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Debonding sawtooth analytical model and FE implementation with 
in-house experimental validation for SRG-strengthened joints subjected to 
direct shear 
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A B S T R A C T   

A novel and simple analytical debonding model for Steel Reinforce Grout (SRG)-strengthened specimens sub
jected to direct shear tests is proposed. All the nonlinearity is lumped at the interface between reinforcement 
chords and mortar, the substrate is assumed perfectly glued to mortar, infinitely stiff and resistant and the steel 
grid is considered linear elastic. The non-linear interface tangential stress-slip relationship is assumed discon
tinuous and multi-linear and constituted by four phases, three elastic with progressively reduced stiffness and the 
last perfectly plastic. The assumption of a non-vanishing residual tangential strength is paramount to reproduce 
the typical pseudo-linear hardening observed experimentally in the global force-displacement curves when the 
debonding frontier is triggered starting from the loaded edge. Under such hypotheses, the second order differ
ential field equation describing the slippage of the reinforcement on the support admits closed form solutions, 
which are suitably derived. An implementation into a standard Finite Element (FE) commercial code is also 
proposed, which relies in a discretization of the reinforcement through three cutoff bars (one ductile and two 
brittle) disposed in-parallel, elastic elements for the steel grid and rigid beams used as transversal connections. 
The reliability of the sawtooth and the FE models is assessed by means of a thorough comparison with experi
mental data obtained by the authors for this purpose testing five replicates of a concrete specimen strengthen 
with a SRG and subjected to a standard shear test.   

1. Introduction 

Existing reinforced concrete and masonry structures need very 
frequently rehabilitation or upgrading for a variety of reasons, which 
include -but are not limited to- a change of the intended use, an increase 
of the loads or the need to improve the load carrying capacity for seismic 
actions. In this context, fiber reinforced composites represent an inter
esting solution for strengthening and retrofitting existing structural el
ements, because they can be applied externally, and hence very rapidly, 
with very low invasiveness and without requiring the partial or total 
inhibition of use. Among them, Fiber Reinforced Polymer (FRP) com
posites were the first used and they gained tremendous popularity in the 
90 s, thanks to their excellent mechanical and chemical properties, such 
as for instance the high strength-to-weight ratio, and the relatively 
limited curing time. Pretty soon, however, it was understood that FRP 
strips glued to a brittle support exhibit also many drawbacks, such as an 
abrupt drop of the performance at relatively high temperatures, 

excessive stiffness, problems of vapor permeability and the irrevers
ibility of the intervention, which is considered unacceptable in historical 
and heritage structures. 

To overcome such major limitations, organic binders used in com
bination with fiber sheets and strips were substituted with inorganic 
ones with embedded fiber grids, and a new generation of high strength 
composite materials has been recently proposed [1], named Textile 
Reinforced Mortar (TRM), or also Fiber Reinforced Cementitious Matrix 
(FRCM). The acronym SRG is also quite common, which stands for Steel 
Reinforced Grout. It is a special TRM constituted by a reinforcement 
made by steel cords formed by interwoven steel wires embedded in a 
cementitious grout matrix. 

To investigate the bond behavior of the inorganic-matrix composite, 
small Reinforced Concrete (RC) specimens, strengthened with SRG and 
subjected to standard single lap shear tests can be considered. The role of 
experiments is fundamental to perform numerical analyses of structural 
elements reinforced with SRG. In particular, the knowledge of elastic 
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stiffness, ultimate load-carrying capacity and ductility of the specimen 
assume a crucial relevance for the calibration of the models. 

The observed modes of failure are various, depending on the me
chanical properties of the different materials constituting the rein
forcement (for a comprehensive review the reader is referred for 
instance to [2-5]), but previous studies have proven that to lump non 
linearity at the reinforcement-support interface is an effective and suf
ficiently straightforward strategy which can be used in practice. 

There is another advantage coming from experimental information 
that may be useful to tune the mechanical properties of the interface, 
namely the fact that the interface stress-slip law can be deduced also 
having at disposal only the experimental measure of the slip at the 
loaded edge [67]. This is an important feature for TRM reinforcement, 
where it is not an easy task to monitor the strains along the bonded 
length, because of the presence of the external mortar layer. To embed 
strain gauges along the bonded length or to use DIC seems much less 
useful than the counterpart proposed for FRP [8] because of the pres
ence of the external mortar layer, whereas the utilization of optic fibers 
[9] may be an alternative, which however turns out to be costly, requires 
trained technicians and may perturbate the specimens for the presence 
of the sensor wires. 

As far as the numerical/analytical procedures available are con
cerned, there are in the literature some models at disposal. In [10-16] 
and [17], multi-linear or exponential-softening laws for the interface 
were assumed, both having the advantage to provide closed form solu
tions in case of flat specimens. In some other publications [18-22], the 
field problem (which mathematically translates into a second order 
differential equation) is solved as a standard Boundary Value Problem 
BVP, or less frequently transformed into a Cauchy’s Problem, which has 
the advantage of being fully explicit. However, the direct implementa
tion into a commercial FE code to perform analyses on real structures 
needs the implementation of ad-hoc subroutines. Furthermore, a closed 
form solution can be derived exclusively for interfaces whose stress-slip 
relationship is either multi-linear or exponential, being in any case 
affected by a specificity of the model proposed that is difficult to adapt in 
the most general case, e.g. for curved substrates. In [23], a more so
phisticated approach is proposed, where the elastic reinforcing grid and 
the internal brittle mortar are modeled separately and interact with a 
non-linear interface. A non-linear system of differential equations is 
obtained, transforming a standard boundary value problem into a 
Cauchy’s one, then solved with a classic shooting technique. The idea to 
disregard one of the mortar layers is in common with [5], where how
ever the mortar layer is assumed elastic-perfectly fragile. Whilst the 
procedure appears rather appealing because able to give locally much 
more information on the debonding phenomenon in TRM reinforced 
specimens, it is still a rough approximation because the external layer of 
mortar is disregarded and again the direct implementation into a FE 
software appears nonobvious. A straightforward alternative is to adopt a 
FE discretization just from the beginning, see e.g. [24-32], and to use the 
galleries of elements and material models that are put at disposal by the 
specific software utilized, clearly constraining the user to carry out 
computations with a software that is not specifically crafted for a spe
cific, highly complex, mechanical problem. Anyway, what is clear from a 
thorough review of the existing literature is that there is still a large gap 
to fill between interpretation of the experimental data on small samples 
and applicability in demanding numerical analyses carried out to 
reproduce the behavior of realistic examples of reinforced structural 
elements, which is the main aim in common design and the final target 
of the present research. An interesting breakthrough in this regard has 
been recently obtained in [33] for FRP, where the interface between 
reinforcement and substrate has been modeled by means of a sawtooth 
bilinear constitutive relationship, which has been then implemented 
directly into a low-cost commercial FE software using two elasto-fragile 
trusses disposed in-parallel with identified mechanical properties and 
linked together by rigid beams. The advantage is evident, giving the 
possibility to analyze even complex case studies through a FE 

commercial software equipped only with truss elements whose non- 
linear behavior is as simple as possible, namely elastic-perfectly frag
ile. At the same time, the flexibility appears rather high, allowing the 
study of a variety of cases truly interesting in engineering practice. The 
aforementioned procedure is however specifically conceived for FRP 
and is unable to adapt properly to TRM, where the possible presence of a 
residual tangential strength at the interface for sufficiently large slip 
values may be responsible for a global debonding characterized in the 
global force-slip curve by a pseudo-linear hardening. To cope with such 
feature -which is commonly observed in experimentation- there is the 
need to model the interface by means of at least three in-parallel trusses, 
two of them elasto-fragile and the other elastic-perfectly plastic. On the 
other hand, concerning the adoption of a sawtooth model to characterize 
the constitutive behavior of materials exhibiting softening -in this case 
the interface-, its reliability is already notorious from the literature [34- 
38], as well as the related advantages, which are essentially a conse
quence of the fact that the non-linear behavior is simply derived as a 
sequence of elastic stages, for which in some cases -as the present one- 
closed form solutions can be retrieved. 

The present paper discusses an evolution of such multi-linear elasto- 
fragile truss approach, and its suitability when applied to TRM rein
forcing systems is proved thorough a comprehensive comparison with 
experimental data obtained by means of a campaign conducted in house. 
It relies in five RC samples reinforced with SRG and tested in single lap 
shear. The advantage to carry out a new experimentation is that there is 
the possibility to characterize experimentally all those mechanical pa
rameters of the model that are needed, without assuming some data 
arbitrarily. The model adopted at the interface is a sawtooth interface 
stress-slip relationship characterized by four phases, the first three linear 
elastic with progressively degraded stiffness and the last assumed 
perfectly plastic. Such sawtooth model is then implemented directly in a 
commercial FE software, using three in-parallel cutoff bars, the first two 
elasto-brittle, the third elastic-perfectly ductile. One interesting feature 
is that the differential equation field obtained in the different phases 
active is of second order, homogeneous with constant coefficients for 
three of the four phases, and with separable variables when the residual 
interface strength is activated. In both cases, a closed form solution is 
found easily, whose constants of integration are retrieved by imposing 
suitable boundary conditions. The only complication stands in estab
lishing the points of triggering of the different phases; in the paper, an 
analytical approach is proposed, which allows a direct estimation of 
such points. A procedure of identification based on fracture energy is 
then setup, to secure that the sawtooth, discontinuous and piecewise 
linear constitutive relationship adopted at the interface is equivalent to 
the actual continuous one obtainable with suitable experimental data 
reduction. 

The paper is organized as follows: in Section 2, the original sawtooth 
model with its FE implementation is illustrated and a procedure to 
obtain the global force–displacement curve of standard shear tests is 
discussed. Dealing with the commercial FE software, the implementa
tion proposed uses exclusively cutoff bars disposed in-parallel and rigid 
beams connecting them. In Section 3, the in-house single-lap direct shear 
experimental tests carried out to validate the analytical/numerical 
model are discussed and the experimental interface constitutive law is 
deduced, identifying a continuous trilinear relationship to compare 
with. In Section 4, the numerical results obtained with the sawtooth 
model are then comprehensively discussed and compared with experi
mental evidences. Section 5 is then devoted to the numerical imple
mentation of the approach proposed in a commercial FE software 
equipped only with elasto-perfectly fragile and elasto-perfectly ductile 
trusses. Finally, Section 6 draws some conclusions and discusses the 
future developments, with particular attention to the application of the 
model for the analysis of entire structures reinforced with TRM. 
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2. The analytical (sawtooth) and FE numerical (with cutoff bars 
CoBs) approach proposed 

The aim of the section is to present a novel analytical sawtooth model 
with direct FE numerical implementation in a commercial software for 
the prediction of the debonding behavior of SRG strengthened speci
mens subjected to standard shear tests. The term “direct” means here 
that there is no need to implement new subroutines into a FE code, but 
that the implementation is simply possible meshing the strengthening 
package by means of a network of in parallel Cutoff Bars (CoBs) -which 
are truss elements with limited tensile strength and post elastic behavior 
assumed either elasto-perfectly fragile or elasto-perfectly-ductile- con
nected one each other by rigid beams and externally linked to the sub
strate (assumed rigid) and the steel strands, modeled with elastic trusses. 

Section 2.1 illustrates first the mono-dimensional theoretical model 
adopted to investigate the SRG debonding from a substrate. Following a 
classic literature in the field, the strengthening package is modeled with 
an elastic layer representing the SRG strands and an inelastic interface 
between steel and substrate. Then, the sawtooth model is introduced to 
characterize the interface constitutive behavior and a closed form so
lution is derived to deduce slip and stress distribution along the bond 
length. 

The second subsection finally discusses the direct implementation of 
the sawtooth model into a commercial FE software through CoBs and 
rigid connection beams. 

2.1. Analytical sawtooth model 

Let us consider a SRG strengthening package, as reported schemati
cally in Fig. 1, bonded to a sufficiently stiff and resistant substrate. Ac
cording to a quite consolidated approach already adopted by many 
authors in the literature, the different layers of the reinforcement are not 
modeled separately and the non-linearity is lumped exclusively at the 
interface between an elastic layer of steel strands and the rigid substrate. 
Implicitly, lumping non linearity exclusively there, it is assumed that 
failure occurs for a progressive inelastic slippage of the steel strands with 
respect to the matrix where they are embedded. More precisely, it can be 
stated that, since the constitutive behavior of the conventional interface 
can be deduced from experimental data, as it will discussed in the 
following Section 3.4, such approach renounces to predict which kind of 
failure mode is triggered in reality, providing information exclusively on 
the expected global behavior. 

All the aforementioned issues considered, making the assumption 
that failure occurs at the interface between matrix and fabric and that 

damage is not localized in the substrate - which is considered rigid and 
infinitely resistant-, the mechanical system studied is a layer of elastic 
steel bonded to the substrate by means of a fictitious non linear interface 
where all inelastic phenomena take place. The elastic layer is assumed 
subjected to a monoaxial state of stress, acting along the longitudinal 
direction. Its cross area is Af = nAfs and the interface equivalent width is 
pf = npfs, where Afs and pfs are respectively area and perimeter of the 
single strand. The only independent kinematic variable is the longitu
dinal displacement of the elastic layer along the bond length. The hy
pothesis of rigid support makes, at the abscissa x, the sliding s(x)
between steel strands and support equal to the longitudinal displace
ment of the elastic layer. Because of the non-null slip s(x), a tangential 
stress τ(x) is transferred from the steel elastic layer to the support 
through the interface. In such model, the interface is therefore assumed 
subjected to a pure Mode-II fracture. 

Imposing the equilibrium along the longitudinal direction of an 
infinitesimal portion dx of the strands (see Fig. 1) the following equation 
can be written: 

τ =
Af

pf

dσ
dx

(1) 

Where σ is the axial stress of the strands and τ is the shear stress at the 
interface, which is a function of the sliding s. On the other hand, the 
constitutive elastic relationship of the strands allows to write the 
following equation: 

dσ
dx

= Ef
d2s
dx2 (2) 

where Ef is the Young modulus of the strands and all the other 
quantities have been already introduced. Substituting (1) into (2) it is 
possible to deduce the following second order field differential equation: 

d2s
dx2 −

pf τ
Ef Af

= 0 (3) 

It is worth mentioning that Eq. (3) is nonlinear if the τ − s law is 
inelastic. 

Zou et al. showed in [39] that, assuming a trilinear τ − s law for the 
interface characterized by an initial elastic phase followed by a linear 
softening which precedes a horizontal plateau having residual strength, 
it is possible to derive a closed form solution for the debonding problem. 
However, such interface trilinear law is generally not available in 
standard commercial FE codes and ad-hoc subroutines should be 
implemented to give the possibility to study real scale reinforced 
structures. It is therefore nothing more than a good reference to compare 

Fig. 1. Flat rigid support strengthened with SRG, equilibrium of the reinforcing pack.  
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with to benchmark a more straightforward approach applicable in 
common engineering practice. 

With such need in mind, the main idea here proposed is to consider a 
sawtooth τ − s interface relationship, see Fig. 2. More in detail, the model 
is characterized by three phases with progressively reduced stiffness 
plus a final horizontal plateau (4 phases in total). The first phase 

corresponds to the elastic stage of the trilinear τ − s law, phases 2 and 3 
approximate the descending branch and the last phase corresponds to 
the trilinear plateau. The advantage is that field equation (3) admits 
always an analytical solution -because all phases are elastic (except the 
last one)- and the global behavior can be obtained simply identifying the 
regions where the different phases are active, without the need to utilize 

Fig. 2. End of phases of the sawtooth analytical interface model.  
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-depending on the boundary conditions imposed at the free and loaded 
edge- either Runge-Kutta or finite difference BVP Boundary Value 
Problem solvers. Other advantages when comparing with the already 
existent trilinear model is that any softening law can be simulated and a 
commercial FE software equipped only with very simple non-linear el
ements (cutoff and elastic-perfectly plastic trusses) can be used to 
analyze any kind of test and reinforced structure strengthened with 
TRM, as discussed in what follows. The mechanical parameters to set the 
sawtooth curve are in principle six, namely 3 stresses (τ1, τ2, τ3) and 3 
slips (s1,s2,s3), see Fig. 2. However, τ1, s1, s3 and τ3 are identical to those 
used in the trilinear model, meaning that only two parameters (τ2 and 
s2) should be calibrated to exactly reproduce the same macroscopic 
behavior obtained with the trilinear approach. Such matter will be 
discussed later in the paper. Here the main features of the mathematical 
model are discussed. 

In particular, when the behavior of the interface is elastic, an 
analytical solution can be retrieved easily. Eq. (3) is classically re- 

written as follows: 

d2s
dx2 − λ2s = 0 (4) 

where λ is equal to the following expression: 

λ =

̅̅̅̅̅̅̅̅̅̅
pf k

Ef Af

√

(5) 

and k indicates the stiffness of the interface, assuming τ = ks. Ac
cording to Fig. 2, we denote with ki is the stiffness of the i-th phase, 
keeping in mind that k4 = 0. 

Field equation (4) admits the following solution: 

s = C1eλx +C2e− λx (6) 

Where C1 and C2 are 2 integration constants to be determined 
imposing suitable boundary conditions on either slip or fiber normal 

Fig. 3. Phases of the analytical model and corresponding shear stress shape along the bond length; meaning of l, l2 and l3.  
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stress. 
Deriving (6), it is possible to deduce σ as follows: 

σ = Ef
ds
dx

= Ef λ
(
C1eλx − C2e− λx) (7) 

It is also worth mentioning that, from the field equation (3), τ is equal 
to the following expression: 

τ =
Ef Af

pf

d2s
dx2 − =

Ef Af

pf
λ2( C1eλx +C2e− λx) (8) 

As it can be noticed from the previous equations, s, σ and τ exhibit an 
exponential shape along the bond length. 

Fig. 3 depicts the shape of the tangential stress at the interface in the 
different phases (at the elastic limit and after the initial elastic phase) 
acting during the debonding process along the bonded length. As clearly 
understandable from Eq. (6), the shape is exponential. The following 
cases may occur, depending on the load applied externally:  

- Case 1: only Phase 1 is active; the interface is elastic, the stiffness of 
the interface along the bond length is everywhere equal to k1;  

- Case 2: Phase 1 and Phase 2 are active contemporarily; the interface 
is always elastic, but the stiffness of the interface changes along the 
bonded length and is respectively equal to k1 between − L and − l, 
and equal to k2 between − l and 0;  

- Case 3: Phase 1, 2 and 3 are active contemporarily; the interface is 
elastic per initial assumptions of the interface behavior and its 

stiffness changes three times along the bonded length. It is equal to 
the following values: k1 between − L and − l, k2 between − l and − l2 
and k3 between − l2 and 0.  

- Case 4: Phase 1, 2, 3 and 4 are all active contemporarily; the interface 
is elastic -exception made for Phase 4-, and the stiffness of the 
interface changes four times along the length, being equal to k1 be
tween − L and − l, to k2 between − l and − l2, to k3 between − l2 and 
− l3 and vanishing over − l3 (in this last region the field equation will 
become non-homogeneous with separable variables). 

Hereafter the analytical solution for the different cases previously 
introduced is discussed separately. 

From here ongoing, we will indicate with si and σi the slip and the 
fiber normal stress functions in the i-th phase. λi will be the constant 
defined in Eq. (5) when the interface stiffness is ki, whereas with CR

1,2 we 
will indicate the integration constants for Phase R (R Roman number). 

The logical procedure followed to retrieve analytically the global 
response in terms of force applied P vs displacement g at the loaded edge 
is provided in the flowchart of Fig. 4. 

As it is possible to notice, the only independent variable to set in 
input is the abscissa ( − l) of the point where the interface leaves Phase 1 
and enters in Phase 2; − l should be varied between 0 (elastic limit, 
interface all in Phase 1) and − L (interface all beyond Phase 1). 

In what follows the different possible cases are discussed in detail. 

Case 1. According to Fig. 1, and considering a P force applied at the 

Fig. 4. Flowchart of the algorithm proposed to retrieve the global response.  
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loaded edge, the boundary conditions to impose are the following: 

σ1 = Ef
ds1

dx

⃒
⃒
⃒
⃒

x=− L
= 0 (9)  

σ1 = Ef
ds1

dx

⃒
⃒
⃒
⃒

x=0
=

P
Af

(10) 

Such boundary conditions match exactly the experimental setup in a 
force control test. 

With the previous boundary conditions the solution of equation (4) is 
the following: 

s1 =
P

λ1Ef Af

cosh[λ1(L + x)]
sinh(λ1L)

(11) 

The elastic limit is attained when the tangential stress at the loaded 
edge is equal to τ1, i.e. when the second derivative of the slip in the 
origin is equal to the following expression: 

d2s1

dx2

⃒
⃒
⃒
⃒

x=0
=

pf τ1

Ef Af
(12) 

Which in turn allows to determine the force and the slip at the loaded 
edge at the elastic limit: 

Pe =
τ1pf

λ1
tanh(λ1L)

ge =
Pe

λ1Ef Af
coth(λ1L) = s1

(13)  

Case 2. When Phase 2 activates, the algorithm requires to set in input a 
value of − l (identifying as already pointed out the transition point be
tween Phase 1 and 2) ranging from − L to 0. Integration constants CI

1,2 

can be straightforwardly derived imposing the following boundary 
conditions: 

σ1|x=− L = 0 (14)  

Ef Af

pf

d2s1

dx2

⃒
⃒
⃒
⃒

x=− l
= τ1 (15) 

Such conditions allow writing the following system, Eq. (16), of two 
equations into two unknowns: 
⎧
⎪⎨

⎪⎩

Ef
(
CI

1λ1e− λ1L − CI
2λ1eλ1L) = 0

τ1 =
Ef Af

pf
(CI

1λ2
1e− λ1 l + CI

2λ2
1eλ1 l)

(16) 

Which straightforwardly returns CI
1, and CI

2 constants: 

CI
1 =

τ1pf

Ef Af

eλ1L

λ2
1

[
e− λ1(L− l) + eλ1(L− l) ]

CI
2 =

τ1pf

Ef Af

e− λ1L

λ2
1

[
e− λ1(L− l) + eλ1(L− l) ]

(17) 

Phase 2 integration constants CII
1,2 are then determined in cascade 

assuming the continuity of both the slip and the fiber axial stress at − l: 

CII
1 e− λ2 l + CII

2 eλ2 l = CI
1e− λ1 l + CI

2eλ1 l = s1( − l)

λ2
(
CII

1 e− λ2 l − CII
2 eλ2 l) = λ1

(
CI

1e− λ1 l − CI
2eλ1 l) =

σ1( − l)
Ef

(18) 

Again CII
1 and CII

2 are deduced easily solving a system of two equations 
into two unknowns; they are equal to: 

CII
1 =

eλ2 l

2

(

s1( − l) +
σ1( − l)

λ2Ef

)

CII
2 =

e− λ2 l

2

(

s1( − l) −
σ1( − l)

λ2Ef

) (19) 

It is interesting to point out that at the transition point the following 
relations hold: 

s1( − l) = s1

σ1( − l) =
τ1pf

λ1Af

eλ1(L− l) − e− λ1(L− l)

eλ1(L− l) + e− λ1(L− l) =
τ1pf

λ1Af
tanh[λ1(L − l) ]

(20) 

Combining Eqs. (19) and (20) we obtain: 

CII
1 =

eλ2 l

2

(

s1 +
τ1pf

λ1λ2Ef Af

eλ1(L− l) − e− λ1(L− l)

eλ1(L− l) + e− λ1(L− l)

)

CII
2 =

e− λ2 l

2

(

s1 −
τ1pf

λ1λ2Ef Af

eλ1(L− l) − e− λ1(L− l)

eλ1(L− l) + e− λ1(L− l)

) (21) 

Defining with l* that particular value of l corresponding to the trig
gering of Phase 3 in the origin, then the following equality holds: 

τ2 =
Ef Af

pf
λ2

2

(
CII

1 +CII
2

)

=
Ef Af λ2

2

pf

[

s1cosh(λ2l*)+
τ1pf

λ1λ2Ef Af
tanh[λ1(L − l*) ]sinh(λ2l*)

]

(22) 

Let’s define the function y as follows: 

y =
Ef Af λ2

2

pf

[

s1cosh(λ2l*)+
τ1pf

λ1λ2Ef Af
tanh[λ1(L − l*) ]sinh(λ2l*)

]

− τ2 (23) 

the root of y is easily found within a common spreadsheet, finding 
the minimum of ln|y|. For the problem at hand, assuming the data of 
Table 1, the following values for l* are found:  

- l* = 37.84 mm for τ2 = 6.5 MPa, s2=0.37 mm;  
- l* = 39.03 mm for τ2 = 5.6 MPa, s2=0.40 mm;  
- l* = 39.60 mm for τ2 = 5.2 MPa, s2=0.43 mm; 

Table 1 parameters are those then used in the validation section of 
the model. It is worth mentioning that they are not derived directly from 
experimental data, but they are set taking as reference a trilinear law 
usually adopted in the literature to analytically and numerically analyze 
the FRCM debonding from a rigid support. In particular, k1 = τ1

s1
, k3 = τ3

s3 

(see Fig. 2 for the meaning of the symbols), whereas λi =
̅̅̅̅̅̅̅̅
pf ki

√
/

̅̅̅̅̅̅̅̅̅̅
Ef Af

√
. 

As far as the global behavior is concerned, the end of Phase 1 + 2 is 
characterized by the following applied force and slip at the loaded edge: 

P2 = Ef Af λ2
(
CII

1 − CII
2

)

g2 = CII
1 + CII

2 = s2
(24) 

where CII
1 and CII

2 are evaluated keeping l = l*. 

Table 1 
Parameters used for the validation of the sawtooth model.  

Label Ef [MPa] Af [mm2] pf [mm] Lb[mm] τ1[MPa] k1[MPa/mm] λ1[mm− 1] τ3[MPa] k3[MPa/mm] λ3[mm− 1 ]

Tri-linear law* 190,000  4.84  23.40 450  5.31  37.1  0.0097  0.52  1.06  0.0051 
* data obtained from the experimental campaign carried out in Section 3  
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Case 3. When l > l* Phase 3 triggers in correspondence of a further 
transition point located at − l2. 

At a given value of l > l*, then l2 can be determined in closed form 
remembering both that CII

1,2 are known from Eq. (19) and that: 

τ2 =
Ef Af

pf
λ2

2

(
CII

1 e− λ2 l2 +CII
2 eλ2 l2

)
(25) 

With the position X = eλ2 l2 the previous equation can be rearranged 
as follows: 

CII
2 X2 − KX + CII

1 = 0

K =
τ2pf

Ef Af λ2
2

(26) 

Generally, for the cases of practical interest under consideration, the 
quadratic Eq. (26) admits two real solutions, only one of them of interest 
for the present computations -because positive-, which is: 

X =
K −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2 − 4CII
1 CII

2

√

2CII
2

(27) 

The knowledge of X from Eq. (27) allows the determination of l2: 

l2 =
lnX
λ2

(28) 

Integration constants of Phase 3 are calculated in the same way done 
for Phase 2; Eq. (19) is indeed recursive (because two boundary condi
tions are imposed at the transition point) and constants CIII

1,2 are obtained 
as follows: 

CIII
1 =

eλ3 l2

2

[

s2 +
Ef
(
CII

1 λ2e− λ2 l2 − CII
2 λ2eλ2 l2

)

λ3Ef

]

CIII
2 =

e− λ3 l2

2

[

s2 −
Ef
(
CII

1 λ2e− λ2 l2 − CII
2 λ2eλ2 l2

)

λ3Ef

] (29) 

It is also interesting to evaluate that value of l = l̃ that is responsible 
for the triggering of the last Phase 4 at the origin point. 

In such condition, the origin exhibits a tangential stress at the 
interface equal to τ3, namely the following equation holds: 

z = τ3 −
Ef Af

pf
λ2

3

(
CIII

1 +CIII
2

)
= 0  

z = τ3 −
Ef Af λ2

3

pf

[

s2cosh(λ3l2)+

(
CII

1 λ2e− λ2 l2

λ3
−

CII
2 λ2eλ2 l2

λ3

)

sinh(λ3l2)

]

= 0

(30) 

Under the assumptions that: 

CII
1 =

eλ2 l̃

2

{

s1 +
τ1pf

λ1λ2Ef Af
tanh

[
λ1

(
L − l̃

) ]
}

CII
2 =

e− λ2 l̃

2

{

s1 −
τ1pf

λ1λ2Ef Af
tanh

[
λ1

(
L − l̃

) ]
} (31)  

K =
τ2pf

Ef Af λ2
2

X =
K −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2 − 4CII
1 CII

2

√

2CII
2

l2 =
lnX
2λ2

(32) 

The root of equation (30) is determined numerically (again by means 
of a commercial spreadsheet) in the same way used for l*, allowing the 
identification of that value of l = l̃ that activates the fourth and last 

phase at the origin. Let’s also indicate with ̃l2 the transition point be
tween Phase 1 and 2 for l = l̃. 

At the end of Phase 1 + 2 + 3, the loaded edge applied force and slip 
are the following: 

P3 = Ef Af λ3
(
CIII

1 − CIII
2

)

g3 = CIII
1 + CIII

2 = s3
(33)  

Case 4. When l > l̃, the last portion of the interface near the loaded end 
is in Phase 4. There, λ4 = 0, τ3 is constant, − l3 identifies the position 
where Phase 4 begins, and the corresponding field differential equation 
becomes nonhomogeneous with separable variables: 

d2s4

dx2 =
pf τ3

Ef Af
(34) 

s4 is clearly parabolic and can be written as follows: 

s4 = a1x2 + a2x+ a3 (35) 

where a1, a2 and a3 are integration constants. They are determined 
imposing at − l3 the following conditions: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s3 = a1l2
3 − a2l3 + a3

CIII
1 λ3e− λ3 l3 − CIII

2 λ3eλ3 l3 = − 2a1l3 + a2

pf τ3

Ef Af
= 2a1

(36) 

The linear system of equations (36) provides immediately the inte
gration constants by triangular substitution: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 =
1
2

pf τ3

Ef Af

a2 = CIII
1 λ3e− λ3 l3 − CIII

2 λ3eλ3 l3 + 2a1l3

a3 = s3 − a1l2
3 + a2l3

(37) 

In this case, it is necessary to evaluate l3, which identifies the tran
sition point between Phase 3 and 4. 

Let us pose l = l > l̃, indicating the transition point between Phase 1 
and 2, whereas l2 is the transition point between Phase 2 and 3. 

In such situation the following relations hold: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CI
1 =

τ1pf

Ef Af

eλ1L

λ2
1

[
e− λ1(L− l) + eλ1(L− l) ]

CI
2 =

τ1pf

Ef Af

e− λ1L

λ2
1

[
e− λ1(L− l) + eλ1(L− l) ]

CII
1 =

eλ2 l

2

{

s1 +
τ1pf

λ1λ2Ef Af
tanh[λ1(L − l) ]

}

CII
2 =

e− λ2 l

2

{

s1 −
τ1pf

λ1λ2Ef Af
tanh[λ1(L − l) ]

}

X =
K −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2 − 4CII
1 CII

2

√

2CII
2

l2 =
lnX
λ2

CIII
1 =

eλ3 l2

2

[

s2 +
Ef
(
CII

1 λ2e− λ2 l2 − CII
2 λ2eλ2 l2

)

λ3Ef

]

CIII
2 =

e− λ3 l2

2

[

s2 −
Ef
(
CII

1 λ2e− λ2 l2 − CII
2 λ2eλ2 l2

)

λ3Ef

]

(38) 

The transition point l3 between Phase 3 and 4 is found using exactly 
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the same procedure adopted for l2, namely: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w = τ3 −
Ef Af

pf
λ2

3

(
CIII

1 e− λ3 l3 + CIII
2 e− λ3 l3

)
= 0

K2 =
τ3pf

Ef Af λ2
3

X2 =
K2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
2 − 4CIII

1 CIII
2

√

2CIII
2

l3 =
lnX2

λ3

(39) 

As far as the force–displacement curve is concerned, the slip and the 
force at the loaded edge (origin) are the following: 

P4− i = Ef Af a2
g4− i = a3

(40) 

The subscript i in the previous Eq. (40) indicates that quantities are 
estimated at a specific value of l chosen at user’s discretion. 

To summarize, beyond the elastic limit, the algorithm proceeds at 
assigned values of l, and the following basic quantities are computed:  

– Elastic limit (attainment of τ1 in the origin); global quantities -slip 
and applied force at the loaded edge- are ge and Pe respectively.  

– l* (value of l where in the origin τ2 is attained); global quantities -slip 
and applied force at the loaded edge- are g2 and P2 respectively.  

– l̃ (value of l where in the origin τ3 is attained) and ̃l2 (transition point 
between Phase 1 and 2 for l = l̃); global quantities -slip and applied 
force at the loaded edge- are g3 and P3 respectively. 

– l̃ < l < L (more than one value can be easily investigated), l2 (tran
sition point between Phase 2 and 3) and l3 (transition point between 
Phase 3 and 4); global quantities -slip and applied force at the loaded 
edge- are g4− i and P4− i respectively. 

For illustrative purposes, assuming τ2 = 6.5 MPa and s2 = 0.37 mm, 
with the other quantities kept equal to those reported in Table 1, in Fig. 5 
the global behavior of the specimen is shown, with the distribution of 
the tangential stresses along the bonded length for points e, 2 and 3. It is 
particularly evident how the peaks of the stress on the interface move 
rapidly from the loaded edge to the middle of the specimen. After Point 
3, it should be noted how the pseudo-linear hardening behavior 
observed in the force-slip curves in correspondence of points 4 − i is a 
consequence of the assumption of a non-zero tangential stress in Phase 4. 
In Fig. 6, the distribution of tangential stresses along the bonded length 
in 6 instants of the loading process when Phase 4 is fully developed are 
depicted. As can be seen, there is a progressive translation of the 
debonded area from the right (loaded edge) to the left (free edge) until 

Fig. 5. Analytical force-slip curve (-a) and distribution of tangential stresses at the interface along the bonded length in correspondence of Point e (-b), Point 2 (-c) 
and Point 3 (-d). 
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the failure of the specimen is reached. 
Finally, it is important to point out that the analytical procedure 

allows also to depict the full debonding curve and not only the response 
at Points e, 1, 2, 3 and 4-i, simply repeating the calculations at a desired 
value of l selected in input. 

2.2. Implementation of the proposed model in a commercial FE code 

As already pointed out, the advantage of utilizing a sawtooth τ(x) - 
s(x) interface law stands in the possibility of its direct implementation in 
a FE commercial code equipped with trusses exhibiting a linear elastic 
and either perfect fragile (cutoff bar brittle) or perfectly plastic (cutoff 

Fig. 6. Distribution of tangential stresses at the interface along the bonded length with Phase 4 fully developed. From -a to -f: Points from 4 to 1 to 4–6.  
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bar ductile) behavior. Such typology of FE is the simplest one among the 
big variety of existent elements usually available and nowadays is put at 
disposal to users in the most widespread commercial software, at the 
same time allowing fast and robust non-linear simulations and requiring 
a very basic theoretical background for the practitioner interested in 
performing non-linear structural analyses in presence of SRG/TRM 
reinforcement. The implementation proposed here and schematized in 
Fig. 7 does not require to write ad hoc subroutines, but needs only a 
specifically crafted discretization of the reinforcing system. 

The mesh relies into three cutoff bars of finite length (established by 
the user), disposed in parallel and connected transversally with the 
support and the elastic SRG layer by means of rigid beams and suitable 
node constraints, as detailed in Fig. 7. Numerical simulations can be 
performed to both structural elements and entire structures. 

According to Fig. 8, let Lb be the length of the bars and let represent 
them with 3 springs applied to each node of the elastic reinforcement; 
Afi, Efi and Ffi indicate respectively the area, the elastic modulus and the 
ultimate tensile force of the i-th spring. Springs #1 and #2 exhibit an 
elastic perfectly brittle behavior, whereas spring #3 an elastic perfectly 
ductile behavior. 

The equivalent elastic moduli of the springs, once that Afi is set equal 
to the unitary value for the sake of convenience, are calculated ac
cording to the following Eq. (41), assuming that the FE model and the 
sawtooth interface model exhibit the same slip at the node under 
consideration: 

⎧
⎨

⎩

Ef 1Af 1 + Ef 2Af 2 + Ef 3Af 3 = k1pf Lb
2

Ef 2Af 2 + Ef 3Af 3 = k2pf Lb
2

Ef 3Af 3 = k2pf Lb
2

(41) 

Eq. (41) is an upper triangular linear system that furnishes imme
diately the values of Efi to adopt in the FE model, noting that Afi is 
unitary. 

The ultimate resistances Ffi of the 3 springs are calculated writing a 
system of 3 equilibrium equations into 3 unknows in correspondence of 
the end of Phase 1, Phase 2 and Phase 3; such system of equations is 
reported in the following Eq. (42): 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ff 1 + Ff 2
s1

s2
+ Ff 3

s1

s3
= τ1pf Lb

Ff 2 + Ff 3
s2

s3
= τ2pf Lb

Ff 3 = τ3pf Lb

(42)  

3. In house experimentation: Single-lap direct shear 
experimental tests 

The validation of the numerical model proposed is obtained making 
reference to a specific in-house experimentation carried out by the au
thors for this purpose. It is indeed always better to refer to experimental 
data obtained directly instead of using literature ones, simply because 
any needed mechanical and geometrical property can be retrieved 
without making arbitrary assumptions on the missing data, if any, as it 
may occur trying a validation using literature experimental data. 

Hereafter, method, procedure and results of five direct-shear tests 
conducted to investigate the bond behavior of SRG-concrete joints 
subjected to a pure Mode-II loading condition are reported. 

Few additional words should be spent as far as the hypothesis of a 
pure Mode-II loading condition is concerned. In fact, the suitability of 
the direct-shear test setup for the study of the Mode-II fracture me
chanics behavior of bonded joints, including both FRP and FRCM (or 
TRM), has been widely examined in the scientific literature and is 
confirmed by experimental, numerical and analytical predictions. Some 
among the most relevant studies confirming this position are provided at 
[11,40-43]. In these studies, it is generally acknowledged that the 
cohesive interface of direct shear test specimens can be assumed to be 
subjected to a pure fracture mechanics Mode-II loading condition, 
although negligible stress components normal to the interface can arise 
due to the substrate bending effect induced by the eccentricity between 
the forces applied to the bonded strips and substrate. 

Tests were performed with close reference to the indications of the 
European Assessment Document [44], which regulates the qualification 
of Inorganic Matrix Composites (IMC) systems for externally bonded 

Fig. 7. sawtooth interface model implemented in a standard commercial FE code using cutoff bars disposed in-parallel (two brittle and one ductile).  

Fig. 8. One-dimensional FE model with 2 brittle and 1 ductile cutoff bars 
applied in parallel to the SRG nodes. 
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applications. A classical push–pull configuration was adopted for the 
tests. 

3.1. Materials 

The SRG reinforcing pack investigated in this study relies on a uni
directional galvanized high-strength steel fiber textile [45] embedded 
with a geopolymer mortar [46]. Datasheets by the manufacturers 
[45,46] are used to set constituent materials properties (e.g. elastic 
moduli and resistances, area and perimeter of the steel fiber textile). 

Some experimental tests were also performed to validate the mechanical 
properties declared by the manufacturer. The obtained results 
confirmed the indicated mechanical properties. Fig. 9 shows the ge
ometry of the steel textile, constituted by unidirectional twisted strands, 
spaced at 7.5 mm on center, held together by a glass fiber micromesh 
stable grid. Each strand has an area Afs = 0.538 mm2 and a perimeter pfs 
= 2.60 mm (see Fig. 9), realized with 5 filaments, 3 straight and the 
remaining 2 twisted around the others. The tensile strength ff and elastic 
modulus Ef of the steel textile are equal to 3000 MPa and 190 GPa, 
respectively, as declared by the manufacturer. The geopolymer mortar 
exhibits, again according to manufacturer data, a compressive strength 
(Rc28) of 50 MPa (after 28 days curing). 

The composite system tested in direct shear tests is constituted by a 
single layer of textile embedded within two 5 mm thick layers of matrix, 
entailing an overall composite thickness of 10 mm. The composite strip 
was bonded to a concrete substrate having average compressive strength 
of 37.9 MPa (coefficient of variation, CoV, equal to 6.02%), determined 
by testing six 150 mm -edge cubes after 28 curing days [47]. The 28-days 
average tensile strength of concrete, obtained from splitting tests of five 
100 mm × 200 mm cylinders, is 2.50 MPa (CoV = 18.40%) [48]. The 
direct shear tests were executed after more than one year from the 
substrate prisms casting. 

3.2. Experimental set-up 

The SRG-substrate joints were tested using a single-lap direct-shear 
test setup according to [44]. Specimens are constituted by a 10 mm thick 
rectangular composite strip of dimensions 450 × 60 mm with 9 strands 
embedded in a matrix, and bonded to a concrete prism with dimensions 
150 × 150 mm (cross-section) × 600 mm (length). In agreement with 
the indications provided by the European Assessment Document for 
inorganic matrix composite systems qualification – Annex C.3 [44], 
prior the application of the composite strip, the substrate was roughened 
using a grinder and then thoroughly cleaned from dust with compressed 

Fig. 9. textile grids geometry: steel.  

Fig. 10. -a: specimen geometry (dimensions in mm); -b: test setup.  
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air. Additionally, the substrate was wet using water few minutes before 
the application. Accordingly, specimens were prepared with close 
reference to the indications provided in the technical datasheet of the 
product [45,46], which is the same procedure that should be ideally 
followed in real applications. A first matrix layer was applied directly to 
the block surface using rectangular formworks, which allowed to 
maintain a constant thickness of 5 mm for the layer. The textile grid was 
then embedded on the matrix layer and pushed against it to guarantee 
good impregnation. Finally, the second matrix layer was applied, and 
the strip was cured 28 days in a 90% controlled humidity environment. 

Fig. 10-a shows the specimen geometry and dimensions. As visible 
from Fig. 10-a, bare textile portions were left unembedded outside the 
composite strip beyond the loaded and free end positions. L-shaped 
aluminum plates were then attached to the bare textile just outside the 
composite strip ends to allow a direct measurement of the fiber–matrix 
relative slippage throughout the test. The displacements of the L-shaped 
plates with respect to the concrete prisms were measured by 4 LVDTs 
attached to the concrete substrate on the side of the composite strip. 
These were located at the loaded and at the free ends (see Fig. 10). The 
strip loaded end (Fig. 10-a) was located 30 mm apart from the prism 
edge to prevent the edge rupture. 

The substrate block was restrained to the testing machine using a 
frame made of steel plates and bolted steel bars, according to the in
dications provided in [44], as shown in Fig. 10-b. The frame did not 
exhibit meaningful deformability and therefore it can be considered 
reasonably rigid. A MTS servo-hydraulic universal testing machine, 
equipped with a 250 kN load cell (resolution 0.005 kN) was adopted for 
the tests. Tests were performed in displacement control mode at a con
stant stroke rate of 0.2 mm/min, while the applied load was recorded by 
a 250 kN load cell. Thin steel plates were attached to the bare textile end 
using epoxy resin, to promote an effective and uniform machine grip
ping (see Fig. 10-a). Four HBM LVDT sensors were used to measure the 
relative displacement between the composite loaded and the concrete 
support, two of them having a 20 mm gauge length (resolution 0.001 
mm, placed at the loaded end – see Fig. 10) and two having a 10 mm 
gauge length (resolution 0.0005 mm, placed at the free end – see 
Fig. 10). 

3.3. Results 

Fig. 11-a show the typical axial load (or stress) P (or σ) - global slip g 
response of the SRG-concrete joints, whereas the P (or σ) - g responses of 
all the tested specimens are collected in Fig. 11-b. In Fig. 11, g is the 

Fig. 11. Axial load (or stress), P (or σ) - global slip, g, curves of SRG specimens: a) Typical P-g behavior; b) all specimens.  

Table 2 
Experimental test results of SRG strenghtened specimens: P-g response 
parameters.  

Specimen 
name 

P* 
[kN] 

g* 
[mm] 

P MAX 

[kN] 
aII 

[mm] 
gII 

[mm] 
FAILURE 
MODE 

Sample_1  8.375  0.47  8.650  2.73  3.20 D + S 
Sample_2  7.264  0.24  10.318  4.04  4.29 D 
Sample_3  10.894  1.30  10.896  3.53  4.83 D 
Sample_4  8.061  0.85  8.154  2.59  3.44 D + S 
Sample_5  7.285  0.27  11.809  5.24  5.51 D 

Note: D = matrix-fiber interface debonding; D + S = matrix-fiber interface 
debonding combined with substrate debonding. 

Fig. 12. Box-plot of the representative P-g response parameters. On each box, 
the central mark indicates the median, the bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. 
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average of the two LVDT readings at the loaded end and σ is computed 
according to the equation: 

σ =
P

nAfs
(43) 

where n and Afs are the number of fiber strands and the corre
sponding transversal area, respectively. Key parameters obtained from 
direct shear tests are reported in Table 2. Such parameters include the 
axial load at the end of the initial ascending branch P* and the corre
sponding global slip g*, the maximum load recorded during the test 
PMAX, the amplitude of the sub-horizontal branch, aII and the global slip 
at failure, gII (see Fig. 11-a). A box-plot with medians and quartiles, 
along with numerical predictions (discussed in the following sections) of 
the representative P-g response parameters is reported in Fig. 12. 

All SRG-strengthened specimens failed due to debonding at the 
matrix-fiber interface (see Fig. 5-a) with splitting of the matrix external 
layer from the internal one. In some cases, indicated with D + S in 
Table 2, debonding at the matrix-fiber interface was followed by the 
partial or total debonding of the matrix internal layer from the substrate 
(see Fig. 5-b). However, the matrix detachment from the substrate 
occurred suddenly in the very final stage of the test, as a consequence of 
the matrix-fiber interface failure. A similar failure mode was observed 
by Santandrea et al [49] in SRG-masonry joints subjected to a same test 
configuration. 

The typical P - g response was characterized by two main stages, an 
ascending branch and a subsequent horizontal or slightly increasing 
branch (Fig. 11-a). The ascending branch observed was initially linear 
due to the elastic behavior of composite and substrate. When the bond 
strength of the matrix-fiber interface was attained at the loaded end, 
softening started propagating along the interface in the portion closer to 
the loaded end, and the load response became non-linear. Simulta
neously, some orthogonal cracks (i.e. normal to the load direction) 
opened along the composite strip. However, due to the strong inter
locking between textile and matrix, the loss of linearity associated with 
the interface softening was limited and small relative slippage between 
matrix and fiber was recorded in this stage. Increasing further the 
imposed displacement, the tangential stress transferred between matrix 
and fiber resulted in the formation of a main cohesive crack at the 
matrix-fiber interface, which corresponded to a sudden load drop in the 
P - g response. In some cases, the load reduction corresponding to the 
interfacial crack formation was less abrupt, because of a more even load 
distribution along the composite width. The load value attained at the 

end of the ascending branch is referred to as P* in Fig. 11-a, and the 
corresponding global slip is g*. The opening of the interfacial crack 
determined the shifting from the first branch to the second sub hori
zontal or slightly ascending branch, which was associated with the 
propagation of the interfacial cohesive crack from the loaded end to
wards the free end of the specimen. As inferred in [49], where a com
parison between load responses of specimens with different bonded 
lengths is reported, the amplitude of this second stage (aII, see Fig. 11-a) 
depends mainly on the length of the bonded portion and turns out to be 
higher for joints with longer bonded lengths. During this stage, an in
crease of the applied load was recorded, which can be attributed to the 
friction exchanged between fiber and matrix and along the interfacial 
crack surface. This led to the attainment of the specimen bond capacity, 
referred to as PMAX in Fig. 11-a, which either occurred within or at the 
end of the second stage. This stage ended suddenly once debonding 
occurred at the matrix fiber interface and its amplitude, aII in Fig. 11-a, 
depended on the extent of the interfacial crack propagation. The global 
slip corresponding with failure was indicated with gII.. As shown in 
Fig. 13-b, for some specimens the presence of peeling stress (i.e. 
orthogonal to the composite plane) at the end of the test determined the 
local or total detachment of the composite strip from the substrate. In no 
cases free end slip reading was recorded due to the strong interlocking 
between fiber and matrix which prevented steel strands from slipping 
within the embedding matrix in the portion closer to the free end. 

According to data represented in Fig. 12, a large scatter can be 
observed in the results of all tested specimens. A similar behavior was 
described by Santandrea et al. [49] testing SRG-masonry joints, a feature 
which was attributed to the variability of the inorganic matrix property 
and to its poor capability to impregnate steel strands. 

3.4. Bond-slip behavior 

The bond behaviour of SRG-strengthened specimens exhibiting a 
cohesive failure at the matrix-fiber interface can be analyzed through a 
fracture mechanics approach, by defining a specific relationship be
tween the shear stress (i.e. bond stress) acting on the cohesive interface, 
τ, and the relative sliding (or slip), s, between the two adherends, namely 
fiber and matrix. The τ(s) law of the cohesive interface, also referred to 
as Cohesive Material Law (CML), can be experimentally estimated on the 
result of bond tests. In [50], the CML of Carbon FRCM-masonry joints 
subjected to direct shear test and exhibiting a cohesive debonding at the 
matrix-fiber interface was experimentally estimated via direct 

Fig. 13. Failure modes observed for the tested SRG-strengthened specimens: -a: debonding at the matrix-fiber interface with splitting of the matrix external layer 
from the internal one; -b: debonding of the matrix internal layer from the substrate. 
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measurement of the axial strain of fiber bundles, using strain gauges 
lined up along the specimen bonded length. From the obtained axial 
strain profiles, ε(x), under the hypothesis of a pure Mode-II loading 
condition, the parametric relationship between bond stress τ(x) and 
corresponding slip s (x) can be obtained through suitable derivation and 
integration of the ε(x) profile, respectively, according to the following 
equations: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ(x) = Ef Afs

pfs

dε(x)
dx

⃒
⃒
⃒
⃒

x=x

s(x) =
∫ x

0
ε(x)dx

0 ≤ x ≤ L (44) 

where Ef, Afs and pfs are the fiber bundle elastic modulus, area and 
perimeter, respectively (Fig. 9), whereas L is the bonded length. 

It is worth noting that a similar approach is adopted in the literature 
for adhesively-bonded FRP-substrate joints, where strain gauges are 
applied directly on the external face of the FRP reinforcement [18,42]. 

The use of stain gauges in DS tests of SRG specimens may be 
complicate due to the presence of the external matrix layer and to the 
reduced surface of steel strands; for this reason in [49] some indirect 
calibration methods of the τ(s) law from the load (or stress) response of 
direct shear tests were proposed, which proved to be effective in 
modeling the analytical interface bond-slip behavior. Similarly, in the 
present study, experimental τ(s) curves are determined by indirect 
calibration from the stress responses presented in Fig. 11-b, according to 
the analytical approach proposed by Zhu et al [6]. The adopted 
approach is based on the hypothesis of a rigid substrate and a pure 
Mode-II loading condition. Besides, the matrix-fiber interface is assumed 
to be subjected exclusively to shear stress, whereas peeling and bending 
effects are neglected. 

As a result of the mentioned assumptions, by imposing the equilib
rium of an infinitesimal portion of the matrix-fiber interface, the 
following Eq. (45) can be obtained: 

τ(s) = dP
dg

⃒
⃒
⃒
⃒

g=s

P(s)
Ef n2Afspfs

(45) 

where dP/dg indicates the first derivative of the applied load P with 
respect to the global slip g, Ef, Afs and pfs are the fiber bundle elastic 
modulus, area and perimeter, respectively, whereas n is the number of 
fiber bundles included in the textile layer. 

The experimental τ(s) curves of specimens Sample_1-5 obtained 
through Eq. (45) are presented synoptically in Fig. 14 (subfigure a de
picts the typical behavior obtained). 

As it can be deduced, Sample_1 was the only specimen exhibiting a 
null residual shear friction stress. This is attributed to the shape of the 
experimental P-g curve of Sample_1, which entailed for a marked load 
drop combined with a negative dP/dg right after the onset of debonding. 

As inferred by Fig. 14-a, the τ(s) curve is characterized by an initial 
ascending branch that roughly reflects an interface elastic behavior. 
After the attainment of the peak shear stress, the interface enters in the 
softening branch and the tangential stress τ(s) locally decreases 
increasing the slip. Eventually a sub horizontal branch can be identified 
in the τ(s) response, which is attributed to the friction exchanged at the 
matrix fiber interface after the onset of the cohesive interfacial crack. 

The bond-slip behavior exhibited by Specimen_1-5 was similar to 
that experimentally observed by Carozzi et al. [51] in single-lap direct 
shear tests of PBO FRCM-masonry joints exhibiting cohesive debonding 
at the matrix-fiber interface. The τ(s) law of those specimens was 
approximated with a simplified tri-linear CML based on five parameters, 
namely the interface fracture energy Gf; the maximum shear stress τmax 
and the corresponding interfacial sliding smax, the frictional shear stress 
τf and the corresponding interfacial sliding sf. 

Table 3 reports the tri-linear CML parameters estimated from the 
experimental τ(s) curves of Fig. 14-a, according to the criterion shown in 
the same figure; Gf is computed as the area below the curve until s=g* 

(g* = 0.63 mm, see Table 2), τmax and smax are respectively the shear 
stress and interface slip associated to experimental τ(s) curve peak, τf is 
the average shear stress recorded in the portion s≥g*, whereas the 

Fig. 14. Shear stress, τ - interface sliding, s, curves of SRG specimens: a) Sample_2; b) Sample_1, 3, 4 and 5.  

Table 3 
Tri-linear CML parameters of specimens Sample_1-5.  

Specimen name τmax 

[MPa] 
smax 

[mm] 
τf 

[MPa] 
sf 

[mm] 
Gf 

[N/mm] 

Sample_1  4.77  0.13  –  0.57  1.349 
Sample_2  5.95  0.18  0.66  0.55  1.731 
Sample_3  4.81  0.06  0.59  0.53  1.412 
Sample_4  5.66  0.14  0.49  0.37  1.117 
Sample_5  5.38  0.20  0.35  0.41  1.118 
Average: TRI-LINEAR CML  5.31  0.14  0.52  0.49  1.35 
CoV [%]  9.75  35.89  25.44  18.20  18.84  
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parameter sf is obtained as a function of the other four. The CML pa
rameters reported in Table 3 are adopted in the sequel to model the tri- 
linear CML curve showed in Fig. 14. 

Noteworthy, for Samples 2 and 5 the described criterion provided an 
underestimation of the interface elastic behavior. This can be attributed 
to a nonlinearity observed in the experimental τ(s) curve before the 
attainment of the peak shear stress, as a result of load oscillations 
recorded in the ascending stage of corresponding P-g curves (see 
Fig. 11). The proposed calibration criterion provides for a linearization 
of the τ(s) curve elastic behavior, which is based on the three mutually 
dependent parameters τmax, smax and k1 = τmax/smax (i.e. the slope of the 
CML elastic stage). Alternative calibration strategies can be adopted, e.g 
enforcing the parameter k1, to reproduce specific features of the SRG- 
substrate joint. In addition, it should be pointed out that the experi
mental information available on the slip and shear stress is exclusively 
available at the loaded edge (indirect from experimental data) and 
therefore the calibration method used cannot be considered fully reli
able in principle, but it is the only one that can be followed using a 

traditional set up of measurement. 

4. Sawtooth model interface law: Tuning of the parameters and 
results 

As pointed out in Section 2, the parameters to tune in the sawtooth 
model are 2, namely the tangential strength τ2 of the interface in Phase 2 
and the corresponding ultimate slip s2. The model is aimed at repro
ducing the response obtained assuming for the interface a trilinear 
continuous stress-slip relationship equipped with softening and residual 
strength. Even though any kind of interface law can be simulated, the 
comparison is done in such specific case because an analytical solution is 
already at disposal from the literature. Therefore, let us assume as 
reference a trilinear interface law, taking then the data reported in 
Table 1 and Table 3. 

The two models -trilinear and sawtooth-, looking in particular at the 
response of the sawtooth model during the loading process as far as the 
distribution of tangential stresses at the interface is concerned (see also 

Fig. 15. -a: sawtooth models with equivalent fracture energy. The red curve shows in which point τ2 must be placed, considering the condition s1 < s2 < s3, in order 
to maintain the same fracture energy of the trilinear model. -b: values of τ2 and s2 adopted in the sensitivity analysis (greater the slip is, lower the shear stress and the 
stiffness are) compared with experimental results. -c: Box-plot of the representative P-g response experimental parameters compared with numerical predictions; on 
each box, the inner segment indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, whereas markers ◊, ○ and 
× represent the analytical model predictions for the P-g response parameters. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 16. typical global force–displacement curve (left) obtained with the sawtooth model (right).  
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Fig. 5 and Fig. 6), are equivalent if and only if the two fracture energies 
are identical. 

Considering a trilinear relationship, its fracture energy GTL
f 

(excluding the residual strength) is equal to the following expression: 

GTL
f =

τ1 + τ3

2
(s3 − s1) (46) 

Conversely, the fracture energy of the sawtooth model GST
f is the 

following: 

GST
f =

τ2

2

(

1+
s1

s2

)

(s2 − s1)+
τ3

2

(

1+
s2

s3

)

(s3 − s2) (47) 

By equating the two fracture energies it is possible to find τ2 at a 
selected slip s2 ranging between s1 and s3: 

Fig. 17. Comparison among analytical sawtooth model, trilinear model and experimental data at 3 different values of..τ2  
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τ2 =
(τ1 + τ3)(s3 − s1) − τ3

(
1 + s2

s3

)
(s3 − s2)

(
1 + s1

s2

)
(s2 − s1)

(48) 

In the specific case at hand, Eq. (48) is represented in Fig. 15-a with a 
dashed thick red line, along with three sawtooth interface laws having 
the same fracture energy and characterized by τ2 respectively equal to 
6.5, 5.6 and 5.2 MPa. The corresponding ultimate slips s2 are equal to 
0.37, 0.40 and 0.43 mm respectively. As it is possible to notice from 
Fig. 15-a, the higher s2 is, the lower τ2 turns out, and the lower the 
stiffness is. It is worth mentioning that the suggestiveness to expect that 
τ2 is lower than τ1 and equal (or similar) to that one of the trilinear 
model at the same slip s2 is not correct; in fact, the two models will 
perform globally in the same way if they dissipate the same fracture 
energy. 

Looking at Fig. 15-c, where the numerical parameters representative 
of the P-g response are depicted and compared with experimental out
comes, it can stated that they remain essentially unchanged for the three 
different cases investigated. In particular, there is no variation of the 
peak load attained, Fig. 15-b, which confirms that trilinear models with 
the same fracture energy are associated to a pretty similar global 
response. As expected, more visible (but still very moderate) variations 
are observed for P*, because such quantity is macroscopically related to 
the debonding activation, i.e. when Phase 2 is already active. Overall, 
the agreement with experimental data appears quite satisfactory. 

Fig. 16 shows the results (global force–displacement curve of the 
reinforcement, sub-graph on the left) obtained assuming the sawtooth 
τ(x) - s(x) interface law reported on the right, inspecting the behavior at 
many values of l between 0 and L (according to the procedure summa
rized in the flowchart of Fig. 4). It is worth noting that the observed 
trend of the force–displacement response at the loaded edge is typical for 
the model proposed and does not depend on the particular numerical 
data assumed to set the interface constitutive behavior. In addition, it is 
interesting to point out that the main features of the global debonding 
curve of Fig. 16 can be easily identified, determining meaningful load 
and slip quantities, such as P*, PMAX, gII and g*. It is particularly clear the 
instant of triggering of the debonding until the attainment of the peak 
applied load; after the peak, softening and a rapid snap-back take place, 
again typical in such kind of models and already observed by many 
authors in the recent past. The last point of the curve, located immedi
ately after the peak load but with a clear softening and a snap back 
already well developed, corresponds to the attainment at the free edge of 
the tangential stress τ( − L) = τ1. It is possible to continue the analyses 
following up the entire snap-back branch simply excluding Phase 1 and 
considering as independent variable l2. When l2 = L then τ2 is attained at 
the free edge, Phase 2 is no more active and independent varia
blebecomes l3. Finally, when l3 = L the interface is all in phase 4 and the 
specimen indefinitely slips at constant applied load. 

To corroborate such conclusion, in Fig. 17 a comparison in terms of 
global force–displacement, between analytical outcomes obtained by 

means of the sawtooth and the trilinear model is represented for the 
three cases aforementioned discussed. In the same figure the experi
mental results are also reported. As it is possible to notice, the agreement 
between the two models is perfect in every step of the analysis, starting 
from the linear range, proceeding with the activation of both softening 
and the debonding, and ending with the full separation of the interface. 
The agreement with experimental data appears satisfactory almost 
everywhere; particularly noticeable is the reliable reproduction of the 
inelastic pseudo-linear hardening phase, meaning that the adopted re
sidual strength is quantitatively correct. 

5. FE implementation in a commercial software 

The FE implementation in a commercial software is discussed in this 
Section. Once that parameters Afi, Efi and Ffi are set, the two models (FE 
and sawtooth models) are identical; the only source of inaccuracy in the 
FE approach is the refinement of the mesh, which depends on the finite 
length Lb assumed for the cutoff bars. The shortest Lb is, the smallest the 
differences are. 

The FE mesh adopted in the commercial FE model implementation is 
shown in Fig. 18. It is worth mentioning that the loaded edge is located 
on the left, whereas the free edge on the right, i.e. the loading conditions 
in the FE model are mirrored with respect to the analytical model. A not 
particularly refined discretization is used, assuming Lb = 10 mm, to 
show that reliable results can be obtained even without using models 
characterized by excessive computational burden. 

The global FE response is compared with that of the sawtooth model 
in Fig. 19. The central column of subgraphs in Fig. 19 shows also a 
comparison for the interface constitutive laws adopted, in terms of 
equivalent force-slip constitutive curves of the CoBs, among FE (system 
of in-parallel trusses), sawtooth and trilinear models. It is particularly 
noticeable the perfect superposition of the laws used in the FE and 
sawtooth models. Looking at the global responses, the very good 
agreement among all models is worth mentioning. Indeed, the FE 
load–displacement curves approximate quite accurately the analytical 
models. The zigzagging behavior observed in the global response for the 
FE model is a typical consequence of the discretization, and tends to 
vanish refining further the mesh. The slight underestimation of both 
load carrying capacity and ultimate ductility is again linked to the level 
of mesh refinement. However, in general it can be stated that the pro
cedure is rather reliable and, thanks to its theoretical simplicity, that it 
may be adopted in practical design. 

The distribution of axial forces in the three CoBs at three relevant 
instants of the loading process in the FE model are depicted in Fig. 20, 
Fig. 21 and Fig. 22 for τ2 respectively equal to 6.5, 5.6 and 5.2 MPa. 

It is particularly evident the propagation of the debonding from point 
A (Phase 4 just started), to point C (full debonding), passing through 
point B, where about one half (left part) of the bond length is debonded 
from the substrate, as clearly visible from the value of the axial load in 
the third CoB, which is constantly equal to Ff3 = τ3pf Lb (see Eq. (42)). 

Fig. 18. FE model discretization used in the numerical implementation in a commercial software.  

N. Pingaro et al.                                                                                                                                                                                                                                 



Composite Structures 319 (2023) 117113

19

For the sake of completeness, in Fig. 23, the slip shape along the bond 
length is represented for points A, B and C (only the case where τ2 is 
assumed equal to 6.5 MPa is reported). Such slip, in the FE model, is 
simply equal to the displacement of the nodes belonging to the elastic 
steel elements. As can be noted, all elements located in the debonded 
region exhibit displacements that grow parabolically starting from the 
point of activation of the last Phase 4, see Eq. (35). 

6. Conclusions 

A closed form sawtooth interface model for SRG-reinforced infinitely 

stiff and resistant supports subjected to direct shear tests has been pre
sented, with a straightforward implementation into a commercial FE 
code that does not need any plug-in subroutine. 

The tangential stress-slip interface relationship is multi-linear and 
discontinuous, constituted by three initial elastic phases with progres
sively degraded stiffness and a final perfectly plastic phase modelling the 
residual strength at the interface. The FE implementation proposed is 
constituted by the assemblage of two elasto-fragile trusses disposed in 
parallel and one elasto-ductile, transversally linked by rigid beams 
connected also to the support and the steel grid, assumed linear elastic. 

The model, both in its sawtooth and FE version has been validated 

Fig. 19. FE model results for 3 different τ2 values: comparison among trilinear model, sawtooth model and experimental results.  
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against an already existent trilinear model of interface and experimental 
data, specifically carried out by the authors for comparison purposes. 
Experimentation -carried out by the authors exclusively for validation 
purposes of the analytical/numerical approach discussed- has relied into 
testing 5 samples of SRG-reinforced concrete specimens subjected to 
single lap shear tests. 

The main advantages in proposing the present sawtooth and FE 
models stand into (i) the possibility to use a standard and low cost FE 
software -without the need of additional subroutines- to carry out 
speedy numerical analyses to predict the debonding behavior of SRG- 
reinforced specimens, (ii) the increased robustness of the algorithm 
when compared with more sophisticated approaches and its high 

Fig. 20. FE model with τ2 = 6.5 MPa, axial forces on CoBs at three relevant instants of the loading process.  
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reliability, (iii) the possibility of utilization in common design even by 
users not familiar with complex numerical issues associated with the 
intrinsic difficulties to deal with softening materials and interfaces, (iv) 
the possibility of analyzing entire reinforced structures and structural 
elements without the need of implementing ad-hoc subroutines to take 
into account the presence of interface FEs representing the interaction 

between grid and support characterized by a non-linear constitutive 
behavior which is non-standard. 

When compared with existing sawtooth models recently proposed in 
the literature for the analysis of the debonding of FRP, the imple
mentation of more phases and a final residual strength should be 
considered a major advancement of the research. As far as the global 

Fig. 21. FE model with τ2 = 5.6 MPa, axial forces on CoBs at three relevant instants of the loading process.  
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behavior is concerned, indeed, the response of a specimen reinforced 
with TRM is more complex than that of the same one reinforced with 
FRP, mainly because when TRM is present, a hardening is usually 
observed during the debonding process, which physically is associated 
to the activation of the residual tangential strength of the interface. Such 
feature cannot be correctly reproduced with the utilization of two or 

more than two elastic phases representing the interface behavior. 
Future developments include -but are not limited to- the following 

extensions of the present model: 

Fig. 22. FE model with τ2 = 5.2 MPa, axial forces on CoBs at three relevant instants of the loading process.  
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- study of the debonding behavior of curved specimens reinforced with 
FRCM, an issue particularly important when dealing with the 
strengthening of masonry arches.  

- The introduction of elasto-brittle elements to simulate the presence 
of the external and internal layers of mortar.  

- The FE analysis of real structural elements and structures, e.g. shear 
walls, entire vaults and out-of-plane loaded panels in two-way 
bending, simulating the reinforcement directly into a FE commer
cial software by means of the model constituted by in-parallel cutoff 
bars, elastic trusses and rigid connection beams. In this regard, the 
clear advantage is to offer to the user a procedure characterized by 
high numerical stability in problems exhibiting strong local 
softening.  

- The introduction of anchoring systems, a topic which represents an 
ongoing research strength which is being tackled by means of a 
combined experimental and theoretical approach. 

Data availability statement. 
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