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Abstract: In this study, the subspace regularization method was applied on the Electroencephalographic (EEG) signal
recorded during stimulation of the Error Potential (ErrP) in order to improve the detection of the latter. The
ErrP is stimulated through the presentation of an erroneous event to the subject. The recorded signals were
processed with the subspace regularization method to remove the background EEG not related to the erroneous
event. Then, the ErrP and Non–ErrP epochs (both raw and processed with the proposed method) were clas-
sified using EEGNET, a Convolutional Neural Network considered golden standard for EEG classification.
The results show that elaborating the signals with the proposed method highlight the typical characteristics of
the ErrP epochs both in temporal and frequency domain. Moreover, the classification metrics evaluated, al-
ways increase if compared to not processed signal (i.e. maximum increase in accuracy, balanced accuracy and
F1-score are of 7.7%, 10.1% and 11% respectively). These findings suggest that the subspace regularization
method can improve the performance of ErrP-based Brain Computer Interfaces (BCI) and can be used also in
real time application and for asynchronous classification of erroneous events.

1 INTRODUCTION

Brain Computer Interfaces (BCI) are technologies
that allow to control an external device using subject’s
brain activity (Wolpaw et al., 2000). BCI are partic-
ularly used for rehabilitation in subjects that experi-
enced the loss of motor or cognitive skills.

To have a representation of the activity present
at the scalp level, the Electroencephalographic signal
(EEG) is usually recorded due to its intrinsic non in-
vasive nature and its high temporal resolution. De-
pending on the kind of stimulus presented to the sub-
ject, different EEG responses can be obtained and,
therefore, different EEG-based BCI systems can be
designed. In this paper the focus is set on the Error
Potential (ErrP), an event-related potential that arises
whenever an error is detected by a user, both if the
error is committed by an external device or by the
user itself (Falkenstein et al., 2000). The activity is
located in the medio–frontal areas of the brain, in par-
ticular in the anterior cingulate cortex (Holroyd and
M.Coles, 2002), and, depending on the task, differ-
ent ErrPs types can be distinguished. The realization
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follows a stereotypical shape characterized by a neg-
ative peak occurring at 250 ms after the error, a pos-
itive peak at 320 ms and a negative peak at 450 ms
(Ferrez and del R. Millan, 2008). In the frequency
domain the EEG signal recorded after the erroneous
event is particularly localized in the δ(1− 3Hz) and
θ(5− 8Hz) brain rhythms (Spuler and Niethammer,
2015)(Abhang et al., 2016).

In literature, the ErrP detection in BCI application
is mainly employed to correct the output of BCIs that
are based on other paradigms. For example in (Seno
et al., 2010), the authors developed a P300 speller, a
BCI able to detect the letter chosen by the user from
a grid of letters. The detection of the ErrP in this case
is used for correcting the letter identified by the sys-
tem if it is not the one intended by the user. Since
the feedback given to the subject is crucial in any BCI
experiment, the detection of an ErrP during a correct
trial may lead to frustration and, thus, to less involve-
ment of the participant during the trial (Lotte, 2012).

Moreover, the detection of erroneous events is
finding application also in other fields, where the cor-
rection of an external device can drastically improve
the effectiveness of the device itself (e.g. autonomous
driving (Belcher et al., 2022)). These examples high-
light the importance of having a correct classification
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of the ErrP and excluding false postives as much as
possible. The advances in machine learning and deep
learning algorithms have enhanced the detection of
Evoked Potentials (EP) (Z.Cao, 2020), but still re-
mains difficult to separate the signal of interest from
the background EEG in the single sweep analysis.
These difficulties is reflected in unsatisfactory perfor-
mances and high values of false positives during clas-
sification.

In this study, we applied a method used in litera-
ture (i.e. subspace regularization (Karjalainen et al.,
1999)) for estimating the sources of the ErrP sin-
gle sweeps and we analyzed whether this elaboration
of the signal may improve the classification perfor-
mance in distinguishing between erroneous and cor-
rect events. Moreover, the elaborated signal has also
been analyzed in order to assess if the characteristics
of the ErrP are preserved, or even enhanced, by this
method.

2 METHODS

2.1 Dataset

The dataset used in this project is the open access BCI
dataset of BNCI Horizon 2020: Monitoring error-
related potentials (BNCI, 2020). It consists of EEG
recordings obtained during an ErrP-specific experi-
ment performed on six subjects (mean age 27.83 ±
2.23) in two recording sessions (Chavarriaga and Mil-
lan, 2010).

The experimental paradigm consists of reaching a
target (i.e. a coloured square) through a moving cur-
sor. The working area is constituted by 20 possible
horizontal positions where the cursor and the target
square may be located. At each time step (2 seconds
each), the cursor moves a step toward the location
of the square. Once the target is reached, the cursor
remains in place and a new target location appears.
Subjects are asked to monitor the position of the cur-
sor (without having any control over it), knowing that
the objective is to reach the target. In order to elicit
the ErrP, at each time step, the cursor is moved in the
wrong direction with 20% of probability.

The recording session consists of 10 blocks of
3 minutes each, including approximately 50 cur-
sor movements per block. Subjects performed two
recording sessions with a gap of several weeks.
For each session, the EEG signal is recorded (512
Hz sampling frequency) with 64 electrodes using a
BioSemi ActiveTwo system. Electrodes are placed
according to the 10-20 International System. More
details about the experimental setup and the recorded

signals are published in (Chavarriaga and Millan,
2010).

The data–set is largely unbalanced: it is consti-
tuted by 6437 epochs of which 1322 include the ErrP.

2.2 Preprocessing

The raw EEG data are spatially filtered with the Com-
mon Average Rereferencing (CAR) method and then
band passed filtered between 1-40 Hz in order to re-
move the noise at higher frequencies. Data are then
downsampled at 64Hz and divided in epochs of in-
terval [0 1]s from stimulus onset in order to cover
the expected ErrP latencies. No artifact removal
(e.g. Indipendent Component Analysis) algorithm has
been applied in view of a real-time application of the
method. The preprocessing pipeline has been imple-
mented in Python with the MNE library (Gramfort
et al., 2013).

2.3 Subspace Regularization Method

The subspace regularization method has been pre-
sented in (Karjalainen et al., 1999) and has been used
for single trial estimation of P300 EP.

The recorded signal can be described as a linear
combination of the EP of interest (i.e. source) and
some noise introduced with the measurements. The
EEG signal z is described as:

z = s+ v = Hθ+ v (1)
where s is the source signal and v is the backgorund
EEG. In particular the source is described as a linear
combination of some basis vectors (i.e. H) depending
on the measurements and so, in linear algebra, s lie in
the subspace described by these basis vectors.

The subspace regularization method aims to find
the optimal parameters θ by searching the optimal ba-
sis vectors and minimizing the contribution given by
an estimated v.

In our study we decided to use as noise the back-
ground EEG not related to the stimulation and esti-
mated during the second before the stimulation. Thus,
the estimation of s is reduced to the solution of follow-
ing formula:
s = H(HT ∗C−1

v H +α
2HT (I −KsKT

s )H)−1HTC−1
v z

(2)
where H is a set of basis vector (Gaussian waveforms)
than span along the signal, Ks is the eigenvector ma-
trix of the correlation matrix of z, Cv is the covariance
matrix of the noise v and α is defined as the regular-
ization parameter that can be chosen experimentally.

From the preprocessed ErrP and Non–ErrP
epochs, the sources are extracted with this method and
used for classification purposes.
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Figure 1: Pipeline of the preprocessing and classification of the ErrP and Non-ErrP EEG measurements.

2.4 ErrP Classification

In order to classify the extracted epochs, the EEGNET
(Lawhern et al., 2018) Convolutional Neural Network
have been employed. The authors of this CNN proved
that it has good generalize ability in different BCI
paradigms and that is why it has been chosen also in
this paper. The architecture is composed by the pe-
culiar Depthwise and Separable Convolutional layers
in combination with the classical dropout and batch
normalization layers. The last layer is a typical fully
connected layer for classification output. A majority
vote approach is employed to obtain the prediction la-
bel for the test set: it has been chosen since it would
outperform the best classifier if the classifiers make
independent errors (Orrite et al., 2008). As input of
EEGNET both the subspace regularized and not pro-
cessed EEG signals coming from all channels were
used. It has been decided to consider all the electrodes
in order to not lose any information.

The dataset of each subject was shuffled to ensure
heterogeneous distribution of data an then it was di-
vided, using 20% of the data as test set, while the re-
maining data were divided in training (80%) and val-
idation set (20%). The performance in test was as-
sessed first with the raw data and then the network
was re-trained and tested with the subspace regular-
ized epochs and differences in performances was ana-
lyzed. Stratified 5-folds cross-validation is performed
on the validation set. The results will be presented
in terms of test accuracy, balanced accuracy and F1-
score for assessing the classifier performance.

Due to the high unbalance of the two classes,
for both training processes a data augmentation algo-

rithm has been used: in particular we decided to use
the ARX-based method proposed in (Farabbi et al.,
2021).

The performance of the classifier has been anal-
ysed both in two ways: subject-wise, where the clas-
sifier has been trained and tested separately for each
subject in order to assess the individual performance;
population-wise, where data coming from all subjects
were considered as one in order to assess an overall
generalize ability of the classifier.

The complete pipeline of the preprocessing and
classification is reported in Fig.1.

3 RESULTS

3.1 Sources Estimation

In Fig.2.A are reported the Grand Average of the ErrP
signal without (blue) and with subspace regulariza-
tion (orange) at the electrode FCz (the most involved
in ErrP stimulation) for one subject as an example. It
is worth to notice that the source estimated with the
proposed method, follows the original waveform, ex-
cluding the high frequency components and reducing
the peaks given by the background EEG that is not
related with the EP of interest. Moreover, the main
characteristics of the ErrP are preserved with the typ-
ical negative and positive peaks.

This can be noticed also in the frequency domain
(Fig.2.B): the PSD of the estimated source (blue) is
mostly activated in the δ and θ bands and no compo-
nent after 10Hz.
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Figure 2: ErrP epoch in time domain (A) and the PSD in frequency domain (B) for electrode FCz. In blue is reported the ErrP
signal processed with the subspace regularization method, while in orange the signal with no processing.

Figure 3: EEGNET performance in terms of accuracy, balanced accuracy and F1 score. The score for each subject and of the
whole participants considered as one are reported. In blue the metrics with non processed signals used as input for EEGNET,
while in orange the signals with subspace regularization.

3.2 EEGNET Performances

Concerning the performance of the EEGNET classi-
fier, we reported in Fig.3 the results in terms of ac-
curacy, balanced accuracy and F1-score using signals
processed with the subspace regularization method
(in orange) and the ones with no processing (in blue).

In the figure are reported the metrics obtained
for each subject and the ones considering the signals
coming from all participants as one.

We can observe that in all cases the metrics get
higher values, with maximum increases of 10.1% for
the balanced accuracy, 7.7% for the accuracy and
11% for the F1-score. Moreover, it is worth to notice
that the subjects that achieved lower performances us-
ing not elaborated signals are the ones that resulted in
a larger increment of the metrics.

4 DISCUSSION

The obtained results suggest that the subspace regu-
larization method may be optimal in ErrP signal pro-
cessing in order to improve the classification perfor-
mances of the ErrP detector. It is interesting to ob-
serve that also subjects with low accuracy metrics (i.e.
subjects #3, #4 and #6) when no processing was im-
plemented, resulted in good performance when pro-
cessed with the proposed method.

Moreover, the signals obtained after the subspace
regularization enhance the main characteristics of the
subject, highlighting positive and negative peaks at
the expected latencies and focusing the brain rhythm
in the δ band, suggesting that the activation of higher
frequencies (observable in the non processed signal)
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are not related to the ErrP-stimulated response, but to
background EEG. Thus, not only the method seems to
give a good estimate of the sweep of interest, but also
seems appropriate to estimate the background EEG
from the second before the onset of the stimulus.

5 CONCLUSION

In this paper we presented a study on the effect of
applying subspace regularization method to ErrP in
terms of signal processing and of classification met-
rics using a Convolutional Neural Network for distin-
guishing between ErrP and Non–ErrP realizations.
The proposed pre-processing method enhances the
main characteristics of the ErrP signal and improves
the classification performance in each subject and for
each evaluated metric.

Since the subspace regularization method is fast in
terms of computational time, it can be adopted also in
real time BCI classification based on the ErrP Evoked
Potential. Moreover, the proposed method can be ap-
plied also to enhance asynchronous classification of
ErrP events (or in general of Evoked Potentials).
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