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The Twin-in-the-Loop approach
for vehicle dynamics control

Federico Dettù, Simone Formentin and Sergio Matteo Savaresi

Abstract—In vehicle dynamics control, engineering a suitable
regulator is a long and costly process. The starting point is usually
the design of a nominal controller based on a simple control-
oriented model and its testing on a full-fledged simulator. Then,
many driving hours are required during the End-of-Line (EoL)
tuning phase to calibrate the controller for the physical vehicle.
Given the recent technological advances, we consider in this paper
the pioneering perspective where the simulator can be run on-
board in the electronic control unit, to calculate the nominal
control action in real-time. In this way, it can be shown that, in
the EoL phase, we only need to tune a simple compensator of
the mismatch between the expected and the measured outputs.
The resulting approach not only exploits the already available
simulator and nominal controller and significantly simplifies the
design process, but also outperforms the state-of-the-art in terms
of tracking accuracy and robustness within a challenging active
braking control case study.

I. INTRODUCTION

The use of Digital Twins (DTs) - combining software and
physical connections to produce a faithful virtual replica of a
given system - is revolutionizing state-of-the-art technological
solutions in different fields [1].

In the automotive world, DTs are highly exploited for on-
line monitoring and prognostics of vehicle components [1].
Moreover, vehicle dynamics simulators - as faithful replicas
of the system - are widely employed at the mechanical
design level, i.e., when selecting physical components or when
assessing the differences among structural choices [2]. Instead,
vehicle dynamics controls are still based on simple control-
oriented models, usually capturing the key features of a single
maneuver [3]. Indeed, this yields well known issues when
implementing the controller on the real platform, having to
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deal with many unmodeled dynamics. In the industrial prac-
tice, this issue is overcome by finely adjusting the controller
parameters, during the so-called End-of-Line (EoL) tuning
process [4]. Nonetheless, the latter might be a time consuming
and costly procedure, especially when considering complex
industrial regulators.

In this paper, we take advantage of the most recent techno-
logical advances to show how a high-fidelity vehicle simulator
can be used in real-time and directly embedded into the
Electronic Control Unit (ECU) of the vehicle to enhance the
closed-loop performance and significantly simplify the EoL
tuning phase. We will denote the resulting architecture Twin-
in-the-loop (TiL) control hereafter. Doing so, the nominal
control action could be provided as the one computed on the
system simulator, whereas only dynamics to be controlled is
the mismatch between the vehicle and the simulator, which
could be handled by a simpler compensator. We remark
that, even if the possibility of running a full-fledged vehicle
simulator on-board may sound far in the future, it rather
fits well into the present context of an ever-increasing on-
board and cloud-based [1] computing power, driven by the
necessity of processing signals coming from visual sensors,
such as LiDARs. Indeed, this novel approach calls for a tuning
procedure for the additional compensator, which will be also
treated in this paper.

TiL shares some common feature with internal model
control (IMC) [5]. In IMC, an approximated model of the plant
can be used to generate the control action necessary to obtain a
desired output. In fact, if the model is invertible (e.g. in case of
minimum phase transfer functions), the nominal control action
is easily obtained; if not, the model has to be decomposed into
its invertible and non-invertible parts, e.g. by adding high-
frequency poles to the non-causal model inverse. IMC has
been recently applied for spark ignition engines control [6],
[7], but the applications to vehicle dynamics are not frequent
in the literature, with one notable exception for the yaw-rate
controller in [8].
An important problem in IMC - that can be read as a possible
reason for its low popularity in spite of other approaches, like,
e.g., Model Predictive Control - lies in the strong requirement
on the plant to be invertible or at least decomposable with
an invertible part; when the plant cannot be inverted, nor
its equation can be written in closed-form, IMC cannot be
applied. This is the case of commercial driving simulators,
which are often black-box objects, and can only be used to
obtain a certain output based a specified set of inputs. TiL
solves this invertibility problem for this class of models, as
we show later on in this manuscript.
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In order to show the potential of TiL architecture as com-
pared to traditional vehicle controls end-of-line tuning, we
consider a well-known and challenging safety-critical problem,
namely active braking control [9]. Active braking control - or
anti-lock braking system (ABS) - is a key piece of software in
modern vehicles; its main purpose is to keep the longitudinal
slip around the friction peak to maximize braking performance
and thus avoiding dangerous wheel lock.
More specifically, we consider a high-performance sport car
as the vehicle to be controlled, the latter being an interesting
proving ground for paradigm shifting technologies, due to the
extremely challenging and highly dynamic driving conditions.
Model predictive control (MPC) has been recently employed in
braking control [10], [11], [12], in order to explicitly account
for actuator dynamics and constraints in the control law -
which is impossible in simpler controls, such as PID [13].
For these reasons, we consider an MPC to build our proof-
of-concept: specifically, we select the approach proposed in
[10], where a specific design for high-performance vehicles is
proposed. This choice is indeed not a strong assumption, as
TiL can be in principle used to enhance any control algorithm
and to simplify its implementation; we will discuss this in
detail later on. Finally, we wish to remark here that recent
work has already shown the potential of such a technology for
accurate vehicle state estimation [14]; a recent development
[15] also shows how to deal with the dimensionality issues
when calibrating TiL estimators. Indeed, to the best of our
knowledge, this is the first time that the TiL paradigm is
applied to control systems.

The remainder of the paper is as follows. Section II formally
states the problem, while Section III discusses the active
braking case study. Section IV applies TiL control to the pro-
posed case study, and Section IV-B shows how the algorithm
parameters can be calibrated starting from a set of closed-
loop experiments. Section V compares the TiL solution to the
benchmark; finally, Section VI provides an Hardware-in-the-
Loop real-time validation of the proposed controller on an
off-the-shelf ECU, in order to prove real-time feasibility of
the same. The paper is ended by some concluding remarks.

II. PROBLEM STATEMENT

The traditional framework for the development of vehicle
dynamics control systems usually follows the three-step pro-
cedure depicted in Fig. 1, in which we have considered the
case of reference following without loss of generality.

Specifically, the full design procedure is as follows.
1) A controller C(θ), fully described by a set of parameters

θ, is first designed based upon a control oriented model,
capturing the main dynamics of interest - e.g. a quarter-
car model in case of active braking control [10]. From
now on, we denote the set of parameters selected using
the simple model as θ0.

2) The controller is then tested on a high-fidelity multibody
simulator (a digital twin), usually accounting for unmod-
eled behaviours and nonlinearities. The initial values
θ0 are then adjusted until acceptable performance is
reached, leading to a new optimal selection θs

Fig. 1: Traditional vehicle controls development: the controller
is first designed based on a simple control-oriented model,
then it is tested on a full-fledged simulator and finally it is
fine tuned on the physical vehicle.

3) Finally, the controller is implemented on an Electronic
Control Unit (ECU) and tested on the physical vehicle
along a few driving hours. This step usually requires a fi-
nal refinement of the parameters, yielding the new vector
θv , due, e.g., to neglected phenomena or measurement
noises.

The key observation behind the idea of this work is that,
once C (θs) has been tuned and tested on the simulator, an
ideal control action ũ and the corresponding output ỹ become
available. The latter point opens the possibility to a quantum
leap in the field of vehicle controls: if the simulator can be run
in real-time on the ECU, the ideal ũ can be used as a nominal
control action with no additional computations. If the simulator
and the vehicle dynamics coincide, such an input could be
directly applied to the real system. Indeed, if the simulator
and the vehicle differ in some way, a second control loop
needs to be designed accounting for the mismatch between ỹ
and the measured y. Let us denote the additional compensator
as Cδ . Doing so, the control action on the physical vehicle
becomes equal to uδ + ũ. We denote the above described
control architecture as Twin-in-the-Loop Control (TiL-C), and
depict its schematics in Fig. 2a.

The proposed architecture shows a set of interesting features
as compared to the standard practice:

• if the simulator is a faithful replica of the vehicle, most
of the system nonlinearity and complexity is managed
by C, and the nominal control action does most of the
job. The compensator Cδ would thus play the role of the
controller of a linearized system in the neighborhood of
an operating point;

• since C is operated on the simulator, it has access to all
its states. This opens up the possibility of designing state-
feedback approaches (for the nominal control action)
even when the state is not (fully) available without the
need of designing suitable observers;

• the EoL tuning procedure of Fig. 1 cannot be avoided,
as Cδ needs to be tuned based on the mismatch between
the vehicle and the simulator. However, the design might
be largely simplified, as Cδ can be selected as a simple
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(a) TiL-C control architecture.

(b) TiL-C implementation.

Fig. 2: TiL-C architecture (top) and its on-board implemen-
tation (bottom). The red areas denote the physical vehicle,
whereas the green areas depict the software elements, namely
the simulator and the controllers, running on an ECU.

controller with few parameters even when C is a complex
(possibly optimization-based) controller.

• the TiL-C approach can in principle be generalized to
any vehicle dynamics problem, classical examples being
longitudinal, lateral and vertical dynamics control. In fact,
many of these tasks can be formulated as reference track-
ing problems (see, e.g., the yaw-rate tracking problem in
[3] or [8]), thus the control scheme is conceptually the
same of Fig. 2a.

Indeed, tuning the Digital Twin of scheme in Fig. 2a requires
proper calibration. In what follows, we will assume that such
calibration has been already performed by the car manufac-
turer according to standard practices [2], so this topic is left
out of the scopes of the paper.

Remark 1. Note that the TiL scheme presented in this research
might resemble an Hardware-in-the-Loop (HiL) architecture
running on-board at real-time, where a faithful plant replica
runs in-silico. However, there are important differences be-
tween HiL and TiL. On the one hand, the former is usually
a test-bench for controller implementation [16], where some
piece of hardware (e.g. an actuator, or an Electronic Control
Unit) is inserted in the loop. On the other hand, in TiL
architectures, the commands generated from the simulator are
directly used to control the vehicle.

III. THE CASE STUDY: ACTIVE BRAKING CONTROL

As a case study to illustrate the potential of the proposed
approach, let us consider the problem of longitudinal dynamics
control during braking, i.e., the design of an Anti-lock Braking
System (ABS) for a high-performance car. In particular, we
focus on the control of the wheel slip λ aimed to track a
desired behaviour λ̄ so that a certain braking force can be
guaranteed, and the vehicle can stop without wheel locking.
In this seminal study, we will consider two instances of the
same simulator (as detailed next) to play the role of the digital

twin and the real car. The problem of selecting λ̄ is instead out
of the scopes of this work and will not be discussed here. Also,
note that an ABS controller is generally independent on the
outside road events, like traffic conditions: the ABS is activated
an deactivated solely based on a request by the driver, which
can stop its action at any time by releasing the brake pedal.
We wish to stress that the main goal of this research is not to
design a full braking control algorithm per se, but to simplify
the EoL tuning problem by relying on the availability of the
simulator on-board. As the nominal controller C in Fig. 2a,
we thus start from the existing, state-of-the-art, MPC approach
in [10]. The control action is computed independently for
each wheel, thus ij = fl, fr, rl, rr, as showed in Fig. 3.
In the figure, we also highlight the feedback measurements
necessary for the MPC, which are the wheel ground contact
point velocity vx,ij , the actuated torque T act

ij and the wheel
longitudinal acceleration ax,ij .

Fig. 3: MPC-based braking control [10]. The torques are com-
puted independently for each wheel, then ij = fl, fr, rl, rr.

The wheel slip λ at corner ij is defined as

λij =
vx,ij − ωijRij

max {vx,ij , ωijRij}
, (1)

where ωij is the wheel angular rate and Rij is the wheel
radius [9]. Note that the slip in Eq. 1 is always positive in
case of braking, as the numerator is always < 0, since the
wheel decelerates.

We consider straight braking, i.e., we assume almost zero
camber and sideslip wheel angles. Such an assumption does
not affect the scope and outcomes of the research; it is in fact
well known that such variations affect the friction analogously
to the vertical wheel loads, and can be neglected by suitably
scheduling the slip references [9].

A. The vehicle and the simulator

Both the vehicle - a sport car - and its digital twins are
here modeled in the VI-Grade CarRealTime (CRT) simulation
environment [17]. The CRT simulator include a 6 degree-of-
freedom (DOF) object for the chassis, a 1-DOF model for
the suspensions and a 1-DOF model for the wheel dynamics.
A model of the electro-hydraulic brake (EHB) is also added,
so as to take into account realistic actuation limits. The most
critical vehicle parameters influencing the dynamics during
braking [9] are given in Table I.
Mtot represents the total vehicle mass, encompassing sprung

and unsprung masses, whereas Rnom
f , Rnom

r represent the
nominal wheel radius, for front and rear wheels respectively;
note that the high-fidelity model also accounts for radius
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Mtot [kg] Rnom
f [m] Rnom

r [m] Jnom
f [kg ·m2]

1612 0.33 0.35 1.49

Jnom
r [kg ·m2] lf [m] lr [m] h [m]

2.25 1.57 1.03 0.46

TABLE I: Braking-related parameters for the considered car.

variations due to, e.g., increased wheel loads. Jnom
f and Jnom

r

are the nominal spin inertia of front and rear wheels. lf and lr
are the distances between the projection of the vehicle center-
of-gravity (COG) on the ground and the front and the front
and rear axles, respectively. h is the COG height from the
ground.

Formally, the control inputs u and the set of driver com-
mands ξ are

u =
[
T cmd
fl T cmd

fr T cmd
rl T cmd

rr

]t
,

ξ =
[
ϕthrottle ϕbrake ϕsteer ϕgear

]t (2)

where T cmd
ij represents a torque command at wheel ij,

ϕthrottle, ϕbrake, ϕsteer are respectively throttle, brake and
steer driver request, while ϕgear is the inserted transmission
gear. Indeed, when the braking controller is active, the driver
brake request is bypassed. Due to the straight braking assump-
tion, throttle and steer commands are negligible. The variables
ξ simultaneously act on the simulator and on the vehicle, so
the driver should be considered as an exogenous disturbance
in the framework of Fig. 3.

In order to simulate a realistic difference between the vehi-
cle and its digital twin, we will consider, in three different case
studies, the effect of realistic measurement noises, the effect
of a different mass distribution and of a variation of the tire-
road force diagram. Specifically, since high performance cars
are usually characterized by two front seats and a front trunk,
we add a second concentrated mass on the passenger seat, and
two unbalanced masses on the front trunk. A representation of
the unmodeled loads is provided in Fig. 4, where it becomes
clear how the presence of unmodelled masses changes the ratio
between the distance of COG and front wheels lf and that
of COG and rear wheels lr, thus varying the front/rear load
tranfer. The values of the additional masses are as in Table

Fig. 4: The considered vehicle with modeled (black) and
unmodeled (light blue) masses.

II.
VI-CarRealTime models tire-road interaction via a set of
Pacejka formulas, governing the longitudinal and lateral force
generation at the tire - as well as more complex phenomena,

Fig. 5: Front wheel longitudinal force versus slip, in case
of nominal vertical tire force. Left and right plots depict
variations of the shape factor and peak friction, respectively.

md [kg] mp [kg] ml
t [kg] mr

t [kg]
75 80 90 30

TABLE II: Additional masses included in the vehicle model.
Such masses are modeled as concentrated loads.

such as overturning moment. In order to further test the
control robustness, we consider uncertainty in the longitudinal
force generation, specifically by simulating a multiplicative
mismatch µs on the peak friction and cs on the shape factor.
Figure 5 displays the nominal behaviour (µs = cs = 1), and
different versions of the same model with perturbations of the
two parameters.

B. Model predictive controller

The MPC in [10] is here considered as a nominal controller
and is assumed to be designed before-hand, in the pre-
development stage. Such a controller employs a wheel-specific
predictive model of the slip dynamics

λ̇mpc
ij =

1− λmpc
ij

vx,ij
ax,ij −

Rnom
ij

Jnom
ij vx,ij

T act
ij , (3)

where λmpc
ij represents the prediction of the slip at each wheel.

Parameters Rnom
ij , Jnom

ij are taken from Table I. The actuator
dynamics is a second order system with the same model
and parameters of [10]. The model (3) is used in the MPC
under the assumption of constant wheel speed and acceleration
during the prediction horizon Tp, namely

ax,ij (t0 + t) = ax,ij (t0) , ∀t ∈ [t0, t0 + Tp]

vx,ij (t0 + t) = vx,ij (t0) , ∀t ∈ [t0, t0 + Tp] .
(4)

Where t0 is the current time instant, and t is the independent
time variable. Under the assumptions above - motivated by
the different time scales between slip and chassis longitudinal
dynamics [9] - the model in Eq. (3) becomes linear and time-
invariant (LTI). Said LTI model can be then discretized and
written in velocity form [18] - i.e., transforming states and
inputs into their instantaneous variations; the slip tracking
error is then further introduced as a state. At this point,
an integral action can be easily implemented in the MPC:
such formulation has been shown to be robust to constant
disturbances, guaranteeing zero steady-state error.
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Five predictive steps are considered in the computation of
the optimal control law, which is computed implicitly; with
regards to other details regarding the optimal control formu-
lation, we refer the reader to [10].

C. Sensor model

Any controller acting on the system described in Section
III-A is based upon sensor measurements. For a realistic case
study, we cannot neglect the effect of the noise model on the
performance. In particular, we introduce the noise affecting
speed, acceleration and slip as detailed next. No noise is added
to the braking torque, assuming it is fully controllable and
known.

Acceleration. Longitudinal acceleration measurements at
each wheel (ax,ij) are seldom available on production vehi-
cles. Chassis acceleration is then employed when considering
straight braking [10]. Such signal is obtained through a Inertial
Measurement Unit (IMU), usually affected by high-frequency
noise [19]. We thus consider random Gaussian noise in the
acceleration measurement anx

anx = ax + na, na ∼ WN(0, σ2
a), (5)

where na ∼ WN
(
µ, σ2

)
denotes a Gaussian noise with

expected value µ and variance σ2.
Chassis speed. The COG-referenced longitudinal speed vx

cannot be directly measured without high accuracy Global
Positioning System (GPS) sensors, then it is usually estimated
through state observers [20], and reported at each wheel
via kinematic relations. Hence, we consider low-pass filtered
version nlp of a white noise nvx on the speed measurement
vnx , to mimic the state observer dynamics

vnx = vx + nlp (nvx
) , nvx ∼ WN(0, σ2

vx), (6)

where σ2
vx is the speed white noise variance.

Wheel speed. The angular rates are measured through
incremental encoders: such sensors are well known to be
affected by periodic noise [21], mostly due to unavoidable
geometrical or misalignment errors in the sensor structure. The
amplitude of such a noise increases depending on the rotational
speed itself. We thus include a speed-scheduled sinusoidal
error term ωn

ij

ωn
ij = ωij +Aω sin (ωijt) , Aω = ωn

0 + kωωij , (7)

where ωn
0 and kω are tunable parameters.

Wheel slip. Given the noise models defined in (6) and (7),
the slip in (1) is also affected by a noise term, depending on
both noisy speed and wheel rate measurements. The noisy slip
measurement λn

ij reads

λn
ij = λij + nij

λ

(
vnx,ij , ω

n
ij

)
. (8)

The terms σvx , kω , ωn
0 appearing in equations above are

tuned to achieve signal-to-noise ratios (SNRs) on the slip
measurements which are compatible with those observed in
real setups [22], namely SNR ≈ 4. A comparison between
noiseless and noisy slip signals is given in Fig. 6.

Fig. 6: Noisy and noiseless slip signals, during a closed-loop
braking maneuver.

IV. TIL-C DESIGN

Given the vehicle model and the benchmark controller
described in the previous section, we now discuss the TiL-
C approach to the active braking problem, see Fig. 7.

Fig. 7: TiL-C braking control. The nominal MPC runs on
the simulator in the above control loop, while a second loop
is closed on the physical vehicle via Cδ to compensate for
unmodelled and stochastic dynamics.

The nominal MPC is designed and used on the simulator
and returns a torque for each wheel T̃ cmd

ij , corresponding to
a certain (ideal) slip output λ̃ij . The input to the physical
vehicle is given by the sum of the nominal torque T̃ cmd

ij and
the outcome of the compensator Cδ , which is non-zero anytime
the measured slip is different from λ̃ij .

Remark 2. Let us point out that the TiL-C architecture pro-
posed herein is absolutely general and independent on the
employed nominal controller - i.e. the block C in Fig. 7. For
this reason, the assessment of a TiL-C scheme should be made
in comparison to the nominal control loop, while the absolute
performance is less relevant (in fact, the purpose of the scheme
is to retrieve the desired behaviour, and not to outperform any
particular strategy).

Remark 3. Note that, for an actual implementation of the
controller, some activation logic for the Digital Twin is nec-
essary: if left to freely evolve over time, the simulator might
eventually diverge. For this reason, the DT has to be activated
whenever the controlled maneuver starts (e.g. when the driver
starts braking). This can be simply achieved by freezing the
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simulation and then re-activating it by properly setting the
initial states when necessary.

A. The TiL-C block

The compensator scheme is showed in Fig. 8.

Fig. 8: The detailed Cδ architecture.

A linear regulator R(s) = Nr (s) /Dr (s) processes the
measurement error eij so as to obtain the control action T cmd

δ,ij .
Such a regulator is implemented in an anti-windup fashion
[23], where a suitable de-saturation function Γ (s) is employed
in the scheme. The regulator is selected as a Proportional-
Integral (PI) one

R (s) =
Nr (s)

Dr (s)
=

kp (1 + sTi)

sTi
, Γ (s) = 1 + sTi. (9)

Then, it is discretized at sampling frequency fs = 200 Hz via
the Tustin approach. Notice that the parameterization of R (s)
might be different for front and rear wheels, e.g., due to the
different spin inertia or radii.

Since the wheel slip dynamics highly depend on the vehicle
speed (see again (3)), we include a speed-based scheduling
law, defined a-priori, for the controller gain [13]:

kp =


knomp , vx ≥ vubx

knomp ·
(
klbp +

vx − vlbx
vubx − vlbx

)
, vlbx ≤ vx < vubx

knomp · klbp , vx < vlbx ,

(10)

where vlbx , vubx , klbp are suitable tuning knobs. Considering
different parameters for front and rear wheels, one obtains the
following parameter vector, to be tuned

θTiL-C =
[
knomp,f Ti,f knomp,r Ti,r

]
. (11)

Notice also that, in case the simulated car completes the
braking maneuver before the physical vehicle e.g., due to a
lower simulated mass, the reference λ̄ij goes to zero, and so
does the nominal control T̃ cmd

ij .
This calls for the smooth switching structure in the lower

loop of Fig. 8, in which we introduce the signal ϕ, driving the
de-activation of the braking control for the simulated vehicle.

As soon as the simulator ends the braking maneuver earlier
then the vehicle, the reference signal λ̃ij is switched to a
constant value λ̄. Then, a second controller tracks the total
torque commanded to the system T̃ cmd

ij + T cmd
δ,ij . In this way,

a smooth switching is guaranteed, from the full TiL control
action to Cδ only. Such scheme de-facto implements a soft-
insertion of the control action, which is a typical solution in PI
control design [23], where T̃ cmd

ij + T cmd
δ,ij serves as a manual-

mode control action. Since the accurate tuning of such a de-
activation logic is not among the scopes of this research, we
assume that the TiL-C is de-activated as soon as the speed hits
10 km/h.

B. Controller tuning

As Cδ is aimed to control the dynamics of the residual
between the system output and the output of the best available
model, no model can be used to properly tune such Cδ in
model-based fashion. The design of this block must therefore
rely only on measurements collected on the plant.

Many data-driven methods for tuning PI controller param-
eters exist, see, e.g., [24], [25], [26], [27]. However, such
approaches are mainly defined for LTI systems and are not
suited for the specific schemes of Fig. 8, where an additional
control action is provided, coming from the nominal closed-
loop. For the above reasons, we will instead employ a Bayesian
Optimization (BO) rationale [28], [29]. BO deals with black-
box optimization problems, where the cost function and the
constraints are unknown but the values corresponding to some
instances of the decision variables can be properly “measured”.
Specifically, BO relies on the assumption that the cost func-
tion, here describing the closed-loop performance with certain
control parameters, can be modeled as a Gaussian process
(GP). Closed-loop data can then be used to estimate a GP
model of such a cost function, while a suitable acquisition
function is chosen to select the next set of parameters to
evaluate, by looking for a balanced exploration/exploitation
trade-off. For a more accurate description of the BO procedure,
the interested reader can refer to, e.g., [30].

In the following, we consider BO as a decision maker, in
order to solve an optimization problem of the type

min J (θ)

subject to θ ⊆Θ,
(12)

whereas θ is a set of controller parameters, to be searched for
within an a-priori defined set Θ. Since the TiL-C goal is the
control of residual dynamics between ideal and real loops, J
is selected as the root mean square of the average slip tracking
error among the four wheels

J (θTiL-C) =

(
Ns∑
k=1

(∑
ij=fl,fr,rl,rr e

2
ij (k)

4Ns

))0.5

. (13)

where the dependence of eij , ij = fl, fr, rl, rr upon θTiL-C
is dropped for the sake of brevity, and Ns is the number of
samples in the experiment. From a set of closed-loop experi-
ments, one could re-calibrate the compensator parameters.

Specifically, the experiment used to train Cδ is illustrated in
Fig. 9. A coasting-down phase is followed by a strong braking,
yielding the braking control activation. The slip reference
signal is superimposed with a pulse wave varying signal, in
order to better excite the system dynamics to control.
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Fig. 9: The training experiment for the BO procedure.

V. SIMULATION RESULTS

In this section, we will show the performance of the TiL-C
scheme on a test braking maneuver. As a baseline for a fair
assessment of the results, we will also consider a standard EoL
procedure, in which the MPC is fine tuned using the same data
available for the design of Cδ .

More specifically, since the aim of the EoL calibration
is to obtain on the physical vehicle the same performance
attained on the digital twin, the predictive model parameters
are adjusted so as to minimize the distance between the
ideal and the measured output in closed-loop. A suitable cost
function to this scope is the root mean square of the wheel-
averaged MPC prediction error

J (θMPC) =

(
Ns∑
k=1

(∑
ij=fl,fr,rl,rr

(
λij (k)− λmpc

ij (k)
)2

4Ns

))0.5

,

(14)
where λMPC

ij is computed according to Eq. (3), and projected
forward in time - for each time step - depending on the predic-
tion horizon. θMPC contains the predictive model parameters,
found in Eq. (3).

Three indices are employed to quantitatively assess the per-
formance of the controllers; the first - and most important one
- is the cost in Eq. (13). The second index instead represents
the control effort, evaluated through the time derivative of the
actuated braking torques, Ṫij

act (e.g. as done in [11])

Ju =

 Ns∑
k=1


∑

ij=fl,fr,rl,rr

(
Ṫ act
ij (k)

)2
4Ns




0.5

(15)

Finally, the total braking time is displayed, defined as the time
passing from the braking control activation until vehicle speed
hitting 10 km/h.

In what follows, we will consider three case studies.
In the first one, we will assume that the only difference
between the digital twin and the physical vehicle is the
presence of measurement noise (as expressed in Section
III-C). In the second scenario, we will neglect the effect of
noise but we will investigate the case where the physical
vehicle has a different mass distribution, as illustrated in
Section III-A. In the third scenario, we will consider both
the effect of noise and the modified mass distribution,
while also introducing uncertainty on the tire-road friction

(a) Commanded (solid) and actuated (dashed) torques.

(b) Actual (solid) and reference (dashed) wheel slips.

Fig. 10: MPC and TiL-C performance in case of noisy
measurements: front-left wheel (top plots) and rear-left wheel
(bottom plots).

model, as described in Section III-A. Namely, the shape
factor scaling cs is set to 1.2, while the peak friction
scaling is set to 0.8. This last test is indeed very close to
what one could expect when driving an actual vehicle. In all
tests, the braking starts after ≈ 1 s, at the speed of 196 km/h.

All the tests in this section have been performed off-line via
Matlab/Simulink environments. Real-time implementation and
feasibility analysis of the controller is illustrated in Section VI.

A. The case of noisy measurements

The braking experiment with noisy data is displayed in Fig.
10. Only the front-left and the rear-left wheels are illustrated,
as no significant differences between left-right corners exist
during straight braking. Figure 10b shows the reference
tracking performance, whereas Figure 10a depicts the actu-
ated torques. As one can note, TiL-C is able to maintain a
smoother tracking of the reference, in spite of the significant
measurement noise. This is due to the fact that MPC-computed
torques show undesirable oscillations induced by the presence
of noise (neglected in the prediction model). Figure 11 depicts
the vehicle speed and deceleration profiles; the deceleration
profile reflects what noted from the slip tracking, in that more
accurate deceleration is achieved via TiL-C. Table III confirms
what is noted in the figures: TiL-C significantly reduces both
the tracking error and the control action aggressiveness, while
also improving the braking time.
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Fig. 11: Vehicle speed and acceleration in case of noisy
measurements, for the MPC and TiL-C controllers.

Performance indices
Jλ [%] Ju [Nm/s] Jtime [s]

TiL-C 1.06 4.17 3.88
MPC 2.85 10.82 4.00

TABLE III: Performance indices in the noisy vehicle valida-
tion experiment.

(a) Commanded (solid) and actuated (dashed) torques.

(b) Actual (solid) and reference (dashed) wheel slips.

Fig. 12: MPC and TiL-C performance in case of different
masses configuration: front-left wheel (top plots) and rear-left
wheel (bottom plots).

Fig. 13: Vehicle speed and acceleration in case of different
masses configuration, for the MPC and TiL-C controllers.

Fig. 14: Split between the nominal input and the output of Cδ ,
in the test with different mass configuration in the physical
vehicle.

B. The case of additional unmodelled loads

Let us consider the case where the physical vehicle - with
noiseless data - is equipped with additional (unmodelled)
masses.
Figure 12 shows the actuated torques (upper plot) and the
wheel slips (mid plot). As one can note, the MPC controlled
vehicle exhibits significant slip tracking error and oscillations
during the transient. This is due to the increased mass on
the front trunk, almost leading to instability when coupled
with the actuator nonlinearities. Instead, the TiL-C scheme

Fig. 15: MPC with piecewise slip references (dark purple)
and MPC with the ideal outputs as references (light blue)
for the case where the physical vehicle has a different mass
configuration.
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shows good performance as the reference is well tracked with
a proper torque actuation. Figure 13 shows the vehicle speed
and deceleration profiles; also in this case, the slip tracking
oscillations noted in the MPC reflects into the deceleration
profile, which shows oscillating behavior at the beginning of
the braking maneuver. In Figure 14, we also show the split
between the contributions given by the nominal control and
the TiL-C compensator. From this additional plot, it can be
noted that the most significant contribution of the control
action is in fact the nominal one, while Cδ only produces a
small compensation term (thus confirming the suitability of
a linear compensator for small-signal regulation). One can
also appreciate the importance of the switching architecture
described in Fig. 8. In fact, after approximately 5 s, the
nominal torque goes to zero, as the virtual vehicle is stopping
due to the reduced mass. However, the overall control action
is kept at the same level due to the second loop running in
parallel (Fig. 8).

As a final remark, one might argue that feeding the MPC
scheme in Fig. 3 with the ideal outputs λ̃ij instead of the
piecewise references might increase performance, as the for-
mer signals are smoother. However, Fig. 15 shows that no
visible improvements are achieved. This is due to the fact that
the traditional controller is characterized by a single block
that needs to be both suitable for the nominal case and robust
to parameter variations. Instead, the two blocks building the
TiL-C scheme play different roles and, while the MPC is
aimed only to push the nominal loop at its limits, the residual
dynamics is taken care of by the additional compensator.
The above observations are confirmed by the performance
indices reported in Table IV. For completeness, we report in

Performance indices
Jλ [%] Ju [Nm/s] Jtime [s]

TiL-C 0.96 3.05 3.96
MPC 2.00 7.18 4.01

TABLE IV: Performance indices for the case where the
physical vehicle has a different mass configuration.

Table V also a comparison between the two strategies when
both measurement noises and unmodeled masses characterize
the physical vehicle. As expected, the qualitative conclusions
previously discussed are confirmed also in this case.

Performance indices
Jλ [%] Ju [Nm/s] Jtime [s]

TiL-C 1.84 3.49 4.01
MPC 3.96 13.85 4.19

TABLE V: Performance indices for the case where the
physical vehicle has a different mass configuration and the
measurements are noisy.

C. The case of modified tire-road interaction
Finally, we consider the case where the physical vehicle

has a different mass configuration and the tire-road force

Fig. 16: MPC and TiL-C slip tracking performance in case of
noisy measurements, perturbated masses and tire-road inter-
action: front-left wheel (top plot) and rear-left wheel (bottom
plot).

Performance indices
Jλ [%] Ju [Nm/s] Jtime [s]

TiL-C 2.19 8.31 4.95
MPC 3.17 12.04 5.00

TABLE VI: Performance indices for the case where the
physical vehicle has a different mass configuration, the mea-
surements are noisy and the tire-road interaction is modified.

generation model is modified (peak friction µs scaled to 0.8,
shape factor cs scaled to 1.2). For the sake of brevity, we report
here only the controller performance in terms of slip tracking,
see Fig. 16. As one can notice, TiL-C slightly improves the
performance with respect to the nominal controller - which
exhibits significant oscillations, as for the case of modified
mass distribution alone of Fig. 12b - and is thus robust to a
low-friction test. Table VI displays the performance metrics;
let us note that TiL-C yields a reduced control effort too.
Finally, we wish to stress that the braking time is increased
by the 20 % with respect to the other tests: this is explainable
with the reduced maximum friction.

VI. HARDWARE-IN-THE-LOOP VALIDATION

So far, simulation analyses in an off-line fashion have
been showed. In order to prove that the TiL-C framework is
implementable at real-time on existing technology, we perform
an HiL validation following the scheme in Fig. 17.
As highlighted by the figure, TiL-C is implemented in a real-
time computer (RTC); more specifically, we employed Au-
toHawk [31], an off-the-shelf Red Hat Linux based computer
which is suitable for on-board usage. The available AutoHawk
is provided with six 16 GB RAM slots and a 3.20 GHz Intel
Xeon 6146 processor.
AutoHawk executes both the virtual and the real control loops,
in details, we implement:

• Four MPCs, one per each wheel, as described in Section
III-B. The MPCs are implemented implicitly, i.e. solving
a QP problem at each time step, with a sampling time of
5 ms;
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Fig. 17: Hardware-in-the-Loop experiment layout.

Fig. 18: Summary statistics (violin plots) of the Controller (left
plot) and Digital Twin (right plot) execution runtimes. The
runtimes are displayed as a percentage of the corresponding
cycle time.

Fig. 19: Time domain comparison of actuated front-left brak-
ing torque in the HiL test.

• Four Cδ compensators, one per each wheel, as described
in Section IV. The compensators are executed at a sam-
pling time of 5 ms;

• The Digital Twin (modeled in CarRealTime), running at
real-time with a sampling time of 1 ms.

An external laptop computer is solely employed to act as

Fig. 20: Time domain comparison of speed and deceleration
profiles in the HIL test.

a vehicle simulator; the vehicle is modeled in CarRealTime
and executed in Simulink (via the Real-Time toolbox). The
communication among the two machines is managed by User
Datagram Protocol (UDP). The AutoHawk operating system
features a scheduler which is in charge of executing the
processes at real-time, according to the allowed cycle times,
more specifically, two processes are executed, let apart the
auxiliary ones (i.e. the scheduler itself, and the csv data
logger): the first process is the Digital Twin one, the second
one is the remaining part of the controller (featuring the MPC
and Cδ) The two processes are respectively executed with
cycle times of 1 ms and 5 ms.
In the HiL test, we consider a starting speed of 208 km/h,
and the initial braking torque is set to its maximum value,
so as to challenge the MPC and the solving time of the
optimal control problem. First, a time-domain comparison of
the braking torque actuated to the front-left wheel is shown
in Fig. 19: as the reader can notice, the two signals are
practically superimposed - only few differences are present,
due to the different solver employed by the RTC. The speed
and acceleration profiles in the same test are displayed in Fig.
20.
We are also interested in evaluating the scheduler task ex-
ecution and the runtimes: Figure 18 shows such piece of
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information (a violin plot representation is employed, given
that the data are not normally distributed). The left plot
highlights that the execution of the controllers (the MPC and
Cδ) accounts for less than the 10% of the computational load
in the 5 ms process: this means that significant margin exist
for even more complex control logics. The right plot shows
as the execution of the Digital Twin at 1 ms accounts for the
≈ 40% of the cycle time on average, with a long tail stretching
up to the 65%.
Overall, we verified that the computationally demanding pro-
posed strategy is feasible at real-time: we are able to execute
it without any overrun, at very high sample frequencies, and
employing off-the-shelf hardware.

VII. CONCLUSIONS

In this paper, we have proposed a new approach for vehicle
dynamics control, based on the use of a full-fledged simulator,
to be run in-the-loop directly on the vehicle ECU in order to
compute the nominal control action. The main advantage of
such a configuration is that, in the EoL calibration phase, there
is no need anymore to fine tune the (possibly many parameters
of the) controller designed and calibrated on the simulator.
Instead, as far as the simulator is an accurate software replica
of the dynamics of the vehicle, a simple linear regulator can
be used to compensate for the mismatch between the ex-
pected and the measured outputs. The new architecture shows
promising results particularly when dealing with measurement
noise and unmodeled terms and outperforms the state-of-the-
art solution within an active braking control case study.
Finally, we show that the proposed architecture is real-time
feasible on off-the-shelf hardware.

This being a preliminary work on the topic, many research
questions remain open, e.g., concerning stability analysis, safe
controller tuning and the generalization to different vehicle
dynamics problems.
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[15] G. Delcaro, F. Dettù, S. Formentin, and S. M. Savaresi, “Dealing with
the curse of dimensionality in twin-in-the-loop observer design,” in 22nd
IFAC World Congress, 2023.

[16] H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein, “Review of
hardware-in-the-loop simulation and its prospects in the automotive
area,” in Modeling and simulation for military applications, vol. 6228.
SPIE, 2006, pp. 117–136.

[17] VI-Grade, “Vi-carrealtime,” https://www.vi-grade.com/en/products/
vi-carrealtime/, 2022, [Online; accessed 23-March-2022].

[18] L. Magni and R. Scattolini, Advanced and multivariable control.
Pitagora edirice Bologna, 2014.

[19] B. A. N. Campos and J. M. S. T. Motta, “Online measuring of robot
positions using inertial measurement units, sensor fusion and artificial
intelligence,” IEEE Access, vol. 9, pp. 5678–5689, 2021.

[20] E. Hashemi, A. Kasaiezadeh, S. Khosravani, A. Khajepour,
N. Moshchuk, and S.-K. Chen, “Estimation of longitudinal speed
robust to road conditions for ground vehicles,” Vehicle System
Dynamics, vol. 54, no. 8, pp. 1120–1146, 2016.

[21] G. Panzani, M. Corno, and S. M. Savaresi, “On the periodic noise
affecting wheel speed measurement*,” IFAC Proceedings Volumes,
vol. 45, no. 16, pp. 1695–1700, 2012, 16th IFAC Symposium on System
Identification.

[22] S. Formentin, P. De Filippi, M. Corno, M. Tanelli, and S. M. Savaresi,
“Data-driven design of braking control systems,” IEEE Transactions on
Control Systems Technology, vol. 21, no. 1, pp. 186–193, 2013.
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