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ABSTRACT

In this work we present a facial skin detection method, based on a deep learning architecture, that
is able to precisely associate a skin label to each pixel of a given image depicting a face. This is
an important preliminary step in many applications, such as remote photoplethysmography (rPPG) in
which the hearth rate of a subject needs to be estimated analyzing a video of his/her face. The proposed
method can detect skin pixels even in low resolution grayscale face images (64x32 pixel). A dataset
is also described and proposed in order to train the deep learning model. Given the small amount of
data available, a transfer learning approach is adopted and validated in order to learn to solve the skin
detection problem exploiting a colorization network. Qualitative and quantitative results are reported
testing the method on different datasets and in presence of general illumination, facial expressions,
object occlusions and it is able to work regardless of the gender, age and ethnicity of the subject.

1. Introduction

Skin detection is an important preliminary task in a wide
range of image processing problems. In particular this work
is driven by the development of a remote PhotoPlethysmoG-
raphy (rtPPG) application. This kind of applications aims at
solving the problem of estimating the heart rate of a subject
given a video stream of his/her face. Typically a signal, repre-
senting the time variation of the light intensity reflected by the
skin, which is caused by the transition of blood in the vessel
underneath the skin, is extracted averaging the color/intensity
value on some selected pixels in each frame. This signal is
then consequently analyzed in order to estimate the heart rate
of the subject and/or other bio-medical measurements. Many
rPPG applications (Rouast et al., 2017)) estimate the face re-
gions in which to extract the signal using a combination of clas-
sical face detection methods, such as |Viola and Jones| (2001),
and fixed proportions in order to select specific parts of the
face, e.g. typically the forehead. This procedure is not opti-
mal since the skin in preselected parts of the face could not
be visible due to occlusions of hair, wearable objects or other
elements. Furthermore skin segmentation based on a prede-
fined template suffers from errors of the face detection phase
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and/or due to intrinsic variance of face shapes. Moreover due
to the high variability of the subject pose, motion blur, age,
ethnicity, hair, facial hair, wearable objects, etc., the first step
of a rPPG application (i.e. selecting the face region in which
to extract the signal) is not trivial and errors in this step could
heavily compromise the final hearth rate estimation. The major-
ity of rPPG applications (Rouast et al.| 2017) utilize a standard
RGB camera, based on CMOS or CCD technologies, in order
to acquire the video stream. The goal of this work is to pro-
pose a skin detection algorithm able also to work when applied
to images acquired using SPAD (i.e. Single-Photon Avalanche
Diode) array cameras. This kind of cameras is capable to detect
even a single photon (Bronzi et al.,|2016a)), has extremely high
frame rate (Bronzi et al.l |2014) and has proved to be useful in
a very large range of applications (Bronzi et al., 2016b), such
as 3D optical ranging (LIDAR), Positron Emission Tomogra-
phy (PET) and many others. In some rPPG works (Paracchini
et al.,2019) SPAD cameras are used instead of traditional ones,
where their high precision are useful in measure accurately the
skin intensity fluctuations produced by the blood flow. On the
other hand, due to the complexity of the SPAD sensor, this kind
of cameras has a very small spatial resolution, 64x32 in|Bronzi
et al.[(2014)), and produces grayscale intensity image, since the
low spatial resolution does not allow the use of Bayer filters.
In this work we propose an automatic method, based on deep
learning, with the aim of solving the task of detecting skin pix-
els in face images. Furthermore, the proposed method is de-



signed to work with low resolution grayscale images such the
one obtained using a SPAD array camera (Bronzi et al., 2014).
The rest of the paper is organized as follows: in Sec. [2| a brief
state of the art review on skin detection is reported highlighting
the peculiarity of the problem addressed in this work; in Sec. 3|
the proposed method is described while in Sec. [] the training
procedure that exploit transfer learning is illustrated; qualita-
tive and quantitative results are shown in Sec. [5| and finally in
Sec. [0 the contribution of this work are highlighted.

2. Related work

The skin detection problem is usually tackled using color
information and exploiting the fact that skin-tone colors
share some common properties defined in particular color
spaces (Kawulok et al.,[2014). After applying the optimal color
space transformation it is possible to define rules to discrimi-
nate between skin pixels and other materials. Since this kind of
methods are based on color information, they obviously require
color images (RGB) to be applied to. As stated in Sec. [I] due
to the choice of developing a method able to work with SPAD
camera output (grayscale), this class of methods could not be
applied in this specific problem. Moreover, they have no way
to discriminate between the face and other body parts and this
could be a problem in rPPG in which, due to the blood flow
dynamic in the body, different body parts could carry different
information (i.e. time-shifted signal). An extensive review of
color based skin segmentation methods could be find in |Kaku-
manu et al.| (2007). Some skin detection methods able to work
with grayscale images exist, e.g. Sarkar et al.|(2017)) , but they
achieve good results only working with high resolution images
since they learn local texture characteristics. Another problem,
related to the one described in Sec. (1] is face parsing or face seg-
mentation, which is the problem to analyze an input image of a
face and densely segment it in different regions corresponding
to different face parts and the background (Zhou et al., 2017).
This is performed by labeling pixels in a dense fashion, i.e. to
each pixel a label is assigned. In recent years, many deep learn-
ing methods have been proposed to solve this kind of problems,
e.g.Liu et al. (2017), Nirkin et al.| (2017) and Zhou et al.{(2017),
exploiting the promising results achieved by neural network
based methods in semantic segmentation (Guo et al., |2018).
Even though this problem is very similar to the one tackled
in this paper (e.g. this last could be view as a simplified seg-
mentation problem with just two classes, i.e. skin and other)
some differences exist in the definition of the two problems. In
fact, in face parsing methods, wearable objects such as glasses
and sunglasses, or facial hair are not separated from the face
region in which they are present, making this kind of methods
not suitable for the skin detection problem. Moreover, methods
such the ones proposed in Zhou et al.|(2017) and [Liu et al.
(2017) work on high resolution color images. To the best of
our knowledge no other method specifically designed to solve
the skin detection problem on low resolution grayscale images
exists in the state of the art.

Table 1. Pretraining network architecture (Baldassarre et al.,2017). Blue
layers are used for transfer learning.

Encoder Decoder

Layer Kernels | Layer Kernel
Conv. (str. 2x2) 64x3x3 Conv. 128x3x3
Conv. 128x3x3 | Upsamp. 2x2

Conv. (str. 2x2) 128x3x3 | Conv. 64x3x3
Conv. 256x3x3 | Conv. 64x3x3
Conv. (str. 2x2)  256x3x3 | Upsamp. 2x2

Conv. 512x3x3 | Conv. 32x3x3
Conv. 512x3x3 | Conv. 2x3x3
Conv. 256x3x3 | Upsamp. 2x2

fusion

Conv. 256x1x1

3. Proposed method

As described in Sec. 2] deep learning based methods repre-
sent the state of the art for segmentation problem and they usu-
ally require a massive amount of data. On the other hand, due
to the uniqueness of the skin detection problem, the amount of
data available is very limited. For this reason a transfer learn-
ing (Pan and Yang} 2010) procedure was adopted. In particular,
a colorization network (Baldassarre et al.l 2017) was adapted
for the skin detection task. The main reason behind the choice
of exploiting a colorization method as a starting point for the
proposed network is the empirical observation that a method of
this kind applied to a grayscale image that depicts a face cor-
rectly colorize each skin pixel with the proper skin color. This
means that the network must have learned a way to discriminate
between skin pixels and pixels that depicts other objects. Fur-
thermore, both the skin detection problem described in Sec. [I]
and the colorization problem share the same kind of input, i.e.
grayscale image. Moreover collecting training data in order to
train a colorization network is trivial and the problem could be
seen as a self supervised one. The driving idea is to propose
slight changes to the colorization network in order to be able to
transfer as much knowledge as possible from the colorization
task to the skin segmentation one and then use a fine tuning
approach.

3.1. Network topology

The colorization network presented in [Baldassarre et al.
(2017), whose architecture is reported in Tab El, is based on
a convolutional autoencoder with an auxiliary parallel branch.
This additional branch, starting from the input image, exploits
the first layers of a pretrained Inception-ResNet-v2 (Szegedy
et al., [2016)) in order to extract a vectorized representation of
the image semantic. This vector is then merged to the encoded
representation of the main branch before performing the decod-
ing part. In particular this operation is performed to help the
colorization method better understand the scene depicted in the
input image, in order to colorize more precisely a large variety
of objects and scenes. On the other hand, this auxiliary branch
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Fig. 1. Proposed network topology. The green layers and the last one are trained from scratch while for the blue ones the knowledge is transferred from a
colorization network. The number under each layer indicate the dimension of its output (number of filters).

is totally unnecessary in the case that the input images are a-
priori known to contain just a single human face. However its
role was crucial in the [Baldassarre et al| (2017) approach, in
the proposed network this additional branch was completely re-
moved, providing us with a suitable architecture. Another ma-
jor difference between the proposed network topology and the
one proposed in [Baldassarre et al.| (2017) resides in the output
layer dimension. In particular, the original colorization network
outputs a two channels image relative to the a* and b* channels
of a L*a*b* color representation of the im-
age (L being the luminance of the image, i.e. the grayscale input
image). On the other hand, the proposed network needs to out-
put a single channel image (called mask in the rest of the paper)
with each pixel value $;; € [0, 1]. This is achieved substituting
the last activation function with a sigmoid function. In partic-
ular, for each pixel of the output mask, its value represents the
probability attributed by the network of the input image having
a skin pixel in that particular location. As reported in Fig[I} the
encoding part of the network is composed by 8 convolutional
layers, with 3x3 kernels and ReLu activation functions, and 3
max pooling layers in order to reduce the spatial dimension in
the last encoding layer to 1/8 of the original input dimension.
On the other hand, the decoding part is composed by 6 lay-
ers with 3x3 kernels and ReLu activation functions (except the
last one, which is a sigmoid function in order to output val-
ues in € [0, 1]) coupled with upconvolutional layers to increase
back the spatial dimension to the input one. In Fig[I] the layers
colored in blue are the ones trained propagating the coloriza-
tion network knowledge while the other ones are trained from
scratch. The central ones (with output depth 256 and 128) need
to be trained with no prior information due to the removal of the
colorization fusion layer. The next two have input and output
shapes as in [Baldassarre et al.| (2017) so their weights value is
propagated. Finally, the last ones, since are introduced to solve
the skin detection problem, are randomly initialized.

4. Training procedure

As stated in Sec. ] the training procedure, adopted to es-
timate the optimal network parameters, is based on a trans-
fer learning approach. This implies that, before training the
proposed network, the colorization network described in
dassarre et al.| (2017) needs to be trained on an appropriately
chosen dataset. The same loss function and optimization algo-
rithm as the ones described in the original work were used, i.e.
mean square error, between the ground truth color image and

the one reconstructed by the network, and Adam
2014) respectively; further information on the colorization

network training are reported in[Baldassarre et al.|(2017). As a
training set, on which to perform the colorization training step,
a collection of color images depicting faces downloaded from
the internet was added to the Labeled Face in the Wild (LFW)
dataset (Huang et all, [2007) reaching 20000 images, doubled
using data augmentation (horizontal flipping). In order to per-
form the colorization network training step, the colored images
were used as the desired ground truth output while a grayscale
representation of them were used as the network input. The
model was trained exploiting the implementation described in
the original paper (Baldassarre et al 2017) which is imple-
mented using synergistically Keras (Chollet et al., 2015)) and
Tensorflow (Abadi et al.|, 2015). After performing the training
of the colorization method, the shared layers between the two
networks (the ones colored in blue in Fig[T) were frozen (i.e.
set to not trainable) and their weights value set to the corre-
sponding one obtained from the colorization training step de-
scribed above. The other ones were randomly initialized. The
network was trained using Keras (Chollet et al 2015), with
Tensorflow (Abadi et al[2015)) as backend, with the Adam op-
timization algorithm (Kingma and Ba,[2014)) and a learning rate
of 0.0005. The loss function and the datasets used are described
in Sec.[d.d]and Sec. 2] respectively. After a sufficient amount
of epochs, 50, a fine tuning step was finally performed in which




all the layers were trained on the whole dataset and using the
same training conditions, for an additional 100 epochs on the
same training set.

4.1. Loss function

Regarding the loss function, the mean square error could be
sufficient in order to train the network to perform the skin seg-
mentation task. On the other hand, considering the main mo-
tivation that drives the building of this network (i.e. the rPPG
application described in Sec. [I)), false negative and false posi-
tive errors should not have the same weight in the loss function
computation. In particular, in order to estimate the heart rate of
a subject, it is not strictly necessary to consider all visible skin
pixels whilst, on the other hand, labeling as skin a pixel depict-
ing other tissues or materials could have an important negative
impact on the final estimation. For this reason, given a pre-
dicted mask ¥ obtained applying the proposed network to an
input grayscale image x having a ground truth mask y with ele-
ments y;; € {0, 1}, we define the loss function as:

EGy) = Y 0y =)@ yy+ (A=)l =y) (1)
ij

Where @ € [0, 1] is a parameter introduced in order to make
E asymmetric. We choose a value for @ smaller than 0.5, e.g.
0.4, in order to penalize false positive errors (i.e. y;; = 1 with

yij = 0).

4.2. Datasets

To the best of our knowledge, there is no dataset available
specifically created for the purpose of solving the facial skin
segmentation problem. Some skin detection dataset exists,
e.g. Tan et al.| (2014), but they features images with multiple
people and annotations with other body parts, which made them
not usable for this particular problem. Moreover the number
of images in this dataset is extremely low, e.g. 78 images are
present in [Tan et al.|(2014), and insufficient to train deep meth-
ods. For this reason, we choose to adapt two already existing
datasets, i.e. MUCT (Milborrow et al.l |2010) and Helen (Zhou
et al., 2013)), consisting of RGB face images annotated with
landmark locations, in order to produce facial grayscale images
associated with skin masks. In particular, both datasets provide
diversity in lighting, pose, age and ethnicity of the subjects.
Moreover, the ones appertaining to the MUCT dataset are ac-
quired in a controlled environment whilst the Helen ones are
captured in the wild. A more detailed description on the pro-
cessing performed on the two dataset is described in the follow-
ing sections (Sec[.2.Tand Sec4.2.7|for the MUCT and Helen
datasets respectively).

4.2.1. MUCT dataset

As described in Milborrow et al.[ (2010), the MUCT dataset
consists of 3755 images (each one with a resolution of 640x480
pixels) captured from 276 subjects. Each image depicts a single
face with a homogeneous blue background and it is associated
with the pixel coordinates of 76 manually annotated facial land-
marks. During the photo acquisition, in order to increase the
dataset variety, five different camera views and three different
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lighting sets were used. The landmarks provided are relative to
the lower face contour, eyes, eyebrows, nose and mouth. Start-
ing from these landmark positions, for each image, a mask is
produced considering a filled polygon shape with corners given
by the jaw/chin contour points and the eyebrows upper contour.
The eyes’, eyebrows’ and mouth’s regions are consequently re-
moved from the mask using the corresponding given contours.
Unfortunately, as in the majority of facial landmark datasets,
no upper face contour annotation is provided in this dataset
(skin/hair contour). In order to extend the obtained masks to
the forehead region a color similarity method has been used, ex-
ploiting the RGB channels information (the color information
is indeed available in this preprocessing step for the creation of
the dataset but is not available in the network training step). In
particular, a rectangular region above the eyebrows is consid-
ered; each pixel in that region is clusterized in 3 sets using a K-
means algorithm and using the Euclidean distance in the RGB
space the pixel belonging to the hair or other occluding objects
are rejected. This method, being automatic and based on color
similarity, inevitably introduces some errors in the pixel label-
ing and produces worse results compared to manual annotation,
which is unfortunately unavailable. Moreover in this dataset a
binary information on the presence of glasses is provided al-
though their position inside the image is not available. In order
to remove the glasses region from the mask two rectangle of
fixed size and centered around the eyes are subtracted from the
mask. Lastly, in the original dataset facial hair is not labeled and
in order to remove it from the mask a similar approach to the
one adapted for the forehead region is performed in the lower
part of the face and only on male subjects (gender labels are
available in the original dataset).

4.2.2. Helen dataset

The Helen dataset features 2330 high quality, real world pho-
tographs of a large variety of people. Each image, each one
with a different resolution (from less than 1 Mpixel up to 12
Mpixel), is densely annotated with landmarks locations. More-
over it has been used for face parsing works (Smith et al.| [2013))
in which an accurate face segmentation annotation for differ-
ent part of the face has been provided. The masks need for the
skin segmentation problem are simply built combining differ-
ent segmentation regions. Unfortunately, in the Helen dataset
many images feature more than one visible face while just one
face is annotated in each image. Training a CNN on this data
could compromise its performances due to a not consistent an-
notation. In order to avoid this problem a simple state of the
art face detector algorithm (Viola and Jones, 2001) is run on
each image of the dataset. Since even in presence of multiple
faces the ground-truth annotation is always related to just one
of faces a new images were created cropping the original im-
ages in regions centered around the annotated face. This step,
being performed automatically, introduces inevitably some er-
rors. Lastly, also in this dataset, a facial hair annotation is un-
available and the same method used for the MUCT dataset was
implemented in order to remove beard regions from the masks.



Fig. 2. Example of some images in the proposed dataset with the skin mask
superimposed, originally in the MUCT and the Helen datasets respectively.

4.2.3. Complete dataset

The complete dataset is built merging the two datasets ob-
tained as described in Sec. .2.1] and Sec. [{.2.2] resulting in
roughly 6000 grayscale face images (converted from the orig-
inal RGB images) each associated with a skin labeling mask.
Two examples of images in the final dataset are reported in
Fig. 2] on the left an image originally in the MUCT dataset
and on the left one from the Helen one; the ground truth skin
mask is superimposed in pink. Moreover, in order to better ap-
proximate the test conditions (images coming from low spatial
resolution devices, such as SPAD cameras) the grayscale im-
ages were downsampled to 64x64 (adding black border if nec-
essary) and then upsampled to 128x128 using bicubic interpola-
tion. The training/testing data split was obtained selecting 100
images (50 for each original dataset, randomly selected from
MUCT and selected in the same way as Zhou et al.[(2013)) for
Helen) for building the testing set. In order to ensure fair skin
detection results, all the images belonging to the test set were
checked manually and the annotations were corrected if needed.
Subsequently, a horizontal flipped version of each training im-
age is added in order to perform data augmentation. Finally,
a validation set is created randomly selecting the 10% of the
training set.

5. Results

The proposed method was trained as described in Sec. [ us-
ing the training set described in Sec.[.2.3] In this section some
results are reported highlighting the necessity for the transfer
learning approach and the accuracy of the obtained method, in

Sec.[5.I]and Sec. [5.2]respectively.

5.1. Training with transfer learning

The learning curves of the skin detection network, obtained
following the training procedure described in Sec. 4] are re-
ported in Fig.[3] In particular, red curves are related to the loss
error calculated on the whole training set at each epoch while
blue ones are obtained on the validation set. As described in
Sec. ] following a transfer learning approach, in the first part
of the training (first 50 epochs) the majority of the layers are
kept frozen, as described in Sec. 3.1} preserving the weights
value inherited from the colorization network, trained in a pre-
liminary step as described in Sec.[d This allow the network to
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Fig. 3. Loss values during the training. Red lines represent loss values in
each epoch on the training set while blue ones are obtained on the vali-
dation one. Dashed lines are the related to training directly on the skin
detection problem with random initialization.

quickly adapt to the skin detection problem as can be seen in the
first part of the solid red and blue curves reported in Fig.[3] On
the other hand, since the colorization and skin detection prob-
lem are related but different, an additional fine tuning step is
necessary in order to further specialize the network to solve the
skin detection problem. The effect of the fine tuning is clearly
visible in Fig.[3] in which both the solid curves have a sharp de-
cay after the dashed vertical gray line (fine tuning begin point).
The importance of the transfer learning approach could be also
observed in Fig.[3] in which the red and blue dashed lines repre-
sents respectively the training and the validation loss obtained
without using the colorization network wights as the initializa-
tion. In this case the training almost immediately collapses to
the trivial solution of producing a masks with just zero values.
Once the model reaches this point the training is not able to
converge to other more interesting solutions. The same trivial
result is obtained in all the training runs executed, regardless of
the random initialization and hyperparameter settings. As can
be observed from Fig.[3] a two steps approach, is able to drive
the model training to a non trivial solution reaching a more in-
teresting minimum point of the loss function.

5.2. Skin detection accuracy

5.2.1. Quantitative Results

The proposed method was tested on the 100 images test set
described in Sec. #:2.3] resulting in a test loss value of 0.012
between the output masks (values € [0, 1]) and the ground truth
ones (values € {0, 1}). ROC curves for the per pixel skin clas-
sification task are reported in Fig.[d In particular the proposed
method achieved the best results on the test images originally
belonging to the MUCT dataset (green line) given the less vari-
ability of the data, as described in Sec. d.2.1] Considering the
complete test set curve (red line), the best work point have a
true positive rate (i.e. recall) of 89.8% with just 3.0% of false
positive rate (i.e. fallout), thanks to the asymmetrical loss func-



Table 2. Comparison between the proposed method and Nirkin et al. (2017) based on intersection over union and F-score results obtained on MUCT, Helen
and complete test set. The second line show results obtained combining Nirkin et al.| (2017) and ground-truth masks in order to exclude eyes, eyebrows

and mouth regions.

10U F-score
Method MUCT Helen Complete MUCT Helen Complete
Nirkin et al.|(2017) 70 56 63 82 71 76
Nirkin et al.[(2017) + GT - 62 - - 76 -
Proposed method 78 69 73 87 81 84
. ‘ 'ROC curve. B 5.2.2. Qualitative Results
Some qualitative results with various images belonging to the
097 1 test set are shown in Fig. [5|and Fig. [6] where the returned skin
08| | mask is superimposed to the input image using a pink color.
Fig. [f] reports some results on images originally belonging to
o o i the Helen dataset while Fig. [f] shows other results using im-
206 1 ages initially in the MUCT dataset. As can be observed, the
% - proposed skin detection method is able to produce qualitatively
a good results even in presence of non frontal faces, in-plane ro-
E A | )l tation, different head shapes and sizes, expressions, hair occlu-
03! 1 sions, glasses and other wearable objects. The beard is not al-
! ways properly rejected, especially if it has an intensity similar
0.2 Complete test set | - . ; . . .
Helen test set to the subject skin. Moreover, in Fig. [/| some masks obtained
0.1 et with the proposed method are superimposed to some input im-
ok . ; y : al ages acquired by the SPAD array camera. These results are
0 0.2 0.4 0.6 0.8 1

False positive rate

Fig. 4. Skin classification ROC curves obtained with the proposed method
on the complete test set (red), MUCT test subset (green) and Helen test
subset (blue).

tion defined in Sec. .1l As explained in Sec. [2] other meth-
ods for facial skin detection on grayscale low resolution im-
ages are rare or no existing. However a quantitative compari-
son between the proposed method and facial segmentation ones
could be made. In particular we selected the facial segmenta-
tion method proposed in [Nirkin et al. (2017) since as ours it
can work with occluded faces. Since the method inNirkin et al.
(2017) produces masks that contain the eyebrow, eye and mouth
regions we tested also the accuracy of this method combined
with ground-truth information of these regions. In particular
we removed from the mask obtained from |Nirkin et al.| (2017
the ground-truth mask of the unwanted regions (assuming so a
perfect estimation of them). We compared the three methods
(the one proposed by us and the one in Nirkin et al.[(2017) not
using or using ground-truth information) adopting the Intersec-
tion Over Union (IOU) and F-score metrics. In particular the
F-score is defined as the harmonic mean between precision and
recall. The results obtained are summarized in Tab2} as can be
observed even using the ground-truth information for the eyes,
eyebrows and mouth regions, the proposed method produces
more accurate results achieving a IOU of 73% and an F-score
of 84% on the complete test set.

particularly promising since these images belong to a very dif-
ferent dataset in respect to the one used for training, even ac-
quired with a different technology. As can be seen in Fig.[7] the
network is able to generalize and produce good quality results
even on images acquired in different conditions compared to the
training dataset, and even in presence of different expressions,
poses and heavy occlusions.

5.3. Real time performance

We evaluated the time performance of our method executing
it on the test set described in Sec. achieving an execution
time of 6.6 milliseconds for each image corresponding to 152
fps. We obtain this result with a Tensorflow (Abadi et al.,[2015)
implementation of the network and executing it on a Nvidia
Titan Xp® GPU.

5.4. Hidden layer output visualization

In Fig. [§] a visualization of the knowledge acquired by the
network is reported. In particular, Fig. [§] visualizes the output
of the decoder’s second hidden layer when the network is run
on an image acquired by the SPAD camera: the left picture
in Fig. As can be observed, after the training some filters
specialized in detecting same particular facial feature relevant
for the skin detection problem (e.g. eyes, 4th and 6th column
on 5th row), the background (6th column on 1st and 2nd row)
the face contour (5th column on Ist row) and finally the skin
(6th column on 3rd row, 1st column on 5th row and 5th column
7th row).



Fig. 5. Some qualitative results on images in the test set belonging originally
to the Helen dataset.

6. Conclusions

In this paper, we presented a deep learning based method
proposed in order to solve the facial skin detection problem on
low-resolution grayscale images, motivated by a rPPG appli-
cation (as described in Sec.[I). Analyzing the state of the art
of similar problems, in Sec. [2] we showed the peculiarity of
the proposed problem and how, to the best of our knowledge,
the method described in this work is the first being proposed
specifically to solve it. Given the similarity between this prob-
lem and a semantic segmentation one, and the good accuracy
achieved by neural network methods in this field, a deep learn-
ing based method was proposed. On the other hand, these kind
of methods need massive amount of data to be trained on. Since
the facial skin detection problem is very specific unfortunately
not a huge amount of data are available for this specific prob-
lem. For this reason a transfer learning approach was adopted
in the training phase. In particular, the proposed network ar-
chitecture was chosen in order to have the majority of layers
in common with the convolutional neural network proposed to
solve the grayscale images colorization problem (Baldassarre
[2017). The similarities between the two problems are
described in Sec.[3.1] As described in Sec.[d] the adopted trans-
fer learning strategy was the following: firstly the coloriza-
tion method was trained on a large dataset of unlabeled face
images while the proposed network was subsequently trained
starting from the colorization network weights and minimiz-
ing an asymmetric loss function, described in Sec. d.I} on a

Fig. 6. Some qualitative results on images in the test set belonging originally
to the MUCT dataset.

Fig. 7. Qualitative results on three face images acquired by the SPAD cam-
era.

novel dataset obtained using two freely available datasets (as
described in Sec. [#.2). Lastly in Sec. [5.1] this training proce-
dure has been justified showing that, without using it, it would
be impossible to train the proposed network with the few data
available. In addition, in Sec. @ some quantitative results
were reported providing accuracy evaluation for the proposed
skin detection method and comparisons with a state of the art
face segmentation method. Moreover, many network outputs
were shown for both images acquired in similar conditions with
respect to the ones used to built the training set and for im-
ages completely independent from the training set, acquired
with the SPAD camera. Both these results show how the pro-
posed method is able to achieve quantitative and qualitative
good results in the skin detection problem even in presence of
different poses, ages, expressions, ethnicity, wearable objects
and other occlusions. The trained model along with image la-
bels created by the author of this work are made available at
the link https://github.com/marcobrando/Deep-Skin-
Detection-on-Low-Resolution-Grayscale-Images.
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Fig. 8. Visual representation of the activations of the second hidden layer
in the decoder stage when tested on a face image acquired by the SPAD
camera.
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