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Abstract
The paper addresses the lexicographically maximal risk-disjoint/minimal cost path 
pair problem that aims at finding a pair of paths between two given nodes, which 
is the shortest (in terms of cost) among those that have the fewest risks in common. 
This problem is of particular importance in telecommunication network design, 
namely concerning resilient routing models where both a primary and a backup path 
have to be calculated to minimize the risk of failure of a connection between origin 
and terminal nodes, in case of failure along the primary path and where bandwidth 
routing costs should also be minimized. An exact combinatorial algorithm is pro-
posed for solving this problem which combines a path ranking method and a path 
labelling algorithm. Also an integer linear programming (ILP) formulation is shown 
for comparison purposes. After a theoretical justification of the algorithm founda-
tions, this is described and tested, together with the ILP procedure, for a set of refer-
ence networks in telecommunications, considering randomly generated risks, asso-
ciated with Shared Risk Link Groups (SRLGs) and arc costs. Both methods were 
capable of solving the problem instances in relatively short times and, in general, 
the proposed algorithm was clearly faster than the ILP formulation excepting for the 
networks with the greatest dimension and connectivity.
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1  Introduction

Multicriteria shortest path problems have important applications in telecommuni-
cation networks, specially in network routing design. Overviews on multicriteria 
shortest path algorithms with applications in this domain, were presented in Clí-
maco et al. (2016) and Clímaco and Pascoal (2012). State of art reviews, focusing 
on MCDA (Multicriteria Decision Analysis) modelling approaches, algorithms and 
their applications in network design, including routing problems, can be seen in Clí-
maco et al. (2016) and, in a broader context, in Clímaco and Craveirinha (2019). A 
particular class of these problems, with great interest in the context of resilient rout-
ing design (see a generic monography on this broad subject in Rak 2015) involves, 
typically, the calculation of a pair of paths (corresponding to end-to-end routes), the 
primary or active path (AP) (that carries the corresponding traffic flow under nor-
mal operating conditions) and the backup or protection path (BP) (which is the path 
that carries that traffic when some failure affects the AP). The two paths have to be 
computed and signaled, for each pair of origin-destination nodes, so that the avail-
ability of the services supported by the pair may be guaranteed, as far as possible, 
in the event of failures. This type of problems is of paramount importance having in 
mind that very high levels of service availability (expressed through Service Levels 
Agreements for different classes of connection demands) should be maintained in 
the event of failures and the enormous amounts of traffic that can be lost in the event 
of failures in the physical or logical network structures, resulting for example from 
optical fiber cuts, switch/router or software failures.

In the design of routing mechanisms with built-in survivability objectives, taking 
into account the multi-layered structure of telecommunication networks, the concept 
of shared risk link group (SRLG) is frequently used, which may be defined as a 
group of logical links (arcs of the functional network graph representation) which 
share a common risk of failure. Usually the network designer, based on the infor-
mation about the SRLGs associated with the arcs, seeks to calculate a pair of paths 
which are SRLG-disjoint, ensuring that no single fault of the AP will affect the BP, 
a NP-complete problem as shown in Hu (2003). However, there may arise situations 
for which no SRLG-disjoint path pair can be calculated, a case in which the aim 
of the routing procedure may consist of finding a maximally SRLG-disjoint path 
pair, that is a path pair with the minimal number of common SRLGs, so as to mini-
mize the risk of simultaneous failure of the two paths. Moreover, a key concern is 
bandwidth usage optimization, seeking to optimize the use of bandwidth resources 
throughout the network links, in order to achieve the maximal possible network traf-
fic carrying capability. This is usually represented in terms of different labels associ-
ated with the arcs of the network, representing the different risks, as well as additive 
path cost functions, such that the cost of using a link is some function of its capacity 
and used bandwidth. These considerations lead to a typical formulation of the rout-
ing problem with path protection involving the lexicographic calculation of a pair of 
paths which are maximally label disjoint, ideally with no label common to the AP 
and BP and, as a secondary objective, minimal total cost.
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Several heuristic algorithms for seeking totally SRLG-disjoint path pairs have 
been proposed the performance of which, in terms of exactness, is usually evaluated 
by comparison with exact solutions from Integer Linear Programming formulations, 
for problems tested in reference networks. Heuristics for this problem were proposed 
in Rostami et al. (2007), Todimala and Ramamurthy (2004) and Xu et al. (2003). In 
Silva et al. (2011), a variant of the procedure in Hu (2003) is proposed where the 
candidate APs are considered in order of ascending cost and a BP with the mini-
mum cost is calculated, leading to a final solution which is the pair with the least 
number of common SRLGs. Various heuristics were proposed for calculating totally 
SRLG-disjoint path pairs of minimal cost, namely Gomes et al. (2013a) and Gomes 
et al. (2013b). Also various heuristics were proposed for tackling maximally SRLG-
disjoint path pairs of minimal cost lexicographic optimization problems, consider-
ing variants of the objective functions or of the constraints and various resolution 
approaches. In particular, Gomes et  al. (2016) presents two heuristics for tackling 
a lexicographic formulation of this type of problem which includes as additional 
objectives, of highest priority, that the paths are maximally node and arc disjoint.

In this work, we present an exact algorithm for solving the lexicographic formu-
lation of the maximally risk-disjoint/minimal cost path pair problem. Noting that a 
one-to-one correspondence between SRLGs and risks, or labels, can be specified, 
the proposed algorithm is a lexicographic minimal label-minimal cost path pair 
algorithm which combines a path ranking method—where possible paths are ranked 
by increasing order of cost by using the ranking algorithm in Martins et al. (1999)—
and a path labelling algorithm. This path labelling method finds the shortest path 
among those which have the minimal number of labels in common with the path 
fixed by the ranking. Also an Integer Linear Programming (ILP) formulation of the 
lexicographic problem, inspired by Hu (2003), is shown for performance compari-
son purposes.

Extensive experiments for evaluating the computational performance of the pro-
posed lexicographic algorithm and the ILP formulation, considering four reference 
test networks used in the analysis of resilient routing design models in telecommu-
nication networks (Orlowski et al. 2010) and using various random labels and cost 
distributions, are presented. This will show that the algorithm performs clearly more 
efficiently than the ILP method excepting for the networks with the highest dimen-
sion and connectivity.

The remainder of this text is organized as follows. In Sect. 2 the notation and pre-
liminary definitions are introduced. The lexicographic version of the problem, the 
ILP formulation, together with theoretical results used in the resolution method and 
the computational procedures of the algorithm (in Sect. 3.1), as well as an illustra-
tive example (Sect. 3.2), are described in Sect. 3. At the end of Sect. 3, a study of 
the computational complexity of the proposed resolution algorithms, is presented. 
The computational experiments for assessing the performance of the lexicographic 
algorithm and of the ILP formulation in reference test networks, considering various 
distributions of random risks and arc costs, and the conclusions of these tests are 
also presented in this section (in Sect. 3.4). Finally, conclusions on this study and 
further work are drawn in Sect. 4.
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2 � Definitions and notation

Let G = (N,A) denote a directed network, where N is the set of n nodes and 
A ⊆ N × N is the set of m arcs. Given v1, vr ∈ N , a path from v1 to vr in G is a 
sequence p = ⟨v1, v2,… , vr⟩ , where (vi, vi+1) ∈ A , for any i = 1,… , r − 1 . Let 
s, t ∈ N be called the source and the terminal nodes, respectively, and P denote the 
set of paths in G from s to t ( P ≠ ∅ ). Hereafter, the term path stands for a path with 
no repeated nodes.

Let L be the set of network labels (such that each label corresponds to one and 
only one failure risk), ensuring a one-to-one correspondance between labels and 
SRLGs, and (i, j) ∈ A be an arc in the network. Then, the following parameters are 
associated with the arc (i, j):

•	 Lij = {l1
ij
,… , lk

ij
} ⊆ L , it consists of the set of risks which may affect (i, j), and

•	 cij ∈ ℝ
+
0  , it represents the cost of using the arc (i, j).

Let Al = {(i, j) ∈ A ∶ l ∈ Lij} ⊆ A denote the set of arcs with label/risk l, which 
defines the SRLG with label l.

The set of arc labels and the cost for a given path p ∈ P are defined by

respectively. Hereafter it is assumed that all cycles in the network have non-negative 
cost. Such notions can be extended to pairs of paths in P. Given a pair of paths 
(p, q) ∈ P × P , the following parameters are defined:

•	 the number of labels that are common to both paths is defined by 
l(p, q) = |l(p) ∩ l(q)| , and

•	 the pair’s cost is defined by c(p, q) = c(p) + c(q).

3 � The lexicographic maximally risk‑disjoint shortest pair of paths 
problem

Although the two objective functions introduced above, l and c, are both important, 
most formulations consider that the minimization of the number of risks shared by 
the two paths (hence the maximization of end to end service survivability in the 
event of failures) has higher priority than the minimization of the cost. For this rea-
son, in the following the lexicographically maximal risk-disjoint shortest pair of 
paths (LMRDSPP) problem is considered. Firstly, a linear integer formulation for 
this problem is presented. Afterwards, the proposed algorithm is described after 
some preliminary theoretical results.

l(p) =
⋃

(i,j)∈p

Lij and c(p) =
∑

(i,j)∈p

cij,

408



1 3

An exact lexicographic approach for the maximally…

The goal of the LMRDSPP problem is to find a pair of paths linking nodes s and 
t, which minimizes the cost of the two paths, among those which have the minimal 
number of common labels. The problem is stated as

where

In order to formulate the problem as an integer program, let us consider the pair of 
paths (p1, p2) and let it be defined by the decision variables:

for any (i, j) ∈ A and k = 1, 2 . Let us also consider the variables:

for any l ∈ L and k = 1, 2 , and

for any l ∈ L . The objective functions of the problem are:

for counting the number of shared risks of pair (p1, p2) , and:

for computing the pair (p1, p2) total cost.
Inspired by Hu (2003), the problem can be formulated as 

(1)
minimize c(p1, p2)

such that l(p1, p2) = l∗

p1, p2 ∈ P

l∗ = min l(p1, p2)

such that p1, p2 ∈ P

xk
ij
=

{
1 if the arc (i, j) is in the path pk
0 otherwise

vk
l
=

{
1 if l is a risk in path pk
0 otherwise

vl =

{
1 if risk l is shared by the pair of paths

0 otherwise

l(p1, p2) =
∑

l∈L

vl,

c(p1, p2) =
∑

(i,j)∈A

cij(x
1
ij
+ x2

ij
),

(2a)minimize
∑

(i,j)∈A

cij(x
1
ij
+ x2

ij
)

(2b)

such that
�

(i,j)∈A

xk
ij
−

�

(j,i)∈A

xk
ji
=

⎧
⎪
⎨
⎪⎩

1, i = s

0, i ∈ N − {s, t}

−1, i = t

, i ∈ N, k = 1, 2
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 where 

 The constraints (2b) are flow conservation constraints for the variables associated 
with each path from node s to node t. The conditions (2c) ensure that for each risk, l, 
and each path, pk , an arc, (i, j), with that risk, is in the solution only if the associated 
risk variable is vk

l
= 1 . These conditions also imply that the number of arcs in each 

path in the solution, for each risk, does not exceed neither n − 1 nor the number of 
arcs with that risk in the network. Additionally, the set of constraints (2d) are used to 
relate the risk variables. These integer linear formulations can be replaced by linear 
relaxations with respect to the variables xk

ij
,

3.1 � Resolution approach

The search for an optimal solution of the LMRDSPP problem can be restricted to 
pairs of loopless paths. This fact is proved below and will be used in the algorithm 
presented later on.

Proposition 1  At least one solution of the LMRDSPP problem is a pair of loopless 
paths from s to t in G.

Proof  Let us assume that any solution of the LMRDSPP problem contains at least 
one cycle, that is, if (p,  q) is a lexicographically optimal pair for the LMRDSPP 

(2c)
∑

(i,j)∈Al

xk
ij
≤ min{n − 1, |Al|}vkl , l ∈ L, k = 1, 2

(2d)v1
l
+ v2

l
− vl ≤ 1, l ∈ L

(2e)
∑

l∈L

vl = l∗

(2f)xk
ij
∈ {0, 1}, (i, j) ∈ A, k = 1, 2

(2g)vk
l
∈ {0, 1}, l ∈ L, k = 1, 2

(2h)vl ∈ {0, 1}, l ∈ L

(3a)
l∗ = min

∑

l∈L

vl

such that (2b)−(2d), (2f)−(2h)

0 ≤ xk
ij
≤ 1, (i, j) ∈ A, k = 1, 2.
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problem, then either path p or path q contains a cycle. Let us also assume, with 
no loss of generality, that p is a loopless path, contrary to q which has the form 
q = q1 ⋄ C ⋄ q2 , where C is any of its cycles, where the symbol ⋄ represents the 
concatenation of two paths. Therefore, the path q∗ = q1 ⋄ q2 has less loops than 
q = q1 ⋄ C ⋄ q2 . If q∗ is not loopless, then the reasoning can be repeated as many 
times as necessary to find a loopless path. Otherwise, (p, q∗) is a pair of simple paths 
from s to t. Because l(q∗) ⊆ l(q) and because there are no negative cost cycles in the 
network, then c(q∗) ≤ c(q) holds, and therefore

Additionally, due to the optimality of (p, q), the pair of paths (p, q∗) is also optimal 
and may be a better solution, which contradicts the assumption. 	�  ◻

According to Proposition  1, it is sufficient to find pairs of loopless paths in 
order to solve the LMRDSPP problem. The algorithm for finding an optimal pair 
of paths is based on three main ideas:

•	 The first one is to list possible primary paths, say p, by increasing order of c.
•	 The second is to find the best backup path with respect to each primary path 

p. This best backup path is a shortest path among those which have the least 
number of risks in common with the path p. That is, the path can be found by 
solving the new problem 

•	 Additionally, an upperbound on the number of risks shared by any two paths 
from s to t is used, RiskUB. This value is updated as new pairs of paths are 
computed and it is used to limit the search for pairs of paths that can be opti-
mal.

The first of these points can be addressed by applying an algorithm for ranking paths 
by order of their cost c, for instance one of the methods in Katoh et al. (1982), Mar-
tins et al. (1999) or Yen (1971). The second is handled by means of a dynamic pro-
gramming algorithm described below.

Let p be a fixed primary path from s to t and RiskUB be the current number of 
shared risks upperbound. The proposed method generates several paths extending 
an initial path starting in s by adding one node at a time, for finding a path that opti-
mizes problem (4), while respecting the upperbound RiskUB. Several paths from s 
to another node i, i ∈ N , can be found, therefore each one is identified as px , with x 
an index associated with the node i, and a label Lx = [px, �x,�

r
x
,�l

x
,�c

x
] , with the fol-

lowing components:

•	 px , the sequence of nodes in the path from s to x;
•	 �x , the network node which corresponds to x, i.e., i;
•	 �r

x , the set of risks in p which also appear in the path px;

l(p, q∗) ≤ l(p, q) and c(p, q∗) ≤ c(p, q).

(4)
lexmin (l(p, q), c(p, q))

such that q ∈ P
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•	 �l
x , the number of risks in p which also appear in the current path px;

•	 �c
x , the cost of the path px.

When examining a given path px from node s to node i, it is intended to extend it 
by scanning all the arcs (i, j) ∈ A , where �x = i . Additionally, the computation of 
more than one path from s to i may be required, therefore different indexes are used 
to distinguish them. The value �l

x
= |�r

x
| is just used for the sake of clarity of the 

presentation.
For this specific subproblem, the priority criterion is the number of risks shared 

by the two paths. A counter example that this criterion does not satisfy Bellman’s 
Optimality Principle is presented in the next subsection. This fact makes the compar-
ison between paths/labels for the same ending node harder. The dominance between 
two different labels Lx and Ly is defined below, in order to enable this comparison.

Definition 1  Given the node i and two of its labels, Lx and Ly , such that �x = �y = i , 
label Lx dominates label Ly if 𝜋r

x
⊆ 𝜋r

y
 and 𝜋c

x
< 𝜋c

y
.

Proposition 2 shows that the dominated labels are of no use for finding an optimal 
solution of problem (1).

Proposition 2  Let p be a path in P and RiskUB ≥ 0 . If Lx is a dominated label of a 
given node i and px is the corresponding path from s to i, then no path from s to t 
that contains px is an optimal solution of (4).

Proof  Let q be any path from node i to node t, and by contradiction assume that 
px ⋄ q is a lexicographic optimal path from s to t. By assumption the label Lx is 
dominated by another label of node i, Ly , corresponding to the path py from s to 
i. Therefore, by Definition  1, 𝜋r

y
⊆ 𝜋r

x
 and 𝜋c

y
< 𝜋c

x
 . If 𝜋r

y
⊆ 𝜋r

x
 , then �l

y
≤ �l

x
 and 

also l(p, py ⋄ q) ≤ l(p, px ⋄ q) . Additionally, 𝜋c
y
< 𝜋c

x
 , thus c(py ⋄ q) < c(px ⋄ q) and 

c(p, py ⋄ q) < c(p, px ⋄ q) . Therefore, py ⋄ q is better than px ⋄ q , so px ⋄ q could not 
be optimal. This leads to a contradiction, which concludes the proof. 	�  ◻

The algorithm starts with a path formed simply by the initial node, s, which is 
extended depending on the arcs that emerge from node s and on the comparison of 
each extension with paths previously found. The new extensions are stored as new 
labels to be scanned. The analysis of a new label Lx , associated with a path px from 
node s to node �x = i is similar to that of node s. Any arc (i, j) ∈ A is considered, 
associated with the label Ly = [py, �y,�

r
y
,�l

y
,�c

y
] , where:

•	 py = px ⋄ ⟨i, j⟩;
•	 �y = j;
•	 �r

y
= �r

x
∪ Lij ∩ l(p);

•	 �l
y
= |�r

y
|;

•	 �c
y
= �c

x
+ cij;
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provided that it does not exceed the current best number of shared risks and it is 
not dominated by any other label already established for node j. Each label that is 
obtained corresponds to a path between the nodes s and j, which may be part of 
an optimal path. Therefore, it is compared to other paths previously generated and 
under the same conditions, so that they can be discarded as early as possible in 
case they are dominated. Additionaly, when node j = t , the minimum number of 
shared risks and the current optimal path are updated. The newly generated labels 
are stored until they are scanned. 

Given a path, p, and an upperbound on the number of shared risks, RiskUB, 
Algorithm 1 outlines the steps for finding a shortest path from s to t among those 
which have the fewest risks in common with p. The goal of the method is to create 
a tree, rooted at node s, which contains paths from s to any node i that correspond 
to non-dominated labels according to the definition above. The tree is extended 
by scanning its nodes and considering the arcs emerging from each of them. The 
control of the growth of the tree is based on two results. On the one hand Propo-
sition 2 is used to restrict the new labels that are created, as well as it allows to 
discard some of the already created ones. On the other hand, the value RiskUB is 
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updated every time the best stored path from s to t is improved with respect to the 
number of shared risks, and partial paths that lead to solutions worse than that 
one are never taken into account. The dominance tests between labels on lines 14 
and 17 in Algorithm 1 are implemented by pairwise comparison of labels with 
respect to their sets of shared risks, their cardinality and the corresponding costs. 
Hence, by using this form of “lazy evaluation” of the comparison between labels, 
the label costs of two labels are only compared if one of the risks set is contained 
in the other.

Algorithm 1 is combined with a general procedure for solving the LMRDSPP 
problem. In this framework the primary paths are ranked by order of cost and 
the potential shortest backup path with the fewest labels in common with each of 
them is computed when calling Algorithm 1. The best pair of paths is stored in 
the variable (BestP, BestQ), which is updated after calling Algorithm 1 whenever 
the solution is improved. Like before RiskUB is another auxiliary variable, used 
to store the best number of shared risks found so far by the method. This variable 
is updated in Algorithm  1, before the pair (BestP,  BestQ) is also changed. The 
method is outlined in Algorithm 2—designated hereafter as SLA (Single criterion 
Lexicographic Algorithm). 

The variable RiskUB stores an upperbound on the optimal number of shared 
risks. This bound is improved whenever a pair of paths with fewer common risks 
than the current value is generated, according to line 21 of Algorithm 1. There-
fore, the following results holds.

Lemma 1  The sequence {l(pk, q)}k≥1, where (pk, q) are the pairs of paths generated 
by Algorithm 2, k = 1, 2,…, is non-increasing.

The correctness of Algorithm 2 is proved in Proposition 3.

Proposition 3  The pair of paths output by Algorithm 2 is a lexicographically opti-
mal solution for the LMRDSPP problem.

Proof  Let us assume that the solution generated by Algorithm  2, say (p∗, q∗) , 
is not an optimal solution. That is, assume that another solution exists given by 
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Algorithm  2, (p�, q�) , such that either l(p�, q�) < l(p∗, q∗) or l(p�, q�) = l(p∗, q∗) and 
c(p�, q�) < c(p∗, q∗).

Three situations may occur when ranking paths by order of cost in Algorithm 2: 

1.	 The path p′ appears before path p∗ in the ranking. Then, because the pair (p�, q�) is 
the result of an earlier call of Algorithm 1, by Lemma 1, l(p�, q�) ≥ l(p∗, q∗) , and 
because by assumption (p�, q�) dominates (p∗, q∗) , l(p�, q�) = l(p∗, q∗) must hold. 
Additionally, c(p�, q�) < c(p∗, q∗) , and thus the pair (p∗, q∗) could not have been 
computed by Algorithm 1 nor be the output of Algorithm 2.

2.	 If p� = p∗ , then the pair of paths (p∗, q∗) could not have been computed by Algo-
rithm 1, given that it is dominated by the pair (p�, q�).

3.	 The path p′ appears after path p∗ in the ranking. Then, the result of Algorithm 1 
when considering p′ is either the pair (p�, q�) or another one, (p�, q��) , which is 
lexicographically better than (p�, q�) . By assumption the pair (p�, q�) dominates 
(p∗, q∗) , therefore either (p�, q�) or (p�, q��) replaces the previous pair as the best 
solution and (p∗, q∗) could not be the solution given by Algorithm 2.

In either case the pair (p∗, q∗) cannot be the solution given by Algorithm 2, as ini-
tially assumed. 	�  ◻

Fig. 1   Example networks

Table 1   Pairs of paths from 1 to 4 in the network G1
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3.2 � Example

As an example for the LMRDSPP problem, let us consider the network G1 in Fig. 1a 
with unitary arc costs, cij = 1 , and the sets Lij defined by the different arc colors (or 
different letters in the figures), for any (i, j) ∈ A . The full list of pairs of paths linking 
s = 1 to t = 4 in this network is shown in Table 1 without repetition of the same pair 
of paths in reverse order. It is worth noting that the algorithm does not prevent the 
generation of two equal paths in the pair, even though such a solution would be use-
less in practice. The optimal solution for the LMRDSPP problem is the pair of paths 
(⟨1, 3, 4⟩, ⟨1, 3, 2, 4⟩) , with one shared risk (the green one) and cost 5.

As a counter example that shows that Bellman’s Optimality Principle does not 
hold when finding a shortest backup path with at most a given number of shared 
risks, consider the network G2 in Fig. 1b and the primary path p = ⟨1, 3, 4⟩ , with the 
risks  Given the labels associated with node 2

the first is better than the latter in the sense that 𝜋l
x
= 1 < 𝜋1

y
= 2 and 

𝜋c
x
= 1 < 𝜋c

y
= 2 . However, after extending each of these paths to node 4 by adding 

the arc (2, 4), the paths identified by

are obtained and, in this case, the latter label is better than the former because 
𝜋l
x�
= 3 > 𝜋1

y�
= 2 . This means that two partial labels for the same node cannot be 

compared directly with respect to the number of risks shared with the primary path, 

Fig. 2   Paths from 1 to 4 in network G2 with at most three risks in common with ⟨1, 3, 4⟩

Table 2   Paths from 1 to 4 in 
network G2 with at most 3 risks 
in common with ⟨1, 3, 4⟩

LnX px j �r
x �l

x
�c
x

L1 ⟨1⟩ 1 ∅ 0 0
L2 ⟨1, 2⟩ 2 {r} 1 1
L3 ⟨1, 3⟩ 3 {g} 1 1
L4 ⟨1, 2, 4⟩ 4 {r, g, b} 3 2
L5 ⟨1, 3, 2⟩ 2 {g, b} 2 2
L6 ⟨1, 3, 2, 4⟩ 4 {g, b} 2 3
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given that the objective function values of their extensions depend on the risks of all 
the arcs. 

Instead, when applying Algorithm 1 to the network G2 depicted in Fig. 1b under 
the above conditions, with p = ⟨1, 3, 4⟩ as the primary path and at most RiskUB = 3 
risks shared with path p, the trees in Fig. 2 and the labels listed in Table 2 are found. 
Then, the best pair of computed paths is (⟨1, 3, 4⟩, ⟨1, 3, 2, 4⟩) , which has 2 shared 
risks and cost 5, as explained next in detail.

The first label to consider is L1 , for the initial node 1. Because two arcs emerge 
from node 1, two labels are created when the node corresponding to L1 is consid-
ered: one associated with node 2, that is, path ⟨1, 2⟩ , and another one associated with 
node 3, that is, path ⟨1, 3⟩—Fig. 2a. Assuming that L2 is the next label to be scanned, 
the path ⟨1, 2, 4⟩ is obtained, associated with the label L4—Fig. 2b. Similarly, when 
scanning label L3 , the paths ⟨1, 3, 2⟩ and ⟨1, 3, 4⟩ are obtained—Fig.  2c. The first 
cannot be compared to the other path until node 2, ⟨1, 2⟩ , because their sets of risks 
are not contained in one another, therefore it is stored and associated with the label 
L5 . However, the second corresponds to a path until the terminal node with exactly 
the same shared risks and cost as ⟨1, 2, 4⟩ . Because it is not better than the former, 
it is discarded. The next label to scan is L5 , for path ⟨1, 3, 2⟩ , which can be extended 
to ⟨1, 3, 2, 4⟩—Fig. 2d. This path is also compared to the previous path to node 4, 
⟨1, 2, 4⟩ . The risks shared by the new secondary path are included in those shared 
by the former and are only 2, thus it is concluded that the former secondary path is 
dominated by the new one and RiskUB is updated with 2. No further labels are added 
to the search tree, therefore the best pair of computed paths is (⟨1, 3, 4⟩, ⟨1, 3, 2, 4⟩) , 
which has 2 shared risks and cost 5.

When applying Algorithm 2 for finding the optimal pair of paths for the LMRD-
SPP problem in the network G1—Fig. 1a, the initial upperbound is RisksUB= ∞ and 
the following paths are ranked:

•	 p1 = ⟨1, 2, 4⟩ and then q = ⟨1, 3, 4⟩ with 2 shared risks and cost 4. Then RiskUB 
is updated to 2 and the best pair of paths to (BestP,BestQ) = (p1, q).

•	 p2 = ⟨1, 3, 4⟩ and then q = ⟨1, 3, 2, 4⟩ with 1 shared risk and cost 5. Then RiskUB 
is updated to 1 and the best pair of paths is (BestP,BestQ) = (p2, q).

•	 p3 = ⟨1, 2, 3, 4⟩ and then q = ⟨1, 3, 2, 4⟩ with 1 shared risk and cost 6.
•	 p4 = ⟨1, 3, 2, 4⟩ and then q = ⟨1, 3, 4⟩ with 1 shared risk and cost 5.

Fig. 3   Paths from 1 to 4 in net-
work G1 with at most three risks 
in common with ⟨1, 2, 4⟩
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At the end of the algorithm, the optimal pair of paths is (⟨1, 3, 4⟩, ⟨1, 3, 2, 4⟩).
As another example of Algorithm 1, consider its application to the network G1 

depicted in Fig. 1a when the primary path from node 1 to node 4 is p = ⟨1, 2, 4⟩ in 
G1 (one of the shortest). Consider also that at most RiskUB = 3 risks are allowed to 
be shared with path p. Then, Algorithm 1 produces the search tree in Fig. 3 and the 
best pair of paths when p is fixed is (⟨1, 2, 4⟩, ⟨1, 3, 4⟩) , with 2 shared risks and cost 
4.

When applying Algorithm 2 for finding the optimal pair of paths for the LMRD-
SPP problem, the initial upperbound is RisksUB= ∞ and the following paths are 
ranked:

•	 p1 = ⟨1, 2, 4⟩ and then q = ⟨1, 3, 4⟩ with 2 shared risks and cost 4. Then RiskUB 
is updated to 2 and the best pair of paths to (BestP,BestQ) = (p1, q).

•	 p2 = ⟨1, 3, 4⟩ and then q = ⟨1, 3, 2, 4⟩ with 1 shared risk and cost 5. Then RiskUB 
is updated to 1 and the best pair of paths is (BestP,BestQ) = (p2, q).

•	 p3 = ⟨1, 2, 3, 4⟩ and then q = ⟨1, 3, 2, 4⟩ with 1 shared risk and cost 6.
•	 p4 = ⟨1, 3, 2, 4⟩ and then q = ⟨1, 3, 4⟩ with 1 shared risk and cost 5.

At the end of the algorithm, the optimal pair of paths is (⟨1, 3, 4⟩, ⟨1, 3, 2, 4⟩).

3.3 � Computational complexity

This section is devoted to the estimation of the computational complexity order of 
the presented method. The method consists of two components: paths ranking (in 
Algorithm  1) and dynamic programming for finding a shortest path among those 
with the fewest risks in common with a path p (Algorithm 2).

Different ranking algorithms can be applied, but the time or the number of opera-
tions executed by Algorithm 2 depends on the total number of paths ranked until the 
solution is found. For instance, if only loopless paths are computed, Yen’s algorithm 
can be used, with time of O(m + n log n + K1n g(m, n)) (Yen 1971). Otherwise, if it 
is allowed to compute (and discard) paths containing loops, the algorithm by Mar-
tins, Pascoal and Santos can be used, with O(m + n log n + K2g(m, n, |L|)) (Martins 
et al. 1999). Here O(m + n log n) is the time complexity order for finding a shortest 
path, g(m, n, |L|) represents the number of operations required by Algorithm 2, and 
K1 ( K2 ) stands for the number of loopless paths (paths) analyzed by each algorithm. 
If an upper bound for these numbers is not set in advance, as shown in Algorithm 2, 
then all the loopless paths (paths) from node s to node t are listed.

The number of labels of a given node created by Algorithm 1 is at most the num-
ber of possible paths from node s to that node. Considering that these paths may be 
any sorted sequence of nodes with between 2 and n nodes, that number of paths is 
given by 

∑n

k=2
P(n, k − 2) , where P(n, k) denotes the number of k-permutations of 

n nodes, and thus 
∑n

k=2
P(n, k − 2) ≤ nn−1 . Moreover, scanning each label implies 

creating at most n new more labels. Creating a label has time of O(|L| + 2) , and test-
ing its dominance is done by comparing it with previous labels, which requires at 
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most 
∑�L�

k=1

��L�
k

�
= 2�L� comparisons, and thus it has time of O(2|L|) . Therefore, Algo-

rithm 1 is of O(nn−1(|L| + 2|L|)) , or simply O(nn−12|L|).

Proposition 4  The worst-case number of operations performed by Algo-
rithm  1 is of O(nn−12|L|), and Algorithm  2 is of O(m + n log n + K nn+12|L|) or of 
O(m + n log n + K nn2|L|), if K paths are ranked with the Yen’s algorithm, or with 
MPS algorithm, respectively.

3.4 � Computational experiments

Computational tests were run to assess the performance of the method introduced 
earlier as well as to compare it with the mixed integer formulation given by (2)–(3). 
With this purpose, Algorithm 2 (denoted by SLA) was coded in C language. In order 
to rank the simple paths in G by order of cost, the code SLA uses the MPS algorithm 
(Martins et al. 1999). A maximal number of 7 × 106 generated paths was imposed 
in the code. Additionally, the formulation (2)–(3), hereafter designated as ILP, was 
solved with CPLEX 12.7. The imposition, in Algorithm 1, of that bound on the num-
ber of generated paths is associated with computer memory requirements and guar-
antees that, in the vast majority of the application ranges of the resolution method, 
an optimal solution may be obtained. This will be shown in the experimental results 
described next. This is a common procedure when combinatorial algorithms of this 
type are applied to telecommunication networks and also for performance compari-
son with the ILP solutions in terms of the resulting CPU times. As a consequence, 
there will be a few cases for which that bound is attained so that the algorithm stops 
and only sub-optimal solutions are obtained. This will be illustrated in some results 
for the network Germany50, the one of greater dimension and connectivity in the 
experimental setting.

All tests ran on an Intel® i7-6700 Quad core, with 8 Mb of cache, a 3.4 GHz pro-
cessor and 16 Gb of RAM, over openSUSE Leap 42.2

Table 3   Test parameters

Network n m � = m∕n |L| �

NSFFixedLabels Betker et al. (2003) 11 52 4.7 21 1.5
NSFRandomLabels Betker et al. (2003) 14 42 3.0 15, 20, 25 1, 2, 4
NobelEU Orlowski et al. (2010) 28 80 2.9 15, 20, 25 1, 2, 4
Cost266 Orlowski et al. (2010) 37 114 3.1 15, 20, 25 1, 2, 4
Germany50 Orlowski et al. (2010) 50 176 3.5 15, 20, 25 1, 2, 4
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3.4.1 � Test bed

The set of experiments used reference networks from the literature in telecommu-
nications, mentioned in Betker et al. (2003) and Orlowski et al. (2010) and summa-
rized in Table 3. These include the network Cost266, originated from the project 
COST266-Advanced Infrastructure for Photonic Networks (Maesschalck et al. 2003) 
of the European Cooperation in the Field of Scientific and Technical Research. It 
also includes NobelEU and Germany50, reference networks originated from the 
European project NOBEL (NOBEL 2019). These networks are undirected, therefore 
each of their undirected arcs, {i, j} , was duplicated as two directed arcs in opposite 
directions, (i, j) and (j, i). The values n and m in Table 3 refer to the number of nodes 
and arcs in the used network representation.

The results presented in the following are mean values obtained for 10 different 
seeds and 45 origin-destination pairs, that is, 450 instances, for each set of param-
eters. For each arc (i, j) ∈ A , the cost cij represents link occupation and is given by 
cij = 1∕bij , where the available bandwidths bij are randomly generated, according to 
the distributions shown in Table 4, in the sets:

The distributions D1, D2 and D3 represent uniformly, highly and lightly loaded 
networks, respectively. The SRLGs Lij are uniformly generated between 1 and 
|L| = 15, 20, 25 , with mean number of SRLGs per arc � = 1, 2, 4.

Ii ={2 + 2k ∶ k = 20i,… , 20(i + 1) − 1} (i = 0, 1, 2)

I3 ={2 + 2k ∶ k = 60,… , 78}

Table 4   Available bandwidth 
distributions

I0 (%) I1 (%) I2 (%) I3 (%)

D1 25 25 25 25
D2 70 15 10 5
D3 18 18 18 46

Fig. 4   Mean CPU time in NSF-
FixedLabels network
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3.4.2 � Test results

The average run times (in seconds) for each set of parameters are shown in Figs. 4, 
5, 6, 7, 8. In the case of the Germany50 network, the code SLA was halted when 
the memory space mentioned earlier was exceeded, which in this case happened for 
all the instances. For this reason, although both the run times obtained by ILP and 
by SLA are presented in Fig. 8, only the first ones correspond to problems that ran 
until the end.

Fig. 5   Mean CPU time in NSFRandomLabels networks

Fig. 6   Mean CPU time in NobelEU networks

Fig. 7   Mean CPU time in Cost266 networks
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For the first four types of networks the two approaches tend to perform slower as 
� increased. This behavior was more consistent for the code SLA and the increase in 
the CPU time can be explained by the more demanding comparison between node 
labels when the number of risks is bigger. The CPU times for the ILP were always 
smaller than 6 seconds. In the case of code SLA, the CPU times slightly increased 
with the size of the network, but were in general clearly less than 1 second, except-
ing for the Germany50 network—Fig. 8. It is important to note that the proposed 
algorithm clearly outperformed the ILP procedure for all networks/instances 
excepting in a particular situation for the Cost266 networks with distribution D2, 
|L| = 25 and � = 4—Fig. 7—and for the larger network, Germany50.

As mentioned earlier, the times of the code SLA shown in Fig.  8 correspond 
to the mean run times until the algorithm was halted due to the required memory 
space. The best solution found by the algorithm was compared to the optimal solu-
tion obtained by the linear integer formulation ILP for the Germany50 networks. 
The percentage of instances for which the code SLA was capable of finding an opti-
mal solution is reported in Table 5. According to these results the optimal solution 
was found for most cases, and in the worst case the optimum could not be found 
for 7% of the instances for distribution D3, with |L| = 15 and � = 1 . Table 6 sum-
marizes the results obtained for three instances of the Germany50 networks, with 

Fig. 8   Mean CPU time in Germany50 networks

Table 5   Problems for which 
SLA found all optimal solutions 
(%) in the Germany50 network

� = 1 � = 2 � = 4

Dist.∖|L| 15 20 25 15 20 25 15 20 25

D1 100 100 100 99 100 100 100 100 98
D2 100 100 100 100 100 100 100 100 99
D3 93 100 100 100 99 100 100 100 99

Table 6   Instances for which 
SLA did not obtain the optimal 
solutions in the Germany50 
network

CPU time (ms) Best (l, c) found by SLA Optimal (l∗, c∗)

2442.225 (1, 1416.880) (0, 2396.6318)
2616.893 (1, 1381.037) (0, 2396.6318)
2827.702 (1, 1444.887) (0, 2760.8597)
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|L| = 15 labels and � = 1 , for which SLA was not capable of finding an optimal solu-
tion. For these instances the obtained sub-optimal solutions include path pairs with 
one risk in common while the optimal ones are risk-disjoint but have higher costs. 
Nevertheless, these were very rare cases, in the considered experimentation setting, 
further noting that for all the instances, in the other networks, the computed solu-
tions were always optimal.

The CPU times of the proposed resolution method are fully compatible with resil-
ient routing operational design involving off-line calculation of pairs of primary and 
back-up protection paths in various types of telecommunication transport networks 
such as optical networks or MPLS-TP (Multiprotocol Label Switching-Transport 
Profile) networks. They are even compatible with dynamic end-to-end protection 
mechanisms (for non real-time application) with up-dating periods of not less than 
ten seconds for all typical network scenarios.

4 � Conclusions

We presented an exact algorithm for solving the lexicographic maximally risk-
disjoint/minimal cost path pair problem. This is the most common formulation of 
a routing design problem in telecommunication networks, involving the joint cal-
culation of an active and a back-up path for each node to node connection, both 
paths being subject to failures represented through SRLGs. The proposed resolu-
tion method is a lexicographic minimal label-minimal cost path pair algorithm 
which combines a path ranking method and a path labelling algorithm. Also, an 
Integer Linear Programming formulation of this lexicographic problem, inspired 
by Hu (2003), was considered for performance comparison purposes.

Extensive experiments for evaluating the computational performance of the 
proposed lexicographic algorithm and the ILP formulation, applied to four ref-
erence test networks (commonly used in the analysis of resilient routing design 
models in telecommunication networks) and using various random labels and cost 
distributions, were carried out. These experiments have shown that the algorithm 
performs clearly more efficiently than the ILP method excepting for the networks 
with the highest dimension and connectivity. The computational code ran from 
a few ms to a few hundreds of ms in networks of low or medium size/connectiv-
ity and up to some seconds for the greater networks. In general, the CPU times 
increased with the size of networks, the connectivity and, in most cases, with the 
increase in the average number of SRLGs/labels per arc.

These results make the proposed algorithm suitable for a wide range of appli-
cations in telecommunication resilient routing design. Even for the larger net-
works, for which it  is less efficient than the ILP formulation, the algorithm may 
still be useful for practical or economic reasons since it does not require the 
installing of CPLEX routines in all routers (or path computational elements) of 
the network with the inherent computational requirements and licensing costs for 
the network operator. Finally, a possible adaptation of the core algorithms to the 
bicriteria optimization version of the maximally risk-disjoint/minimal cost path 
pair problem, deserves further investigation.
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