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Abstract

When analyzing categorical or ordinal data one often comes across sparse contingency

tables. One of the biggest problems with this situation is due to the low power of tests

for independencies between variables. In this paper, we propose a procedure, based on

context-specific independencies, to increase the power of tests. The idea is to focus on sub-

tables where the number of null cells is relatively low. In addition, including these kinds of

independencies in the Union-Intersection procedure can provide comforting results. These

results are shown in a simulative study of different scenarios.
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1. Introduction

The study of relationships between categorical or ordinal variables is often reduced to frequency

analysis in contingency tables (see (1)). However, as the number of variables or the number of allowable

categories for each variable increases, the corresponding contingency tables become sparse (full of null

cells). The main problem when dealing with sparse tables is the low power of the classical statistics

and an inaccurate type I error. Many works in the literature have dealt with this topic. For instance, in

(7), a study on sparsity, it is showed that Fisher’s exact test and the asymptotic X2 Pearson’s test give

contradictory results for high levels of sparseness. In (12), it is studied the goodness of fit of the X2 test,

likelihood ratio test G2, and Cressie-Read statistics. In (6) it is showed that the Gaussian approximation

of the likelihood ratio statistic G2 is more accurate than the χ2 approximation in sparse contingency

tables. Further, the problematic likelihood ratio test’s asymptotic properties in sparse tables are studied

in (4) and (5).

In the case of sparseness, often, at the exploratory stage, many categories are merged because they are

poorly tested in the observed sample. However, this procedure can distort the results obtained by inflat-

ing the frequencies of some categories. Moreover, even in the best situations, categorically aggregating

leads to a loss of informativeness. In this paper, we propose to take advantage of the study of conditional

independencies defined in sub-tables that identify a dense portion of the contingency table related to all

the variables under consideration. An example of these relationships is context-specific independencies

(CSI) (see (8) and (9)) that study the relationship between two groups of variables in conditional tables.

Generally speaking, context-specific independencies are conditional independencies holding for particu-

lar values of the variables in the conditioning set. Next, we broaden this concept by considering portions

of variables for which independence applies. Subsection 2.1 is devoted to defining these independence

relations and the parametric model needed to determine them. Subsection 2.2, on the other hand, explains

how the Union-Intersection procedure (see (10) and (11)) can be applied to this type of independence to



extend the previously identified relationships, where possible, over the entire contingency table. Section

3 is devoted to the study of simulations to support the theory presented. Conclusions are reserved for

Section 4.

2. Methodology

In the following subsections, we define a new type of independencies defined on contingency sub-

tables. We also see how their use can be employed to have greater power in the likelihood ratio test than

the standard test on the whole contingency table.

2..1 Context-specific independencies and their extensions
Let us consider a vector of random variables XV = (Xj)j∈V where each variable Xj takes value ij in

a set of finite categories Ij = (1, . . . , ij , . . . , Ij). Let | · | be the cardinality of a set. The contingency

table of the |V | variables is defined by IV = ×j∈V Ij where each cell is defined as iV = (ij , j ∈ V ).
The strictly positive probability associated with any cell iV is denoted with π(iV ). The vector of the

probability of the whole contingency table is represented by π, obtained by stacking each π(iV ) in the

lexicographical order. Similarly, by considering a subset of variablesXM withM⊆ V which generates

the marginalM-contingency table IM = ×j∈MIj , the marginal probability of the generic cell iM is

π(iM), obtained by summing with respect to the variables in XV \M. The whole set of these marginal

probabilities defined on theM-contingency table IM, is represented by the vector πM.

Given three incompatible subsets of variables XA, XB and XC , a CSI is a independence statement like

XA ⊥⊥ XB|(XC = i′C), i′C ∈ KC , (1)

where i′C is the vector of certain level(s) of the variable(s) in XC , such that Xj = i′j for all j ∈ C, and

it takes value in the list of levels KC ⊆ IC for which the independence in formula (1) holds. Here, the

table obtained as a cartesian product of KC and IAB is the sub-table where the independence is defined.

The following formula is a generalization of the previous CSI where also the first two arguments of the

independence statement are constrained to a subtable. Hereafter, we refer to this relationship as sub-CSI:

(XA = i′A) ⊥⊥ (XB = i′B)|(XC = i′C), (i′A, i
′
B, i

′
C) ∈ KA ×KB ×KC (2)

or in short i′A ⊥⊥ i′B|i′C , with (i′A, i
′
B, i

′
C) ∈ KA × KB × KC . Trivially, by replacing KA with IA and

KB with IB in formula (2), we easily obtain the CSI in formula (1).

Although the class of sub-CSIs may seem difficult to interpret and of little use, a first advantage lies in

the fact that the definition of these statements corresponds to linear constraints on log-linear parameters.

For a more comprehensive treatment of the phenomenon, below we take advantage of marginal models,

see e.g. (2) which impose constraints on marginal distributions of the tables in order to test different

independence hypotheses. More specifically, we focus on hierarchical multinomial marginal (HMM)

models, see (8) and (9) for interesting applications. In HMMmodels, the elements of η are the parameters

based on different types of logits and defined on marginal distributions. The whole parametrization can

be expressed in matrix form as

η = C log(Mπ) (3)

where C is a contrasts matrix and M is a 1’s and 0’s matrix which elements provide a suitable sum of

probabilities. In general, the vector of parameters associated with the variables in XL and defined in the

marginal table IM, ηML =
{
ηML (iL)

}
iL∈(IL−1) where 1 represents the first (reference) cell used for

the baseline codification of the parameters. The above parameters are contrasts of logarithms of sums of

probabilities.

Theorem 1. Let us consider a set of variables XV , with probability distribution P parametrized through
the parameters in formula (3), where the baseline criterion is used. Then, the probability distribution



P obeys the sub-CSI in formula (2) if and only if the following constraints on the HMM parameters are
satisfied:

∑

c⊆C
ηML (iL) = 0 where L = a ∪ b ∪ c and iL ∈ Ka ×Kb ×Kc, (4)

where a ∩A �= ∅ and b ∩B �= ∅, Ka � (Ia − 1a) and Kb � (Ib − 1b).

The following example shows how to apply formula (4).

Example 1 In order to test i′A ⊥⊥ i′B|i′C , we need to impose ηABC
AB (i′A, i

′
B) + ηABC

ABC (i
′
A, i

′
B, i

′
C) = 0.

If the constrain is satisfied for i′Ai
′
B ∈ Iab − 1 (all the categories of the variables A and B except the

reference category) then the global conditional hypothesis H0 : A ⊥⊥ B|C is satisfied.

Before proceeding, two clarifications should be made. First, sub-CSI in formulation (2) differs from

CSI in formulation (1) ifKA andKB are proper subsets of IA−1A and IB−1B . In fact, by construction,

the parameter sets associated with the reference cell are worth zero. So if we impose the constraints in

formula (4) for all cells except the reference cell, we automatically have that it is also satisfied for

the reference cell. The second clarification always concerns the reference categories of the variables.

Since the value of the parameters is zero at these categories, it is difficult to discriminate whether the

independence statement (2) also involves the reference cell. However, the choice of the reference cell,

which by default is defined as the first cell of the contingency table, can be defined as desired without

changing the truthfulness of the constraints.

2..2 Union-Intersection principle
The Union-Intersection (UI) principle has been proposed by (10) and (11). In nutshell, the UI test states

that we can express a (global) null hypothesis H0 as the intersection of k several component hypotheses

H0i and a (global) alternative as the union of the k component alternatives H0i :

H0 :

k⋂

i=1

H0i H1 :

k⋃

i=1

H0i . (5)

We reject the global null hypothesis if any of the tests on the component hypotheses lead to rejection,

and we retain the global null hypothesis if none of the component tests leads to rejection.

Note that to test any H0i it is possible to choose a different level αi. When H0 holds it is desirable that

the rejection probability of the UI test is not greater than a fixed level α∗. This is ensured if the levels

αi of the component tests are such that
∑k

i=1 αi = α∗. Bonferroni’s correction is a popular choice to

achieve this: αi =
α∗
k . Generally, the rejection probability of the UI test is not less than the rejection

probability of any component test. Thus, when H0 does not hold, the rejection probability provides the

power of the test and, in this case, the global test’s power is greater than or equal to that of the component

test with the highest power.

In our context, the Union-Intersection principle may offer advantages when the component hypotheses

are defined on lower dimensional sub-tables less affected by sparsity than the whole table on whichH0 is

defined. Reasoning in terms of sub-CSIs, we can divide hypothesis testing for conditional independence

as a set of hypotheses about sub-CSIs, such that the unified support of the variables in all individual tests

covers the entire support. For greater clarity, consider the following example.

Example 2 Let us suppose to have a contingency table involving three variables, X1, X2 and X3.

Let the suitable (K1 × K2 × K3) be dense, while the remaining sub-tables, defined by (K̄1 × I2 ×
I3), (K1 × K̄2 × I3), and (K1 × K2 × K̄3) are more or less sparse. Here the symbol K̄ denotes the

complementary set of K. We can think of H0 as the conditional independence statement X1 ⊥⊥ X2|X3.

The component hypotheses H0i can be seen as sub-CSI independence statements i′1 ⊥⊥ i′2|i′3, where the

list of admissible values for iL = (i′1, i
′
2, i

′
3) discriminates between the hypothesis. In detail, we have



that iL ∈ (K1 × K2 × K3) for H01 , iL ∈ (K̄1 × I2 × I3) for H02 , iL ∈ (K1 × K̄2 × I3) for H03 and

iL ∈ (K1 ×K2 × K̄3) for H04 .

The truthfulness of the union of all these hypotheses implies the truthfulness of the global one. The idea

is to split the global hypothesis into several sub-CSIs. If we retain all of them then the global conditional

hypothesis is satisfied. One way to proceed could be as follows. An exploratory survey is carried out

in the whole contingency table to see where the table is most sparse. This would identify blocks in the

global table: the dense block, the sparse block, and the middle ground tables. One of the component

hypotheses H0i is constructed in the densest sub-table. If in general some of the H0i on the sparse

sub-tables leads to the rejection of the global hypothesis but the H0i hypothesis on the dense sub-table

is instead in favour of H0, this provides interesting information on the sub-CSI between the variables

involved in the contingency table.

3. Simulation study of the power

In this section, we want to show some preliminary results obtained through simulations as evidence

to support the proposed methodology. We considered a simple case where we have 3 variables: X1 ∈
(1, . . . , 5), X2 ∈ (1, . . . , 5) and X3 ∈ (1, . . . , 5). We want to investigate the global hypothesis H0 :
X1 ⊥⊥ X2|X3 for X = (X1, X2, X3) taking values in I123 = (1, . . . , 5)3, against the alternative.

In order to perform the Union-Intersection procedure, we divided the contingency table into 4 sub-tables.

• KI = (1, 2)× (1, 2)× (1, 2), 8 cells;

• KII = (3, 4, 5)× (1, 2, 3, 4, 5)× (1, 2, 3, 4, 5), 75 cells;

• KIII = (1, 2)× (3, 4, 5)× (1, 2, 3, 4, 5), 30 cells;

• KIV = (1, 2)× (1, 2)× (3, 4, 5), 12 cells.

Then, we define 4 component hypothesesH0i to testH0 in the Union-Intersection procedure as sub-CSI.

The null component hypotheses are H01 : i1 ⊥⊥ i2|i3 for i ∈ KI , H02 : i1 ⊥⊥ i2|i3 for i ∈ KII , H03 :

i1 ⊥⊥ i2|i3 for i ∈ KIII and H04 : i1 ⊥⊥ i2|i3 for i ∈ KIV . Since the degree of freedom of the χ2 for the

distribution of the likelihood test is not accurate when the sparseness occurs, we simulated m = 10000
samples and we evaluated the MC distribution of the G2 statistics of the likelihood ratio test as follows.

First, we build a probability distribution P0 where the independence inH0 holds. We use that distribution

to simulate m = 10000 frequency tables under H0. In particular, we impose that the sub-table A must

be dense with 50 observations on 8 cells; the remaining three sub-tables are sparse with 57 ∼ 75/4 ∗ 3
observations for B, 20 ∼ 30/3 ∗ 2 observations for C and 6 ∼ 12/2 observations for D.

Then, we evaluate the statistic G2 of the LR test in the full table and in each sub-tables of each sample,

obtaining the MC distribution under H0 for G2
I123 , G

2
KI , G

2
KII , G

2
KIII , and G2

KIV , respectively.

On the previous distributions, we evaluated the simulated critical values for the tests as the quantile of

order 1 − α = 0.95 (X2
H0,α

), for the global hypothesis and as the quantile of order 1 − α1, 1 − α2,

1 − α3, and 1 − α4 for the component hypothesis X2
H01 ,α1

, X2
H02 ,α2

, X2
H03 ,α3

, and X2
H04 ,α4

. The only

constraint on the significance level of the component hypotheses is that their sum must be equal to α.
The analysis is led for different values of significant levels in order to investigate how it is possible to

gain more power.

Further, we proceed in the same way with the generation of m = 10000 samples from an alternative

distribution, where the global hypothesis does not hold.

In order to cover all possible scenarios we build different probability distributions under H1:

• P1 where only the sub-CSI H01 holds (the dense table);

• P2 where the sub-CSI H01 does not hold but the others (in the sparse tables) hold.

• P3 where all the sub-CSIs do not hold.

In any of the above scenarios, we evaluated the rejection rate as an estimator of the test power. The

results were collected in the following subsection.

All the analyses were carried out with the software R and the package hmmm (3) for the estimation of

parameters.
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Figure 1: Simulated rejection rate distribution (dashed line) related to the UI procedure by increasing

the size α1 of testH01 using the alternative distribution P3. In solid lines are the corresponding (constant)

simulated rejection rates for the global test.

3..1 Results description
Table 1 reports the rejection rate in all the scenarios detailed above and also for the case where the

alternative distribution satisfiesH0, in order to provide information on the significant level of the Union-

Intersection test. It can be seen from the results in Table 1 that the test based on the UI procedure is

always more powerful than the test based on the global hypothesis. In particular, the power of the test

through the UI procedure gains a lot of power when the null hypothesis does not apply in the dense sub-

table (P2 and P3). However, due to the segmentation of the entire contingency table, even in the case of

P1 the UI procedure outperforms the test conducted on the entire contingency table. Looking at the row

referring to the P3 distribution, where in each sub-table independence does not hold, it is evident how

the power increases in the dense situation.

Table 1: Rejection rates for all possible scenarios evaluated on the distributions P1, P2, P3 and P0,

respectively. The shaded cells show the simulated levels of the tests and non-shaded cells show the

simulated power.
n m r(H01 , α1) r(H02 , α2) r(H03 , α3) r(H04 , α4) r(H0,α)TUI

r(H0, α
∗)T0

P1 : i1 �⊥⊥ i2|i3 for i ∈ KII and i ∈ KIII and i ∈ KIV →H0 rejected
133 10000 0.0133 0.3691 0.1400 0.0657 0.4996 0.1792

P2 : i1 �⊥⊥ i2|i3 for i ∈ KI →H0 rejected
133 10000 0.9698 0.0114 0.0112 0.0164 0.9706 0.3406

P3 : i1 �⊥⊥ i2|i3 for i ∈ KI and i ∈ KII and i ∈ KIII and i ∈ KIV →H0 rejected
133 10000 0.9690 0.3689 0.1400 0.0657 0.9844 0.6259

P0 : i1 ⊥⊥ i2|i3 for i ∈ KI and i ∈ KII and i ∈ KIII and i ∈ KIV →H0 not rejected
133 10000 0.0125 0.0125 0.0125 0.0151 0.0516 0.0500

n: number of observations; m: number of simulated elements in the MC distributions; r(H,α): rejection rate of
the component tests H01 , H02 , H03 , H04 , and H0, with test size equal to α1 = α2 = α3 = α4 = 0.0125,
αT = (0.0125, 0.0125, 0.0125, 0.0125), and α∗ = 0.05.

Further, Figure 1 shows how the power of the UI test changes by varying the significant levels of

the component hypothesis and by varying the different degree of connection between the two conditional

distribution ofX1 andX2 givenX3. Note that the scenario reported in Table 1 corresponds to the vertical

line in α = 0.125. Looking at the solid lines, Figure 1 reports the rejection rates of the different tests.

The red line belongs to the global test, the other lines represent the (greater) power of the other tests. The

greater power is related to the test evaluated on the P3 distribution where none of the sub-CSIs holds.

Concerning the dashed lines, it is worthwhile to note that the power of the tests evaluated on P2, P3

distributions is increasing and always increases the power of the overall test. In contrast, this trend is

decreasing with respect to the P1 distribution, where independence does not hold in the densest table and

holds in all others. Moreover, for the different levels of α1, the red dashed line traces the corresponding

value of the classical test.



4. Conclusion and further research

This study proposes a method to increase the power of tests performed in sparse contingency tables.

The idea is based on the logic of the Union Intersection procedure to decompose the null hypothesis

H0. The original proposal is to consider a set of context-specific hypotheses. This type of hypothesis

focuses on sub-spaces of variables. By identifying the least sparse ones, a discrete increase in power can

be achieved. The work is still preliminary, but early results from simulations give promising results in

terms of power. Clearly, it is necessary to extend the simulations already carried out for different levels

of n, m and different scenarios among αi, for i = 1, . . . , k.

References

[1] Agresti, A.: Categorical Data Analysis - Third Edition. Wiley, Hoboken (2013)

[2] Bergsma, W. P.,& Rudas, T.: Marginal models for categorical data. Ann. Stat. 30(1), 140-159
(2002).

[3] Colombi, R., Giordano, S., Cazzaro, M.: hmmm: An R Package for Hierarchical Multinomial

Marginal Models. J. Stat. Softw. 59, 1–25 (2014)

[4] Dale, J.R.: Asymptotic normality of goodness-of-fit statistics for sparse product multinomials. J.

R. Stat. Soc. Series B Stat. Methodol. 48, 48–59 (1986)

[5] Fienberg, S.E., Rinaldo, A.: Maximum likelihood estimation in log-linear models. Ann. Stat. 40,
996–1023 (2012)

[6] Koehler, K.J.: Goodness-of-fit tests for log-linear models in sparse contingency tables. J. Am. Stat.

Assoc. 81, 483–493 (1986)

[7] Mehta, C.R., Patel, N.R.: A network algorithm for performing Fisher’s exact test in r×c contin-

gency tables. J. Am. Stat. Assoc. 78, 427–434 (1983)

[8] Nicolussi, F., Cazzaro, M.: Context-specific independencies in hierarchical multinomial marginal

models. Stat. Methods Appt. 29, 767–786 (2020)

[9] Nicolussi, F., Cazzaro, M.: Context-Specific Independencies in Stratified Chain Regression Graph-

ical Models. Bernoulli 27, 2091–2116 (2021)

[10] Roy, S.N.: On a heuristic method of test construction and its use in multivariate analysis. Ann.

Math. Stat. 24, 220–238 (1953)

[11] Roy, S.N., Mitra, S.K.: An introduction to some non-parametric generalizations of analysis of

variance and multivariate analysis. Biometrika. 43, 361–376 (1956)

[12] Rudas, T.: A Monte Carlo comparison of the small sample behaviour of the Pearson, the likelihood

ratio and the Cressie-Read statistics. J. Stat. Comput. Simul. 24, 107–120 (1986)


