; Gonella et al., 2009; Sugino and Erturk,
2018; Chen et al., 2019). Whilst local resonators in elastic metama-
terials allows for strong energy enhancement, the harvested power is
noticeable only close to the bandgap frequency and energy confinement
is accompanied by strong scattering effects (De Ponti, 2021).

To overcome such limitation, a versatile way to obtain inherent
broadband and low scattering designs is based on graded metamate-
rials, which are structures incorporating the gentle variation of res-
onating elements. The term graded refers to a smooth variation of
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a particular parameter of the local resonators along space (conven-
tionally the resonance frequency), which enables spatially varying
effective properties of the medium. These devices take advantage of
local band gaps to control wave propagation; array guided waves slow
down as they transverse the array with different frequency components
localising at specific spatial positions, resulting in the so-called rain-
bow effect. Originated in electromagnetism using axially non-uniform,
linearly tapered, planar waveguides with cores of negative index mate-
rial (Tsakmakidis et al., 2007), the rainbow effect has been extended to
acoustics (Zhu et al., 2013; Romero-García et al., 2013; Cebrecos et al.,
2014) and elasticity (Colombi et al., 2016), with multiple realisations
for trapping (Chaplain et al., 2020a) or mode conversion (Chaplain
et al., 2020b). Graded metamaterials have thus attracted increasing
attention due to their ability to manipulate waves by confinement over
some spatial region along the structure, enabling wideband vibration
attenuation. Within this framework, a number of graded metamaterials
have been proposed for wave confinement and energy harvesting, using
elastic beams with graded resonators (De Ponti et al., 2020a,b; Chaplain
et al., 2020a; Zhao et al., 2022).

Even if several works have been done on graded arrays, the defi-
nition of an optimal spatial modulation of the medium properties for
energy confinement and amplification is still an unsolved problem.
In acoustics, a stronger sound enhancement has been demonstrated
in exponentially chirped crystals rather than in linearly chirped crys-
tals (Cebrecos et al., 2014). In elasticity, several grading laws have
been compared, and different performances both in terms of vibration
isolation and energy harvesting have been reported (Alshaqaq and Er-
turk, 2020; Alshaqaq et al., 2022; Santini et al., 2022; Jian et al., 2022;
Zhao et al., 2022). In this article, a general procedure for the grading
optimisation (both in terms of frequency and spacing) is proposed.
In doing so, we opt for an elastic beam with lumped resonators, as
commonly done in the literature on graded metamaterials. This allows
us to define a relatively simple 1D proof of concept framework, which
could be further generalised to 2D and 3D. Specifically, the structure
under study is a rainbow based metamaterial consisting of a graded
array of resonant rods connected to an elastic waveguide (De Ponti
et al., 2020a,b). As the resonance frequencies are primarily determined
by the resonator lengths, we have treated the resonator lengths and
spacing as the main design parameters. Moreover, for the sake of
simplicity, we focus on the mechanical problem only, neglecting the
conventional transduction mechanisms adopted for energy harvesting;
this allows us to identify optimal solutions for energy confinement,
without loosing generality about the wave propagation problem.

A Markov Decision Process (MDP) has been used to formalise the
optimal design search as done in Ororbia and Warn (2021). Reinforce-
ment Learning (RL) (Sutton and Barto, 2018) has been then employed
to solve the MDP. The use of RL and of the MDP formalisation concepts
have been preferred: (i) to gradient based methods, as these approaches
would have been negatively affected by the non regularity of the
optimisation task with respect to the design parameters (Skinner and
Zare-Behtash, 2018), e.g. the number of resonators; (ii) to genetic algo-
rithms (Jenkins, 1991), as they suffer from an high computational cost;
(iii) to particle swarm optimisation (Perez and Behdinan, 2007), due to
the difficulty of imposing constrains on the design parameters (Viquerat
et al., 2021). Moreover, RL enjoys the theoretical advantage of handling
possible source of stochasticity affecting the optimal design search. It
is our aim to investigate this aspect in future work.

In order to provide information to the RL agent, the Finite Element
Method (FEM) has been employed on an Euler–Bernoulli beam with
lumped resonators to evaluate the response of different arrangements
of resonators. In Fan et al. (2020), a RL agent exploited experimental
data to discover active control strategies for drag reduction and to gain
an insight on the problem, showing that best design solutions often
trigger particular physical phenomena. Similarly, in Pahlavani et al.
2

(2022) rare-event designs of 3D printed multi-material metamaterials
were found out by learning a map from the space of design parameters
to the space of mechanical properties through deep learning.

Another aspect of interest is the representation strategy handling
the space of the design parameters. Similarly to what was done by Pa-
padrakakis et al. (1998) in structural shape optimisation, the possible
resonator arrangements have been described through the coordinates
of few points by exploiting B-spline interpolation. In this way, a large
number of configurations and possible modifications of the resonator
arrangement could been obtained by playing on a limited number of
variables. This approach has been suggested by the physics of the
problem. Paying attention to the representation strategy is one of the
points of contact between the proposed approach and a family of
strategies for automatic system design termed computational design
synthesis (Cagan et al., 2005). A second even more evident similarity
is the strong automation of the design process.

In the light of the above, the main contribution of this work is
the combination of: the MDP formalisation of the design optimisation
problem; the constraining of the design space based on physical con-
sideration; the use of an actor–critic RL algorithm for solving the MDP.
The potentiality of the method is demonstrated by presenting optimised
configurations for a 1D rainbow based metamaterial in which variable
resonator lengths or variable resonator spacing, or variable resonator
lengths and spacing have been respectively considered. Interestingly,
a different number of resonator bars has resulted from the performed
optimisations, showing that employing the maximum allowed number
of resonators can be useless or even detrimental. Obtained configura-
tions can be interpreted in a physical sense in accordance with previous
works (De Ponti et al., 2020a,b), but revealing aspects of novelty. As
it is in the following be shown, the best grading rule privileges the
extension of the target resonator oscillation time with respect to the am-
plification of the wave excitation along the guide. The methodology can
be straightforwardly applied to other design optimisation problems in
which design choices can be evaluated through numerical simulations.
A certain robustness to the algorithm hyperparameters, here almost
identically employed in the two optimisation cases, further increases
the attractiveness of the method.

The reminder of the paper is arranged as follows. The proposed
approach is illustrated in Section 2, together with an introduction to
MDP and RL. The discussion and motivation of the representation
describing the possible design arrangements, exploiting few points and
B-spline interpolation, is also included. In Section 3, the optimisation
outcomes concerning the cases featuring variable resonator lengths
(Section 3.2), and variable resonator lengths and spacing (Section 3.3)
are presented, together with physics based interpretations justifying
their improved performance. These results are preceded in Section 3.1
by an insight on the mechanical problem obtained by working out
the dispersion relation for the rainbow based metamaterial when rep-
resented as a waveguide with resonators. Final considerations on the
proposed methodology and on the obtained resonator configurations
are contained in Section 4, together with a discussion on the future
developments of this work.

2. Methodology

The operation workflow for design optimisation is reported in Fig. 1.
While the need of constraining the design space will be addressed in
the following, it is considered that if no a priori knowledge of the final
design is available, the optimisation of a complex mechanical system is
usually split into a sequence of 𝑁𝑡 decisions, producing a set of 𝑁𝑡 con-
figurations defining specific design descriptions of the systems. In the
following, decisions are termed actions, and configurations are named
states, while a sequence of actions and configurations leading to a final
design is defined trajectory. In particular, the 𝑛𝑡th configuration 𝑆𝑛𝑡 ,
together with the corresponding reward 𝑅𝑛𝑡 , is obtained by modifying
𝑆𝑛𝑡−1 through the 𝑡th action 𝐴𝑛𝑡 . The choice of the action 𝐴𝑛𝑡 is based

on the information collected into 𝑆𝑛𝑡−1 . The sequential decision making
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Fig. 1. Methodology to design optimisation.
Fig. 2. Reinforcement learning for grading optimisation for mechanical energy confinement and amplification. RL exploits information coming from the interaction between the
environment (on left) and the agent (on right). The environment is defined by the wave propagation problem. The RL agent acts on the grading rule 𝑝 (𝑥) of the rainbow based
metamaterial modifying few interpolation points (cyan markers) according to a certain policy. The policy is modelled through a neural network receiving as inputs the coordinates
of the interpolation points. The critic provides information to modify the policy on the basis of the agent–environment interactions. In particular, finite element simulations are
employed to assess possible enhancements of the mechanical energy confinement for a modified grading rule. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
process can be formalised in a MDP as the probability to end in 𝑆𝑛𝑡
depends only on 𝑆𝑛𝑡−1 and on 𝐴𝑛𝑡−1 . Solving a MDP via RL requires
to define two entities interacting with each other, namely the agent
and the environment. Actions are said to be taken by an agent, while
states and rewards are said to be related to an environment. For the
case at hand, a sketch of this interaction is reported in Fig. 2. A reward
measures how well the optimisation task is pursued in a certain state.
Here, the state of the mechanical system is defined by the resonator
arrangements, while actions modify the resonator lengths and/or spac-
ing. The reward is defined by the sum over the analysis duration of the
harvested elastic energy  , as enhancing  is hypothesised to be related
to the confinement and amplification of the wave packet.

It is now useful to introduce some quantities that will be exploited
by the employed actor–critic RL algorithm. First, we observe that the
interest is not to maximise the immediate reward 𝑅𝑛𝑡 at a generic
𝑛𝑡 < 𝑁𝑡, but to set a strategy to achieve large rewards at the end of the
optimisation process for 𝑛𝑡 = 𝑁𝑡. For this reason, the notion of expected
return is employed. It consists in evaluating how good is to end up in
3

𝑆𝑛𝑡 after 𝑛𝑡 actions and then adopting a certain strategy to take the
subsequent decisions. For a finite MDP featuring 𝑁𝑡 < ∞, the expected
return 𝐺𝑛𝑡 is usually defined as:

𝐺𝑛𝑡 = 𝑅𝑛𝑡+1 + 𝑅𝑛𝑡+2 +⋯ + 𝑅𝑁𝑡
. (1)

Second, the concept of policy is introduced. The policy 𝜋 defines
the strategy guiding the agent decisions. If a deterministic policy 𝜋 is
employed, a unique action is associated to each state; if 𝜋 is stochastic,
a Probability Density Function (PDF) over the set of possible actions
is returned. An example of PDF is the one related to a Gaussian distri-
bution. A suitable policy allows to solve the MDP by setting a certain
sequence of actions. Here, the wanted policy is deterministic, because
no uncertainties affect the design at the considered stage. However,
during the optimisation it is useful to employ stochastic policies to
guarantee the exploration of the action and state spaces.

Last, the concept of value function is discussed. The value function
𝑣𝜋 (𝑠) of a state 𝑠 (here intended as a random variable, while 𝑆𝑛𝑡
indicates a possible realisation of 𝑠 at 𝑛 ) under a policy 𝜋 is defined by
𝑡
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exploiting the notion of expected return as

𝑣𝜋 (𝑠) = E𝜋

[

𝐺𝑛𝑡 |𝑆𝑛𝑡 = 𝑠
]

, (2)

where E𝜋 denotes the expected value under 𝜋 or, in other words, the
expected value computed starting from 𝑠 and following 𝜋 thereafter.

By considering as input space the one defined by the combination
of the state and action spaces, two functions, namely the action–value
function 𝑞𝜋 (𝑠, 𝑎) and the advantage function 𝑑𝜋 (𝑠, 𝑎) connected to 𝑣𝜋 (𝑠)
re introduced

𝜋 (𝑠, 𝑎) = E𝜋

[

𝐺𝑛𝑡 |𝑆𝑛𝑡 = 𝑠, 𝐴𝑛𝑡 = 𝑎
]

, (3a)

𝜋 (𝑠, 𝑎) = 𝑞𝜋 (𝑠, 𝑎) − 𝑣𝜋 (𝑠) , (3b)

here 𝑎 is an action, here intended as random variable, while 𝐴𝑛𝑡
s its possible realisation at 𝑛𝑡. Specifically, 𝑞𝜋 (𝑠, 𝑎) quantifies the
xpected return of 𝑠 when 𝑎 is taken and then 𝜋 is adopted; 𝑑𝜋 (𝑠, 𝑎)
s the advantage function. Within a MDP, treating 𝑑𝜋 (𝑠, 𝑎) is often
referred than handling 𝑣𝜋 (𝑠) because the estimation of the advantage
unction is less affected by variance than the estimation of the value
unction (Greensmith et al., 2004).

The concept of value function is important because by evaluating if
𝜋 (𝑠) ≥ 𝑣�̄� (𝑠) in every state, it is possible to conclude that a policy

is better or equal than a policy �̄�. The policy gradient method
ims to learn the best policy 𝜋∗ (𝑎|𝑠) (Barto et al., 1983). In RL, 𝜋∗

s searched by exploiting indications coming from a large number of
gent–environment interactions. In contrast, action–value methods do
ot explicitly look for the best policy focusing, first, on estimating 𝑣 (𝑠)
nd, secondly, in reconstructing the best policy by picking up the states
ith the largest value functions.

In this work, policy gradient methods have been preferred (Sutton
nd Barto, 2018). First, they allow for asymptotically approaching a
eterministic policy starting from a stochastic policy. Secondly, they
ave the capacity of automatically learning appropriate levels of ex-
loration. Moreover, they enjoy the theoretical advantage of expressing
he effect of a policy change on the value functions without computing
erivatives with respect to the state distribution. This is guaranteed by
he policy gradient theorem (Sutton et al., 1999), which is at the basis
f the employed RL algorithm. Last, policy gradient methods easily
andle continuous action spaces.

The convenience of constraining the design space exploiting phys-
cal knowledge is now discussed. If a numeric vector collecting the
esonator lengths is adopted to represent the state, the Markovianity of
he sequential decision process will be fulfilled as all the information
ecessary to define the reward and to plan the next action will be con-
ained in the state representation. If we set as action the modification
f a single resonator height, and if we fix the number of resonators
nd the number of possible levels for the resonator lengths, a discrete
umber of states will be treated. Discretising the resonator length will
ot limit the number of obtainable configuration because, on one hand,
he discretisation level can be arbitrary increased, while on the other
and the tolerances always present in a manufacturing process agrees
ith this schematisation. This state definition promises to easily solve

he optimisation process, e.g. through a brute force approach consisting
n investigating all the states of the system. However, proceeding in this
ay is generally impossible for the exploding number of combinations.
hings do not improve by adopting a RL approach, given that modify-

ng the resonator height one by one does not produce large changes
n the rewards, providing weak indications to the agent on how to
mprove the starting configuration. In other words, if we look at the
ackled optimisation task as a gradient based function optimisation,
gent explorations corresponds to function evaluations in flat regions.

A more convenient definition of the system state has come from
dopting a limited number of continuous variables 𝑁𝑠 to describe
he possible resonator arrangements. This has been made possible by
onstraining the design space including the most physically meaningful
4

onfigurations. From a ML perspective, the variance of the optimisation
rocess has been reduced by introducing a bias based on a previ-
usly formed understanding of the problem. The adopted constrain
onsists in enforcing smooth graded patterns for the resonator lengths
n agreement both with theoretical (De Ponti et al., 2020a) and exper-
mental (De Ponti et al., 2020b) results. The state continuous variables
re used to fix the position of a few interpolation points defining the
nvelope 𝑧 = 𝑝 (𝑥) of the resonator lengths, as shown in Fig. 3. Cubic
-splines are exploited for the interpolation. The agent modifies the
oordinates of the interpolation points. The sequence of actions is fixed:
n the 𝑡th episode of the agent–environment interaction, the agent
lways sets the position of a certain interpolation point. Thanks to the
oncept of expected return, defining a priori an order of operation does
ot affect the optimisation outcome. The effectiveness of the proposed
tate and action definitions will be further assessed by showing that
ncreasing the number of state variables does not necessary benefit the
ptimisation procedure.

To treat continuous policy and action spaces, the state value func-
ions have been approximated by parameterised functions as

𝜋 (𝑠) ≈ 𝑣
(

𝑠,𝜽𝑣
)

, (4a)

𝜋 (𝑠, 𝑎) ≈ 𝑞
(

𝑠, 𝑎,𝜽𝑣
)

, (4b)

where 𝜽𝑣 ∈ R𝑁𝜃𝑣 is a vector of tunable weights.
Similarly, associating a PDF featuring a Gaussian distribution to

he policy, deterministic function approximators have been used to
arametrise the dependence on the state of the policy mean and stan-
ard deviation as

(𝑎|𝑠) = 1
√

2𝜋𝜎
(

𝑠,𝜽𝑝
)

e
− 1

2

(

𝑎−𝜇(𝑠,𝜽𝑝)
𝜎(𝑠,𝜽𝑝)

)2

, (5)

where here 𝜋 is just the number ≈3.1415…; 𝜇 and 𝜎 are two function
approximators relying on the parameter vector 𝜽𝑝 ∈ R𝑁𝜃𝑝 .

The way in which the MDP is solved by RL is now explicitly
addressed. In particular, the Proximal Policy Optimisation (PPO) al-
gorithm (Schulman et al., 2017) has been employed to approximate
the optimal 𝜋∗ finally solving to the MDP by tuning 𝜽𝑝 ∈ R𝑁𝑝 . The
PO algorithm belongs to a subset of policy gradient methods named
ctor–critic approaches. In these methods, state value functions (𝑑𝜋
or PPO) are used to assign credit to the agent actions. This requires
he algorithm both to approximate the advantage function 𝑑𝜋 (𝑠, 𝑎) ≈
𝑑
(

𝑠, 𝑎,𝜽𝑣
)

and to calibrate the policy parameters. Two fully connected
Neural Networks (NNs), ruled respectively by 𝜽𝑣 and 𝜽𝑝, have been used
for this goal. The NN differentiability has been exploited within the
backpropagation algorithm (Rumelhart et al., 1986) to maximise the
PPO objective

𝑝
(

𝜽𝑝
)

= Ê𝑒

[

min
(

𝜋
(

𝑎|𝑠,𝜽𝑝
)

𝜋old

(

𝑎|𝑠,𝜽𝑝old

)𝑑
(

𝑠, 𝑎,𝜽𝑣
)

,

clip
⎛

⎜

⎜

⎜

⎝

𝜋
(

𝑎|𝑠,𝜽𝑝
)

𝜋old

(

𝑎|𝑠,𝜽𝑝old

) , 1 − 𝜖, 1 + 𝜖

⎞

⎟

⎟

⎟

⎠

𝑑
(

𝑠, 𝑎,𝜽𝑣
)

)]

,

(6)

y tuning 𝜽𝑝 via gradient ascend with Adam (Kingma and Ba, 2015),
here: 𝜖 is an hyperparameter usually set to 0.2; Ê𝑒 is the empirical
ean of the advantage function over 𝑁𝑒 trajectories; 𝑑

(

𝑠, 𝑎,𝜽𝑣
)

is
he advantage function based on the current critic; 𝜋old

(

𝑎|𝑠,𝜽𝑝old

)

s the policy run to collect the 𝑁𝑒 trajectories. ‘‘min’’ requires to
ake the minimum (pessimistic bound) between a clipped and an un-
lipped objective. The unclipped objective is the one that, under a
ertain constrain, is minimised by the trust region policy optimisation
lgorithm (Schulman et al., 2015) that represents the basis of PPO.

Importance sampling is employed due to the difference between
he updated policy and the one used to generate 𝑁𝑒 trajectories. The
lipping operation ‘‘clip’’ removes the incentive for changing rapidly
he policy making the ratio between 𝜋

(

𝑎|𝑠,𝜽
)

and 𝜋
(

𝑎|𝑠,𝜽
)

𝑝 old 𝑝old
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Fig. 3. Reconstruction of the resonator lengths starting from interpolation points (depicted by cyan markers) whose positions are set by the state variables. The envelope curve
𝑧 = 𝑝 (𝑥) is depicted by a dotted line. The harvester is plotted in orange, the other resonators in black. The circle at the resonator end recalls the mass–spring schematisation
employed in the numerical modellisation of the system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 4. Waveguide and resonator array with a magnification of the resonator zone. The harvester has been coloured orange. Top-left corner: applied load, flexural wave packet
propagating along the 𝑥 direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
moving outside the [1 − 𝜖, 1 + 𝜖] interval. In the following, this ratio will
be indicated by 𝑦

(

𝜽𝑝
)

. The clipping operation allows the definition of
the following piecewise probability distribution

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑦
(

𝜽𝑝
)

𝑑
(

𝑠, 𝑎,𝜽𝑣
)

for 𝑑
(

𝑠, 𝑎,𝜽𝑣
)

>0 and 𝑦
(

𝜽𝑝
)

<1+𝜖,
or 𝑑

(

𝑠, 𝑎,𝜽𝑣
)

<0 and 𝑦
(

𝜽𝑝
)

>1−𝜖,

(1 + 𝜖) 𝑑
(

𝑠, 𝑎,𝜽𝑣
)

for 𝑑
(

𝑠, 𝑎,𝜽𝑣
)

> 0 and 𝑦
(

𝜽𝑝
)

>1+𝜖,

(1 − 𝜖) 𝑑
(

𝑠, 𝑎,𝜽𝑣
)

for 𝑑
(

𝑠, 𝑎,𝜽𝑣
)

<0 and 𝑦
(

𝜽𝑝
)

<1 −𝜖,

(7)

whose empirical mean is required to compute 𝑝
(

𝜽𝑝
)

.
The need of cyclically update 𝑑

(

𝑠, 𝑎,𝜽𝑣
)

points out the actor–critic
scheme of the PPO. The parameters 𝜽𝑣 modelling the critic are tuned
via gradient descend by minimising a loss function defined as

𝑣
(

𝜽𝑣
)

= 1
𝑁𝑡𝑁𝑒

𝑁𝑡
∑

𝑛𝑡=1

𝑁𝑒
∑

𝑛𝑒=1

(

𝑣
(

𝑆𝑛𝑒
𝑛𝑡 ,𝜽𝑣

)

− 𝐺𝑛𝑒
𝑛𝑡

)2 (8)

The corresponding Algorithm is reported in Appendix A.

3. Results

Aim of the work is to show how RL can be applied to metamaterial-
based structures for mechanical energy confinement and amplification,
highlighting the potentialities of the method as a design optimisation
tool in mechanics. Specifically, the aim is to focus and amplify the me-
chanical energy in a target resonator. Differently from the supervised
and the unsupervised paradigms, RL does not require to assemble a data
5

set a priori. Agent–environment interactions are collected on the fly by
simulating wave propagation in the system through the Finite Element
Method (FEM).

Both the resonators and the waveguide, depicted in Fig. 4, are made
by aluminium with density 𝜌 = 2710 kg∕m3 and Young’s modulus 𝐸 =
70 GPa. The cross sectional area of the waveguide is 𝐵𝑤 = 3 ⋅ 10−6 m2,
while the moment of inertia appearing in the dispersion relation of the
propagating flexural wave is 𝐼𝑤 = 2.5 ⋅10−13 m4. The resonator moment
of inertia 𝐼𝑟 involved in the first bending mode excited by the wave
passage is 𝐼𝑟 = 0.4909 ⋅ 10−13 m4, while the resonator cross sectional
area is 𝐵𝑟 = 0.785 ⋅ 10−6. The contribution of no other bending mode
has been considered. The bending frequency featuring the first bending
mode is computed as

𝜔𝑟 = 1.8752
√

𝐸𝐼𝑟
𝜌𝐵𝑟𝐿5

𝑟
, (9)

where 𝐿𝑟 is the resonator length.
The metastructure is excited through the wave packet depicted in

Fig. 4. The frequency content of the wave packet coincides with the
angular frequency of the target resonator first bending mode 𝜔ℎ =
17.67 MHz, obtained by substituting the length 𝐿ℎ = 5.028 ⋅ 10−4 in
Eq. (9) to 𝐿𝑟. The same type of excitation was provided through an
electrodynamic shaker in an experimental setting by De Ponti et al.
(2020b). The wave number 𝜅𝑤 = 3470 rad/m is determined through
the following dispersion relation

𝜔 =

√

𝐸𝐼𝑤
𝜌𝐵𝑤

𝜅2, (10)

by setting 𝜅 = 𝜅𝑤 and 𝜔ℎ = 𝜔, see De Ponti (2021). Consequently, the
wave length 𝜆 is equal to 1.8 ⋅ 10−3 m.
𝑤
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Table 1
Metasurface mechanical data.
Material: aluminium

Density 𝜌 = 2710 kg∕m3

Young’s modulus 𝐸 = 70 GPa
Rayleigh damping ratio ≈ 𝜉 = 0.2% on the first 40 modes.

Waveguide geometry Resonator geometry

Moment of inertia 𝐼𝑤 = 2.5 ⋅ 10−13 m4 Moment of inertia 𝐼𝑟 = 0.4909 ⋅ 10−13 m4

Cross sectional area 𝐵𝑤 = 3 ⋅ 10−6 m2 Cross sectional area 𝐵𝑟 = 0.785 ⋅ 10−6 m
Total Length 𝐿𝑤 = 0.815 m Target resonator length 𝐿ℎ = 5.028 ⋅ 10−4 m
Absorbing layer length 𝐿abs

𝑤 = 9.1 ⋅ 10−3 m
b

𝑖

𝑀

g
𝐷
t

i

d
l
i
m
l

𝐸

To avoid wave reflections, two absorbing layers with length 𝐿abs
𝑤 =

𝜆𝑤 = 9.1 ⋅ 10−3 m have been implemented at the extremities of the
aveguide as in Rajagopal et al. (2012). Comparable absorbing proper-

ies were experimentally obtained through acoustic black holes (O’Boy
t al., 2010; Georgiev et al., 2011; De Ponti et al., 2020b). Due to the
resence of the absorbing layers, the exciting force has been applied
t 𝑥 = 9.1 ⋅ 10−3 m. Different FE discretisations have been employed
or the considered optimisation cases. However, every discretisation
as employed five FEs in between neighbouring resonators to catch
ocalised effects due to the resonator interaction. Resonators have been
odelled using a lumped spring–mass representation. Wave propaga-

ion has been simulated for 𝑇 = 1.25 ⋅ 10−5 s for the first two analysed
ptimisation setting. The second case, involving the grading of both the
esonator lengths and spacing, will require further discussions to set 𝑇 .

Rayleigh damping featuring a ratio 𝜉 roughly of 0.2% for the first 40
tructural modes has been considered. Mechanical data are collected in
able 1.

The input force generates two wave fronts, one propagating left
towards points with smaller 𝑥), and the other propagating right. The
eft propagating wave is immediately damped out by the absorbing
ayer, while the other wave propagates until it reaches the second
bsorbing layer. The wave travels with group velocity 𝑐𝑔 equal to
.018 ⋅ 104 m∕s determined by substituting Eq. (10) in 𝑐𝑔 = 𝜕𝜔∕𝜕𝜅.

In Section 3.1, the dispersion relation for a local resonant waveguide
s analytically derived to get a mechanical insight on the optimisa-
ion problem. Outcomes concerning the optimisation procedure are
eported: in Section 3.2 with respect to the grading of the resonator
engths; in Section 3.3, with respect to the resonator lengths and
pacing. For sake of clarity, interpolation points will be differently
abelled: with 𝑧–IP (‘‘IP’’ refers to interpolation point), when they refer
o the resonator lengths; with 𝜁–IP, when they set the resonator spacing.

.1. Dispersion relation for 1D rainbow-based metamaterials

A dispersion relation expresses the dependence between 𝜔 and 𝜅
or a wave propagating in a certain periodic medium. Provided the
rading is gentle enough, the global behaviour of a rainbow metama-
erial is deduced from the local dispersion curves of the constituent
lements (Colombi et al., 2016). This allows to compute the dispersion
elation for a transverse wave in the rainbow metamaterial by formu-
ating the infinitesimal equilibrium equation of the periodic problem,
ccording to the Euler–Bernoulli beam theory

𝐼𝑤
𝜕4𝑢𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐵𝑤

𝜕2𝑢𝑤(𝑥, 𝑡)
𝜕𝑡2

= 0, (11)

here 𝑢𝑤(𝑥, 𝑡) is the waveguide displacement field (being 𝐸, 𝐼𝜔, 𝜌,
𝜔 the Young modulus, moment of inertia, mass density and cross

ection of the waveguide, respectively), and by employing a lumped
ass–stiffness model to include the presence of resonators.

To avoid boundary effects, the length of the waveguide has been
ssumed to be infinite. By assuming that the motion of the resonators
6

is dependent only on the motion of the underlying waveguide, it is
possible to write:

𝐸𝐼𝑤
𝜕4𝑢𝑤 (𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐵𝑤

𝜕2𝑢𝑤 (𝑥, 𝑡)
𝜕𝑡2

=
∞
∑

𝑖=−∞
𝐾 𝑖

𝑟
(

𝑢𝑖𝑟 (𝑡) − 𝑢𝑤 (𝑥, 𝑡)
)

𝛿 (𝑥 − 𝑖𝐷) ,

(12)

where: 𝑢𝑖𝑟 (𝑡) is the displacement of the 𝑖th mass of the local resonance
system; 𝐾 𝑖

𝑟 is the lumped stiffness of the spring that connects the
lumped mass 𝑀 𝑖

𝑟 with the underlying waveguide; 𝐷 is the distance
etween two resonators; 𝛿 (𝑥 − 𝑖𝐷) is the Dirac delta.

To solve the system, the solution of the equation of motion of the
th resonator is needed. This is formulated as follows:

𝑖
𝑟
𝜕2𝑢𝑖𝑟 (𝑡)
𝜕𝑡2

+𝐾 𝑖
𝑟
(

𝑢𝑖𝑟 (𝑡) − 𝑢𝑤 (𝑖𝐷, 𝑡)
)

= 0, (13)

ranted that the stiffness 𝐾𝑟 = 𝐾 𝑖
𝑟, the mass 𝑀𝑟 = 𝑀 𝑖

𝑟, and the distance
are assumed the same, thanks to the locally periodic behaviour of

he graded metamaterial.
In this work, 𝑀𝑟 = 𝜌𝐵𝑟𝐿𝑟, while 𝐾𝑟 = 𝜔2

𝑟𝑀𝑟, where 𝜔𝑟 has been
computed as in Eq. (9). In case of identical resonators, the solution
obtained by Skelton et al. (2018) is:
( ∞

∑

𝑖=−∞

1
𝐸𝐼𝑤(𝜅 − 𝑖𝑔)4 − 𝜌𝐵𝑤𝜔2

)−1

−
𝐾𝑟𝜔2

𝐷
(

𝐾𝑟
𝑀𝑟

− 𝜔2
) = 0, (14)

where 𝑔 = 2𝜋
𝐷 is the reciprocal lattice vector, 𝜅 the wavenumber and 𝜋

s just the number.
The summation in Eq. (14) is needed to model the Bragg effect that

evelops near to the boundary of the First Brillouin Zone (FBZ). If the
ocal resonance band gap is sufficiently separated from the Bragg one,
.e. they arise at different frequencies, this effect can be neglected as it
arginally contributes in defining the shape of the dispersion relation,

eading to simplify Eq. (14) as

𝐼𝑤𝜅
4 − 𝜌𝐵𝑤𝜔

2 −
𝐾𝑟𝜔2

𝐷
(

𝐾𝑟
𝑀𝑟

− 𝜔2
) = 0. (15)

In turn, this equation can be reshaped to show the dependence of 𝜅
over the lattice spacing, obtaining:

𝜅 = (𝜔) + 1
4
√

𝐷
(𝜔,𝐾𝑟,𝑀𝑟), (16)

for a fixed frequency 𝜔, stiffness 𝐾𝑟 and mass 𝑀𝑟 of the resonators. It
is interesting to see that  contains all the contributions that define
the dispersion relation for the infinite beam, while  contains the
contribution brought by the resonators. The distance 𝐷 is kept out of
 to show how it affects 𝜅.

Eq. (16) highlights which are the design parameters to be optimised
for a proper grading: the resonator stiffness 𝐾𝑟, appearing in the formu-
lation of ; the distance 𝐷 in between the resonators. From a geometric
point of view, setting 𝐾𝑟 is allowed by setting the resonator length 𝐿𝑟.
In light of that: Section 3.2 will investigate how to optimally grade
the resonator lengths 𝐿𝑟 or spacing 𝐷; Section 3.3 how to optimally

combined both 𝐿𝑟 and 𝐷
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Table 2
Optimisation of the resonator lengths: description of the agent actions. The interpolation
points are the ones reported with cyan markers in Fig. 3.

Action What Variable value Range of
ordering is modified starting state possible values

1 1st 𝑧–IP, z 5.028⋅10−4
[

0, 9.156 ⋅ 10−4
]

m
2 4th 𝑧–IP, z 5.028⋅10−4

[

0, 9.156 ⋅ 10−4
]

m
3 2nd 𝑧–IP, x 0.0697 m [0.0682, 0.0711] m
4 2nd 𝑧–IP, z 5.028⋅10−4

[

0, 9.156 ⋅ 10−4
]

m

3.2. Optimisation of the resonator lengths or spacing

The optimisation procedure detailed in Section 2 has been applied to
set the lengths, and therefore the lumped mass and stiffness properties,
of 25 resonators. Resonators have been spaced by roughly 𝜆𝑤∕11, within
the range

[

𝜆∕15, 𝜆∕2
]

for which resonator interaction is expected at the
subwavelength scale (Lemoult et al., 2011). The precise value depends
on the employed discretisation. Specifically, the waveguide has been
discretised through 376 Euler Bernoulli FEs (Belytschko et al., 2000)
with length equal to 0.0344 ⋅ 10−3 m where the resonators are placed,
and equal to 0.344 ⋅10−3 m outside that zone. The integration time step
𝛥𝑡 has been set to 3 ⋅ 10−9 s. The target resonator coincides with the
18th resonator from the left. Its height has been fixed to 𝐿ℎ.

Four points have been used to define the envelope 𝑧 = 𝑝 (𝑥) of the
resonator lengths. In Fig. 3, the four points have been depicted by star
markers. Specifically, the 3rd 𝑧–IP has always been placed at the tip
of the target resonator, while the 1st and 4th points have been forced
to match the tips of the first and of the last resonators, respectively.
Therefore, 𝑁𝑠 = 4 continuous variables have been exploited, coinciding
in the 𝑥–𝑧 plane with the ordinates of the 1st and 4th 𝑧–IPs, and with
the (𝑥, 𝑧) coordinates of the 2nd 𝑧–IP. The agent has been asked for
setting these continuous variables by taking the following sequence of
𝑁𝑡 = 4 actions: (i) set the 𝑧 coordinate of the 1st 𝑧–IP; (ii) set the 𝑧
coordinate of the 4th 𝑧–IP; (iii) set the abscissa and then the ordinate
(iv) of the 2nd 𝑧–IP. The order of operations is exemplified in Fig. 5
and schematically reported in Table 2.

The configuration space has been constrained on the basis of the
physical understanding of the system acquired in De Ponti et al.
(2020a,b). No other a priori knowledge has been exploited. For exam-
ple, no notion has been employed to set the system configuration at the
start of each trajectory. Indeed, all resonators have been set equal to
𝐿ℎ at each trajectory start, as depicted in the top–left plot in Fig. 5.

The 𝑧–IP ordinates have been allowed for varying in the
[

0, 𝐿max
𝑟

]

interval, where 𝐿max
ℎ = 9.156⋅10−4 m. The rationale behind this value is

that if a sinusoidal force with frequency equal to 𝜔max
𝑟 is used to excite

a single degree of freedom system centred at 𝜔ℎ, a 10% attenuation
will be produced, with 𝜔max

𝑟 computed as in Eq. (9) by setting 𝐿𝑟 =
𝐿max
𝑟 . The 𝑥 coordinate of the second 𝑧–IP have been allowed to move

between the first resonator position and the target resonator position. A
description of the agent actions is reported in Table 2. Cubic B–splines
have been exploited to define 𝑝 (𝑥). If a resonator length results smaller
than 𝐿ℎ∕20, this resonator is removed from the design. This threshold
value has been set to avoid the ill conditioning of the stiffness matrix
caused by very high stiffness of the lumped resonators. In this way, the
procedure can possibly reduce the number of resonators.

A NN featuring two fully connected layers with just 32 neurons and
𝑁𝑣 = 1348 tunable weights has been employed to approximate the
advantage function

𝑑
(

𝑠, 𝑎,𝜽𝑣
)

= 32−4◦4−32
(

𝑠, 𝑎,𝜽𝑣
)

, (17)

where 𝑁𝑛−𝑁𝑚
∶ R𝑁𝑛 → R𝑁𝑚 is the transformation induced by a fully

connected layer receiving a vector of length 𝑁𝑛 in input and returning a
vector with length 𝑁𝑚 in output. A similar NN architecture, exploiting
𝑁𝑝 = 1282 parameters, has been used to calibrate the policy parameters
[

𝜇
(

𝑠,𝜽
)

, 𝜎
(

𝑠,𝜽
)]

=  ◦
(

𝑠, 𝑎,𝜽
)

. (18)
7

𝑝 𝑝 32−2 4−32 𝑝
Fig. 5. Optimisation of the resonator lengths: sequence of actions leading to the
configuration with highest reward.

Fig. 6. Optimisation of the resonator lengths: evolution of the final episode reward
during the agent training divided by 𝑅𝐻

𝑁𝑡
.

Performance has not been improved either by adding hidden layers
or by increasing the number of neurons. A number 𝑁𝑒 = 32 of trajec-
tories have been collected for each estimate of the PPO objective 𝑝
expressed in Eq. (6). It has been verified that a smaller 𝑁𝑒 deteriorates
the performance of the procedure, and that a larger 𝑁𝑒 increases the
computational effort without improving the procedure outcome. The
total number of agent–environment interactions has been fixed to 𝑁𝑖 =
100, 000 FE simulations. As it will be assessed by Fig. 6, this number has
guaranteed the convergence to a quasi–deterministic policy obtained
by greatly reducing 𝜎

(

𝑠,𝜽𝑝
)

with respect to 𝜇
(

𝑠,𝜽𝑝
)

for some state
𝑠. The learning rate 𝜂 has been set to 5 ⋅ 10−4 after a trial and error
procedure. The employed function approximators and hyperparameters
are collected in Table 3. The stable baselines library (Hill et al., 2018)
has been exploited for the implementation of the PPO algorithm.

In Fig. 5, the sequence of actions leading to the configuration with
the highest reward is reported. As it can be observed, the 2nd 𝑧–IP
has been moved very close to the 1st 𝑧–IP, so much that the resulting
curve could have been obtained by interpolating 3 points only. This
further confirms that the adopted state description has reduced the
space of possible designs but including the most effective configurations
for mechanical energy confinement and amplification.

The convergence to a deterministic policy is assessed in Fig. 6,
where the evolution of the episode final reward 𝑅𝑁𝑡

during the agent
training is depicted. The graph ordinate is normalised with respect to
the reward 𝑅𝐻

𝑁𝑡
collected for the waveguide equipped with the target

resonator only, and it is plotted against the number 𝑛𝑖 = 1,… , 𝑁𝑖
of agent–environment interactions. The ratio 𝑅𝑁𝑡

∕𝑅𝐻
𝑁𝑡

quantifies the
advantage of adopting a certain metastructure design with respect to
the configuration featuring a single resonator.
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Table 3
Optimisation of the resonator lengths: PPO algorithm approximating functions and hyperparameters.
Function approximators

Advantage function approximator d
(

𝑠, 𝑎,𝜽𝑣
)

= 32−4◦4−32
(

𝑠, 𝑎,𝜽𝑣
)

Function calibrating the policy parameters
[

𝜇
(

𝑠,𝜽𝑝
)

, 𝜎
(

𝑠,𝜽𝑝
)]

= 32−2◦4−32
(

𝑠,𝜽𝑝
)

Hyperparameters

Number of trajectories for the 𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑁𝑒 = 32
Number of agent–environment interactions 𝑁𝑖 = 100, 000
Learning rate 𝜂 = 5 ⋅ 10−4
t
c

r
w
i
i
s

f
s

Fig. 7. Optimisation of the resonator lengths: resonator arrangements for the reference
and for the optimised configurations.

The deterministic policy obtained after 𝑁𝑖 agent–environment in-
teractions generates a configuration, depicted in Fig. 7(d), featuring
a 𝑅𝑁𝑡

∕𝑅𝐻
𝑁𝑡

ratio equal to 3.537. This ratio is slightly smaller (by ≈
3.5%) than the 𝑅𝑁𝑡

∕𝑅𝐻
𝑁𝑡

= 3.669 ratio associated to the configuration
btained through the action sequence depicted in Fig. 5. In other words,
he best generated configuration has been produced before the total
umber of policy updates have been performed. The performance of
he optimisation procedure is evaluated not just by comparing 𝑅𝑁𝑡

with
𝑅𝐻
𝑁𝑡

, but also 𝑅𝑁𝑡
with the reward featuring the linear grading rule

shown in Fig. 7(b), as proposed in De Ponti et al. (2020a).
As it can be seen, the best RL discovered configuration largely

enhances the mechanical energy confinement and amplification ca-
pability with respect to 𝑅𝐻

𝑁𝑡
. This enhancement has been obtained

constraining the design space as unique a priori knowledge guiding the
agent actions. The RL agent has been able not only to recover what
previously known, but also to overcome the performance of the linear
grading resonator arrangement by 4.71%. Despite the limited increase,
no further major improvements are expected by playing only on tuning
the resonator lengths, as also shown by the work of Alshaqaq et al.
(2022) when comparing different linear and parabolic grading rules.

The lower performance of the finally obtained deterministic policy
with respect to the best discovered configuration does not mean that
the MDP solution has been unsuccessful or meaningless. On the con-
trary, the utility of the proposed approach has been confirmed: by the
convergence of the PPO algorithm to a suboptimal policy generating
a resonator arrangement close in terms of 𝑅𝑁𝑡

∕𝑅𝐻
𝑁𝑡

to the best config-
uration found during the algorithm explorations; by the fact that the
best discovered configuration has been produced after the reduction
of the space of possible configurations due to the first policy updates.
Moreover, arriving to a suboptimal policy is the usual outcome of a RL
procedure unless of a dramatic increasing in computing time (Sutton
and Barto, 2018).

Some theoretical arguments discussing how to theoretically find
an optimal grading are reported to further assess the outcome of the
optimisation procedure. A possible way to approach the problem is to
think that the propagating energy of the wave is progressively reflected
8

c

by the resonators. The matter becomes to define the intensity of such
reflection and to find a grading law that minimises them. With this goal,
we consider the waveguide as made of a series of layers of different
homogeneous material whose properties are given by the dispersion
relation stated in Eq. (14). Therefore, it is possible to define a reflection
coefficient 𝜚𝑖 between each layer, so between each resonator cell and
the preceding one, in the following way:

𝜚𝑖 =
𝑘𝑖 − 𝑘𝑖+1
𝑘𝑖+1 + 𝑘𝑖

(19)

and a transmission coefficient 𝜏𝑖 that is:

𝜏𝑖 =
2𝑘𝑖

𝑘𝑖+1 + 𝑘𝑖
, (20)

where 𝑘𝑖 is the wavevector associated to the 𝑖th layer, and a resonator
cell is defined by a resonator and by the attached waveguide portion.

These equations are the same used in optics, and they stem from
imposing both displacements and force continuity at the interfaces
between the layers. Physically, we are interested in the square of the
transmission coefficients from one layer to the next, namely transmit-
tance and reflectance. In these terms, the optimisation problem can
be thought as finding which sequence of layers maximises the wave
intensity on the desired final layer of the target resonator, i.e the one
that maximises the product of all the layer transmittance. The best RL
configuration (Fig. 7(c)) partially fulfils such condition, with an average
variation of 𝛥𝜅 ≃ 174 rad∕m for the initial portion of the array. On
the other hand, this approach fails close to the target resonator, since
it is not able to predict the real wavefield generated by the multiple
scattering and emissions of the resonators. In particular, as explained in
the last section, the effectiveness of rainbow metastructures is strongly
related to the interaction time between the wave and the target res-
onator. This means that, the maximum peak power provided by a
proper tuning of the transmittance, may not be the optimal solution
to harvest energy in a given period of time.

The deterministic context in which the optimisation problem has
been set allows for considering the best configuration discovered during
the exploration phase as the outcome of the procedure. As the number
of agent–environment interactions 𝑛𝑖 run up that point has been quite
limited (≈5000), the method seems suitable to investigate mechanical
problems involving more time demanding FE simulations. Relying on
the configuration related to the policy finally determined by the PPO
algorithm would have been necessary if any source of stochasticity,
e.g. related to the loading conditions, had been included in the FE
simulations. In that case, the best configuration could have not be
generated by the sequence of actions leading to the highest 𝑅𝑁𝑡

during
he policy exploration phase, as that value of 𝑅𝑁𝑡

may have been
onnected to special loading conditions.

The interest is now directed to optimise the spacing in between the
esonators. Eq. (16) directly shows the dependence of the wavevector
ith respect to just a change in distance in the lateral resonators. This

s also true considering that an enlargement of the cell is reducing the
nfluence of the resonators over the dispersion relation, while smaller
pacing between resonators straightens the contribution of .

A RL agent has been asked for optimally ruling the resonator spacing
or mechanical energy confinement and amplification. The minimum
pacing has been set to 𝜆∕16, the maximum spacing to 𝜆∕2. A dis-

rete number of spacing levels (𝜆∕16, 𝜆∕8, 3𝜆∕16…) has been allowed
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Fig. 8. Optimisation of the resonator spacing: (a) best RL discovered spacing when linear grading rules the resonator lengths; (b) spectrogram. In (a), 𝜁–IPs are denoted with
cyan markers. In (b), black markers correspond to the predictions of Eq. (16) for varying spacing and ratio 𝐾𝑟∕𝑀𝑟 for the resonators placed before the target resonator. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 4
Optimisation of the resonator spacing: description of the agent actions. The 𝜁–IPs are
reported with cyan markers in Fig. 8(a).

Action What Variable value Range of
ordering is modified starting state possible values

1 1st 𝜁–IP, 𝜁 𝜆∕16
[

0, 𝜆∕2
]

2 4th 𝜁–IP, 𝜁 𝜆∕16
[

0, 𝜆∕2
]

3 2nd 𝜁–IP, x 0.0696 m [0.0683, 0.0703] m
4 2nd 𝜁–IP, 𝜁 𝜆∕16

[

0, 𝜆∕2
]

5 3rd 𝜁–IP, x 0.0710 [0.0703, 0.0723] m
6 3rd 𝜁–IP, 𝜁 𝜆∕16

[

0, 𝜆∕2
]

by increasing the minimum distance by 𝜆∕16. A number 𝑁𝑠 = 6
of continuous variables setting the coordinates of four 𝜁–IPs in the
(𝑥, 𝜁) plane and ruling the envelope 𝜁 = 𝑝 (𝑥) has been employed to
constrain the design space. The 𝜁 coordinates have been allowed to
vary continuously, operating the discretisation of the spacing levels
in a second time. Table 4 resumes the continuous variables possible
range of variations and starting values clarifying the ordering of the
agent actions. Concerning the resonator lengths, a linear grading rule
has been assumed. The same tuning parameters employed for the PPO
algorithm in Section 3.2 have been exploited, still modelling 𝑑

(

𝑠, 𝑎,𝜽𝑣
)

and calibrating the policy parameters
[

𝜇
(

𝑠,𝜽𝑝
)

, 𝜎
(

𝑠,𝜽𝑝
)]

through two
different NNs featuring two hidden layers with 32 neurons.

The best configuration discovered by the RL agent is reported on
the top of Fig. 8. The number of resonators has been reduced from
35 to 23 by enlarging the spacing of the resonators placed before the
target resonator. On the bottom, a spectrogram representation (Riva
et al., 2020) has been employed to depict the outcome of the wave
propagation obtained for this resonator arrangement. The predictions
of Eq. (16) agree well with the outcomes of the FE simulation even by
simultaneously modifying the distance 𝐷 and the ratio 𝐾𝑟∕𝑀𝑟.

The ratio 𝑅𝑇 ∕𝑅𝐻
𝑇 quantifying the performance of the optimisation

procedure is equal to 3.600. It implies just a 1.5% performance im-
provement with respect to the case featuring a linear grading rule with
35 resonators. This can be addressed considering from Eq. (14) that a
change in height gives a more significant change in the wavevector with
respect to a change in distance. Therefore, both analytical arguments
and the outcomes of the optimisation procedure support the conclusion
that playing on the resonator spacing is not as effective as playing
on the resonator lengths for sake of mechanical energy confinement
and amplification. However, this investigation has also revealed that
employing the maximum allowed number of resonators is unnecessary
for getting the best performance, therefore promising savings in the
material and in the manufacturing costs.
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Table 5
Optimisation of the resonator lengths and spacing: description of the agent actions. The
𝜁–IPs are reported with cyan markers in Fig.; the 𝑧–IPs with orange markers in Fig..

Action What Variable value Range of
ordering is modified starting state possible values

1 1st 𝑧–IP, z 5.028 ⋅ 10−4
[

0, 9.156 ⋅ 10−4
]

m
2 4th 𝑧–IP, z 5.028 ⋅ 10−4

[

0, 9.156 ⋅ 10−4
]

m
3 2nd 𝑧–IP, x 0.0698 m [0.0683, 0.0713] m
4 2nd 𝑧–IP, z 5.028 ⋅ 10−4

[

0, 9.156 ⋅ 10−4
]

m
5 1st 𝜁–IP, 𝜁 𝜆∕16

[

0, 𝜆∕2
]

6 4th 𝜁–IP, 𝜁 𝜆∕16
[

0, 𝜆∕2
]

7 2nd 𝜁–IP, x 0.0696 m [0.0683, 0.0703] m
8 2nd 𝜁–IP, 𝜁 𝜆∕16

[

0, 𝜆∕2
]

9 3rd 𝜁–IP, x 0.0710 [0.0703, 0.0723] m
10 3rd 𝜁–IP, 𝜁 𝜆∕16

[

0, 𝜆∕2
]

3.3. Optimisation by combining resonator lengths and spacing

The joint optimisation of the resonator lengths and spacing has
been tackled considering for the waveguide the same geometry of
Section 3.2. The agent actions reported in Table 5 have been used to
modify the value of 𝑁𝑠 = 10 continuous variables by operating on: the
coordinates of four 𝑧–IPs belonging to the (𝑥, 𝑧) plane and ruling the
envelope 𝑧 = 𝑝 (𝑥) of the resonator lengths; the coordinates of four 𝜁–
IPs belonging to the (𝑥, 𝜆) plane and ruling the envelope 𝜁 = �̃� (𝑥) of
the resonator spacing. The starting state of the continuous variable and
the range of their possible values have been set similarly to what done
in the previous sections. The number of neurons of the hidden layers
used to approximate 𝑑

(

𝑠, 𝑎,𝜽𝑣
)

and to calibrate the policy parameters
[

𝜇
(

𝑠,𝜽𝑝
)

, 𝜎
(

𝑠,𝜽𝑝
)]

, respectively, have been doubled to account for the
larger dimension of the configuration space. The learning rate has been
set to 1 ⋅ 10−3 to speed up the training in view of the greater number of
actions performed by the agent.

By running the optimisation, we notice that the outcomes strongly
depend on the analysis time 𝑇 (see Appendix B). It must be said that
previously reported outcomes have not been affected by the adopted
𝑇 , as in Section 3.2 𝑇 was set to a sufficiently large value, while
the effect of the resonator spacing on the harvesting capabilities of
the system has been shown to be limited in any case. However, the
need of handling the possibly different time interval necessary to damp
out the oscillations of the target resonator, and the possibly different
interaction time between the propagating wave and the resonators
justifies the need of employing an adaptive criterion to set 𝑇 . On light
of that, the next analyses have been stopped only when the  has been
lower than 5 ⋅ 10−20 J for at least 500 times in row. The count has
been prescribed to start when the threshold value has been overcome
for the first time. The outcome of the optimisation procedure for an
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Fig. 9. Optimisation of the resonator lengths and spacing. (a) Resonator arrangement for the optimised configuration (adaptive 𝑇 criterion). (b) Evolution of  during the analysis.
In blue: evolution of  for the reference configuration 𝑅𝑇 ∕𝑅𝐻

𝑇 = 3.870. In red: evolution of  for the best RL discovered configuration. 𝑅𝑇 ∕𝑅𝐻
𝑇 = 4.365. (c) Wave propagation

time–spatial outcomes. Blue scale: outcomes for the reference configuration (see Fig. B.1(c). Red scale: outcomes for the best RL discovered configuration. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
adaptive 𝑇 is reported in Fig. 9(a). As in Section 3.2, the lengths of
the resonators preceding the target resonator monotonically increases
and features a negative concavity 𝑝′′ (𝑥). However, the slope of the
grading is much lower than the one depicted in Fig. 7(c). Moreover,
working on the spacing has enabled to take out some resonators from
the guide. Despite the limited discrepancies, the mechanism exploited
by the obtained configuration to increase  during analysis is largely
different from the one featuring the linear grading of Fig. B.1(c). This
reference resonator arrangement increases the time interval 𝛥𝑇 lin

 in
which the target resonator oscillates with respect to a configuration
featuring the target resonator without other resonators, but primarily
focuses on amplifying the target resonator oscillations. On the other
hand, the obtained resonator array works almost uniquely enlarging the
oscillation time interval 𝛥𝑇 RL

 , so that 𝛥𝑇 RL
 > 𝛥𝑇 lin

 as clearly shown
in Fig. 9(b) finally leading to enhance by 12.8% the elastic energy
exploitable. This increase has been possible despite target resonator
oscillations even smaller than the ones related to the configuration
featuring just the target resonator without other resonators. The time–
spatial representation of 9(c) further elucidates the matter by depicting
how the wave packet propagates in the waveguide for the two cases.
For both configurations, the wave travelling to the left has been im-
mediately damped out by the absorbing conditions, while the wave
propagating to the right has been converted in resonator oscillations.
After a while, resonator oscillations have turned back to a wave packet
left propagating in the waveguide. The oscillation conversion has taken
place after 𝛥𝑇 lin

 for the blue curve depicting the wave propagation for
the linear grading configuration, and after 𝛥𝑇 RL

 for the red curve re-
ferring to the optimised grading. The inequality 𝛥𝑇 RL

 > 𝛥𝑇 lin
 has been

allowed by the repeated wave reflections between the target resonator
and the neighbouring resonators, as highlighted by the several  picks
reported in red in Fig. 9(b).
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4. Conclusions

A reinforcement learning approach to optimise graded metamate-
rials for mechanical energy confinement and amplification has been
proposed. The procedure leverages on constraining the design space on
the basis of the knowledge of the physical behaviour of the system,
and on the use of a policy gradient actor–critic algorithm to train the
reinforcement learning algorithm. Results related to the optimisation
of the grading rule of the resonator lengths and spacing highlight the
potentiality of the method. The procedure can be applied to other
design optimisation problems in which the effect of a design choice
can be numerically simulated. A preliminary analytical investigation
has been carried out by obtaining the dispersion relation for a local
resonant metamaterial considering both variations in the resonator
oscillating frequencies and spacing. The predictions of this dispersion
relation have been found in agreement with numerical outcomes.

Specifically, results on the resonator lengths optimisation have con-
firmed previous works reported in the literature. The procedure has
also highlighted the robustness for mechanical energy confinement
and amplification of this type of mechanical system with respect to
limited changes in the resonator configuration. Results on the res-
onator spacing have demonstrated the secondary effect of this design
parameter with respect to the resonator lengths, however showing the
possibility of reducing the number of resonator in the system still ob-
taining comparable, if not better, performances. Finally, the outcomes
of the optimisation procedure when applied to the joint calibration
of the resonator lengths and spacing with an adaptive rule to set the
analysis duration has further highlighted the potentiality of the method
with respect to a reference optimised configuration featuring a linear
grading. The obtained configuration has focused almost uniquely on
enlarging the time in which the target resonator oscillations take place
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(

without amplifying them. These outcomes have confirmed the funda-
mental importance that the analysis duration plays on the optimisation
outcomes.

In future works, results for mechanical energy confinement and
amplification will be used for energy harvesting in graded metama-
terials exploiting the piezoelectric effect as transduction mechanism,
possibly repeating the optimisation procedure for a modified reward
related, for example, to the output voltage or power. Attention will
be also devoted to design optimisation problems involving sources of
uncertainty, for example the one related to the frequency content of
the wave excitation, as well as the possibility of harvest energy on the
entire set of resonators.
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Appendix A

We report the complete PPO algorithm employed to solve the
MDP with which the design process is formalised. Rewards are com-
puted through FE simulations. Additional details on PPO can be found
in Schulman et al. (2015). As it can be noted, a major element of
interest of RL with respect to supervised learning is the possibility to
collect data during the training, potentially online.

Appendix B

We show the optimisation results for fixed analysis time. A first
optimisation attempt in which the analysis time 𝑇 has been set to
1.5 ⋅ 10−5 has led to contradictory outcomes highlighting an unusual
decreasing profile of the lengths of the resonators preceding the target
resonator, as shown in Fig. B.1(a).

This result disagrees both with what reported in Section 3.2 and
with the literature, see De Ponti et al. (2020a,b). It has been necessary
to inspect the evolution of the target resonator  to explain the reason
behind this unexpected outcome. As shown in Fig. B.1(d), the analysis
Fig. B.1. Optimisation of the resonator lengths and spacing: effect of the analysis time 𝑇 on the optimisation outcomes. In (b) and (d), the time evolution of  for 𝑇 = 1.5 ⋅ 10−5

in black) are compared with those obtained for 𝑇 ∗ = 2.0 ⋅ 10−5 (in red). (a) reports the resonator arrangement obtained by the optimisation procedure considering 𝑇 as duration
of the wave propagation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Algorithm 1 MDP solution via PPO for rewards calculated through FEs.
1: Initialise the actor parameters 𝜽𝑝 randomly.
2: Initialise the critic parameters 𝜽𝑣 randomly.
3: 𝜽𝑝old = 𝜽𝑝, 𝑛𝑖 = 0.
4: while 𝑛𝑖 < 𝑁𝑖 do
5: for 𝑛𝑒 = 1,… , 𝑁𝑒 do
6: Initialise the starting state 𝑆𝑛𝑒

0 = 𝑆0,
7: for 𝑛𝑡 = 1,… , 𝑁𝑡 do
8: 𝑛𝑖 = 𝑛𝑖 + 1.
9: Sample 𝐴𝑛𝑒

𝑛𝑡 from 𝜋old

(

𝑎|𝑆𝑛𝑒
𝑛𝑡−1

,𝜽𝑝old

)

.
0: Determine 𝑆𝑛𝑒

𝑛𝑡 .
1: Compute 𝑅𝑛𝑒

𝑛𝑡 via FEs.
2: end for
3: Compute 𝐺𝑛𝑒

𝑛𝑡 as in Eq. (1) for 𝑛𝑡 = 1,… , 𝑁𝑡.
4: end for
5: Compute 𝑑

(

𝑆𝑛𝑒
𝑛𝑡 , 𝐴

𝑛𝑒
𝑛𝑡 ,𝜽𝑣

)

.
6: Compute 𝑝

(

𝜽𝑝
)

as in Eq. (6) .
7: Update 𝜽𝑝 via gradient ascend to maximise 𝑝

(

𝜽𝑝
)

.
8: Compute 𝑣

(

𝜽𝑣
)

as in Eq. (8).
9: Update 𝜽𝑣 via gradient descend to minimise 𝑣

(

𝜽𝑣
)

.
0: Set 𝜽𝑝old = 𝜽𝑝.
1: end while

has been too short to damp out the oscillations of the target resonator
when the linear grading rule of Fig. B.1(c) has been employed. Con-
sequently, the agent discovered a resonator configuration capable of
exciting stronger but for a shorter time the target resonator. Computing
the ratio 𝑅𝑇 ∗∕𝑅𝐻

𝑇 ∗ for 𝑇 = 2.0 ⋅ 10−5 for the obtained configuration and
for a resonator arrangement ruled by a linear grading confirms what
has been suggested, highlighting the better performance of the linear
grading rule.
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