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How to increase the power of the test in sparse
contingency tables: a simulation study

Federica Nicolussi® and Manuela Cazzaro®

Politecnico di Milano; federica.nicolussi@polimi.it
bUniversita di Milano-Bicocca; manuela.cazzaro@unimib. it

Abstract

When analyzing categorical or ordinal data one often comes across sparse contingency
tables. One of the biggest problems with this situation is due to the low power of tests
for independencies between variables. In this paper, we propose a procedure, based on
context-specific independencies, to increase the power of tests. The idea is to focus on sub-
tables where the number of null cells is relatively low. In addition, including these kinds of
independencies in the Union-Intersection procedure can provide comforting results. These
results are shown in a simulative study of different scenarios.

Keywords: Context-specific independencies, sub-tables, union-intersection principle

1. Introduction

The study of relationships between categorical or ordinal variables is often reduced to frequency
analysis in contingency tables (see (1)). However, as the number of variables or the number of allowable
categories for each variable increases, the corresponding contingency tables become sparse (full of null
cells). The main problem when dealing with sparse tables is the low power of the classical statistics
and an inaccurate type I error. Many works in the literature have dealt with this topic. For instance, in
(7), a study on sparsity, it is showed that Fisher’s exact test and the asymptotic X2 Pearson’s test give
contradictory results for high levels of sparseness. In (12), it is studied the goodness of fit of the X test,
likelihood ratio test G2, and Cressie-Read statistics. In (6) it is showed that the Gaussian approximation
of the likelihood ratio statistic G2 is more accurate than the y? approximation in sparse contingency
tables. Further, the problematic likelihood ratio test’s asymptotic properties in sparse tables are studied
in (4) and (5).

In the case of sparseness, often, at the exploratory stage, many categories are merged because they are
poorly tested in the observed sample. However, this procedure can distort the results obtained by inflat-
ing the frequencies of some categories. Moreover, even in the best situations, categorically aggregating
leads to a loss of informativeness. In this paper, we propose to take advantage of the study of conditional
independencies defined in sub-tables that identify a dense portion of the contingency table related to all
the variables under consideration. An example of these relationships is context-specific independencies
(CSI) (see (8) and (9)) that study the relationship between two groups of variables in conditional tables.
Generally speaking, context-specific independencies are conditional independencies holding for particu-
lar values of the variables in the conditioning set. Next, we broaden this concept by considering portions
of variables for which independence applies. Subsection 2.1 is devoted to defining these independence
relations and the parametric model needed to determine them. Subsection 2.2, on the other hand, explains
how the Union-Intersection procedure (see (10) and (11)) can be applied to this type of independence to
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extend the previously identified relationships, where possible, over the entire contingency table. Section
3 is devoted to the study of simulations to support the theory presented. Conclusions are reserved for
Section 4.

2. Methodology

In the following subsections, we define a new type of independencies defined on contingency sub-
tables. We also see how their use can be employed to have greater power in the likelihood ratio test than
the standard test on the whole contingency table.

2.1 Context-specific independencies and their extensions

Let us consider a vector of random variables Xy = (X j)j ¢y Where each variable X; takes value i; in
a set of finite categories 7; = (1,...,4;,...,1;). Let | - | be the cardinality of a set. The contingency
table of the |V'| variables is defined by Zyy = X ey Z; where each cell is defined as ¢y, = (i, € V).
The strictly positive probability associated with any cell 2y is denoted with (v ). The vector of the
probability of the whole contingency table is represented by 7r, obtained by stacking each 7(¢y/) in the
lexicographical order. Similarly, by considering a subset of variables X »4 with M C V which generates
the marginal M-contingency table Zyq = X jcpmZ;, the marginal probability of the generic cell %, is
7(ipm), obtained by summing with respect to the variables in Xy 14. The whole set of these marginal
probabilities defined on the M-contingency table Z 4, is represented by the vector 7w .

Given three incompatible subsets of variables X 4, X5 and X, a CSl is a independence statement like

XAJ_LXB|(XC:’i/Cv), ibEICc, (D)

where 4 is the vector of certain level(s) of the variable(s) in X, such that X; = z; for all j € C, and
it takes value in the list of levels Lo C Z¢ for which the independence in formula (1) holds. Here, the
table obtained as a cartesian product of K¢ and Z4 g is the sub-table where the independence is defined.
The following formula is a generalization of the previous CSI where also the first two arguments of the
independence statement are constrained to a subtable. Hereafter, we refer to this relationship as sub-CSI:

(Xa=14) 1L (Xp =1ip)|(Xc = i), (¢'4,15,10) € Ka x Kp x Ko )

or in short 3’y 1L #'5|t, with (¢4,45,4) € Ka x Kp x K¢. Trivially, by replacing K 4 with Z4 and
K p with Zp in formula (2), we easily obtain the CSI in formula (1).
Although the class of sub-CSIs may seem difficult to interpret and of little use, a first advantage lies in
the fact that the definition of these statements corresponds to linear constraints on log-linear parameters.
For a more comprehensive treatment of the phenomenon, below we take advantage of marginal models,
see e.g. (2) which impose constraints on marginal distributions of the tables in order to test different
independence hypotheses. More specifically, we focus on hierarchical multinomial marginal (HMM)
models, see (8) and (9) for interesting applications. In HMM models, the elements of ) are the parameters
based on different types of logits and defined on marginal distributions. The whole parametrization can
be expressed in matrix form as

n = Clog(Mm) (3)

where C' is a contrasts matrix and M is a 1’s and 0’s matrix which elements provide a suitable sum of
probabilities. In general, the vector of parameters associated with the variables in X and defined in the
marginal table Z, nﬁ” = {772" (2 5)}i£ €(Te—1) where 1 represents the first (reference) cell used for
the baseline codification of the parameters. The above parameters are contrasts of logarithms of sums of
probabilities.

Theorem 1. Let us consider a set of variables Xy, with probability distribution P parametrized through
the parameters in formula (3), where the baseline criterion is used. Then, the probability distribution
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‘P obeys the sub-CSI in formula (2) if and only if the following constraints on the HMM parameters are
satisfied:

Zné/‘(ig):() where L =aUbUcand iy € K, x Ky x K¢, 4)
cCC

where aNA#DandbN B # 0, Ko C (Zo — 14) and Ky C (Zp, — 1y).

The following example shows how to apply formula (4).

Example 1 1In order to test i’y 1L 4'5|i(., we need to impose n45C (i'y, i) + n45S (14, i'g, i) = 0.

If the constrain is satisfied for i',i; € Z,, — 1 (all the categories of the variables A and B except the
reference category) then the global conditional hypothesis Hy : A Ll B|C is satisfied.

Before proceeding, two clarifications should be made. First, sub-CSI in formulation (2) differs from
CSIin formulation (1) if IC 4 and K are proper subsets of Z4 —1 4 and Zg — 1 5. In fact, by construction,
the parameter sets associated with the reference cell are worth zero. So if we impose the constraints in
formula (4) for all cells except the reference cell, we automatically have that it is also satisfied for
the reference cell. The second clarification always concerns the reference categories of the variables.
Since the value of the parameters is zero at these categories, it is difficult to discriminate whether the
independence statement (2) also involves the reference cell. However, the choice of the reference cell,
which by default is defined as the first cell of the contingency table, can be defined as desired without
changing the truthfulness of the constraints.

2.2 Union-Intersection principle

The Union-Intersection (UI) principle has been proposed by (10) and (11). In nutshell, the UI test states
that we can express a (global) null hypothesis Hy as the intersection of & several component hypotheses
Hy, and a (global) alternative as the union of the £ component alternatives Hy,:

k k
Hy:()Ho, Hi:|JHo,. (5)
=1 =1

We reject the global null hypothesis if any of the tests on the component hypotheses lead to rejection,
and we retain the global null hypothesis if none of the component tests leads to rejection.

Note that to test any Hy, it is possible to choose a different level «;;. When Hj holds it is desirable that
the rejection probability of the UI test is not greater than a fixed level o*. This is ensured if the levels
«; of the component tests are such that Zle «; = «”. Bonferroni’s correction is a popular choice to
achieve this: «o; = %* Generally, the rejection probability of the UI test is not less than the rejection
probability of any component test. Thus, when Hy does not hold, the rejection probability provides the
power of the test and, in this case, the global test’s power is greater than or equal to that of the component
test with the highest power.

In our context, the Union-Intersection principle may offer advantages when the component hypotheses
are defined on lower dimensional sub-tables less affected by sparsity than the whole table on which Hy is
defined. Reasoning in terms of sub-CSlIs, we can divide hypothesis testing for conditional independence
as a set of hypotheses about sub-CSIs, such that the unified support of the variables in all individual tests
covers the entire support. For greater clarity, consider the following example.

Example 2 Let us suppose to have a contingency table involving three variables, X7, X5 and X3.
Let the suitable (KC; x K2 x K3) be dense, while the remaining sub-tables, defined by (K1 x Zp x
T3), (K1 x Ko x I3), and (K1 x Ky x K3) are more or less sparse. Here the symbol K denotes the
complementary set of K. We can think of Hj as the conditional independence statement X; 1l X5|X3.
The component hypotheses Hy, can be seen as sub-CSI independence statements ¢; Ll 45|45, where the

list of admissible values for i, = (3}, 15, 44) discriminates between the hypothesis. In detail, we have
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that 2, € (]Cl X ICZ X ng) for H[)l, iy € (/61 X Iy X 13) for H02, iy € (’Cl X ICQ X 13) for H03 and
ir € (/Cl X Ko X ]Cg) for Hy,.

The truthfulness of the union of all these hypotheses implies the truthfulness of the global one. The idea
is to split the global hypothesis into several sub-CSls. If we retain all of them then the global conditional
hypothesis is satisfied. One way to proceed could be as follows. An exploratory survey is carried out
in the whole contingency table to see where the table is most sparse. This would identify blocks in the
global table: the dense block, the sparse block, and the middle ground tables. One of the component
hypotheses Hy, is constructed in the densest sub-table. If in general some of the I, on the sparse
sub-tables leads to the rejection of the global hypothesis but the Hj, hypothesis on the dense sub-table
is instead in favour of Hj, this provides interesting information on the sub-CSI between the variables
involved in the contingency table.

3. Simulation study of the power

In this section, we want to show some preliminary results obtained through simulations as evidence
to support the proposed methodology. We considered a simple case where we have 3 variables: X; €
(1,...,5), X9 € (1,...,5) and X3 € (1,...,5). We want to investigate the global hypothesis H :
X1 1 X5|X3 for X = (X1, X2, X3) taking values in Z123 = (1,...,5)3, against the alternative.

In order to perform the Union-Intersection procedure, we divided the contingency table into 4 sub-tables.

o KI'=(1,2) x (1,2) x (1,2), 8 cells;

o KM =(3,4,5) x (1,2,3,4,5) x (1,2,3,4,5), 75 cells;
o KM =(1,2) x (3,4,5) x (1,2,3,4,5), 30 cells;

o KTV =(1,2) x (1,2) x (3,4,5), 12 cells.

Then, we define 4 component hypotheses Hy, to test g in the Union-Intersection procedure as sub-CSI.
The null component hypotheses are Hy,: i; 1L isliz for i € K1, Hy,: i1 1L iglig for ¢ € K, Hy,:
i1 AL dglig for ¢ € KT and Hy,: iy WL dglis fori € KCIV'. Since the degree of freedom of the x? for the
distribution of the likelihood test is not accurate when the sparseness occurs, we simulated m = 10000
samples and we evaluated the MC distribution of the G? statistics of the likelihood ratio test as follows.
First, we build a probability distribution P where the independence in Hy holds. We use that distribution
to simulate m = 10000 frequency tables under Hy. In particular, we impose that the sub-table A must
be dense with 50 observations on 8 cells; the remaining three sub-tables are sparse with 57 ~ 75/4 % 3
observations for B, 20 ~ 30/3 * 2 observations for C' and 6 ~ 12/2 observations for D.

Then, we evaluate the statistic G2 of the LR test in the full table and in each sub-tables of each sample,
obtaining the MC distribution under H for G%l 0y G2,C Is G12c 75 G2,C 11, and G,2C v, respectively.

On the previous distributions, we evaluated the simulated critical values for the tests as the quantile of
order 1 — a = 0.95 (X12{0,a)’ for the global hypothesis and as the quantile of order 1 — a3, 1 — o,

1 — a3, and 1 — a4 for the component hypothesis XIQ‘Iol o XIQJ%’QQ, X%IO?“QS, and X%I%M. The only
constraint on the significance level of the component hypotheses is that their sum must be equal to «.
The analysis is led for different values of significant levels in order to investigate how it is possible to
gain more power.

Further, we proceed in the same way with the generation of m = 10000 samples from an alternative
distribution, where the global hypothesis does not hold.

In order to cover all possible scenarios we build different probability distributions under H:

* P where only the sub-CSI Hy, holds (the dense table);
e P, where the sub-CSI Hy, does not hold but the others (in the sparse tables) hold.
e Ps3 where all the sub-CSIs do not hold.

In any of the above scenarios, we evaluated the rejection rate as an estimator of the test power. The
results were collected in the following subsection.
All the analyses were carried out with the software R and the package hmmm (3) for the estimation of
parameters.
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Figure 1: Simulated rejection rate distribution (dashed line) related to the UI procedure by increasing
the size ; of test Hj, using the alternative distribution P3. In solid lines are the corresponding (constant)
simulated rejection rates for the global test.

3.1 Results description

Table 1 reports the rejection rate in all the scenarios detailed above and also for the case where the
alternative distribution satisfies Hy, in order to provide information on the significant level of the Union-
Intersection test. It can be seen from the results in Table 1 that the test based on the UI procedure is
always more powerful than the test based on the global hypothesis. In particular, the power of the test
through the UI procedure gains a lot of power when the null hypothesis does not apply in the dense sub-
table (P and P3). However, due to the segmentation of the entire contingency table, even in the case of
P the Ul procedure outperforms the test conducted on the entire contingency table. Looking at the row
referring to the P; distribution, where in each sub-table independence does not hold, it is evident how
the power increases in the dense situation.

Table 1: Rejection rates for all possible scenarios evaluated on the distributions Py, P, P3 and Py,
respectively. The shaded cells show the simulated levels of the tests and non-shaded cells show the
simulated power.

n m | 7(Ho,,0n) r(Ho,,o0) 1(Ho,,as) 71(Ho,,04) r(Ho,a)p,, r(Ho,a®)r,
Py iy /Lislizfori € KT and4 € KT and i € KTV — Hy rejected

133 10000 ‘ 0.0133 0.3691 0.1400 0.0657 0.4996 0.1792

Py iy JLiolig ford € KT — Hg rejected

133 10000 ‘ 0.9698 0.0114 0.0112 0.0164 0.9706 0.3406
P iy JLiglizfori € KT and i € KT and i € KT and 5 € KTV — Hy rejected

133 10000 ‘ 0.9690 0.3689 0.1400 0.0657 0.9844 0.6259

Py iy AL dg|iz fori € KT and4 € KT and 4 € KT and s € KTV — Hy not rejected
133 10000 ‘ 0.0125 0.0125 0.0125 0.0151 0.0516 0.0500

n: number of observations; m: number of simulated elements in the MC distributions; r(H, «): rejection rate of
the component tests Hy, , Ho,, Ho,, Ho,, and Hy, with test size equal to o1 = g = a3 = ag = 0.0125,
a® =(0.0125,0.0125,0.0125,0.0125), and o* = 0.05.

Further, Figure 1 shows how the power of the Ul test changes by varying the significant levels of
the component hypothesis and by varying the different degree of connection between the two conditional
distribution of X; and X5 given X3. Note that the scenario reported in Table 1 corresponds to the vertical
line in o« = 0.125. Looking at the solid lines, Figure 1 reports the rejection rates of the different tests.
The red line belongs to the global test, the other lines represent the (greater) power of the other tests. The
greater power is related to the test evaluated on the P3 distribution where none of the sub-CSIs holds.
Concerning the dashed lines, it is worthwhile to note that the power of the tests evaluated on P, P;
distributions is increasing and always increases the power of the overall test. In contrast, this trend is
decreasing with respect to the P; distribution, where independence does not hold in the densest table and
holds in all others. Moreover, for the different levels of 1, the red dashed line traces the corresponding
value of the classical test.
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4. Conclusion and further research

This study proposes a method to increase the power of tests performed in sparse contingency tables.
The idea is based on the logic of the Union Intersection procedure to decompose the null hypothesis
Hy. The original proposal is to consider a set of context-specific hypotheses. This type of hypothesis
focuses on sub-spaces of variables. By identifying the least sparse ones, a discrete increase in power can
be achieved. The work is still preliminary, but early results from simulations give promising results in
terms of power. Clearly, it is necessary to extend the simulations already carried out for different levels

of n, m and different scenarios among «;, fort =1,... k.
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