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a b s t r a c t

A set of strategies and numerical techniques for simulating weakly compressible two-
phase flows is presented. A pressure formulation of the full Baer–Nunziato equations
with arbitrary equation of state is presented. Node centered finite volumes are used on
unstructured meshes in a fully implicit solver. To mitigate the pressure checkerboarding
that arises from the collocated variable arrangement, a Momentum Weighted Interpo-
lation formulation is derived specifically for the Baer–Nunziato equations. The proposed
approach is thoroughly tested against analytic and experimental data.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

This paper is a first step towards extending the work done by Re and Abgrall [1] on the development of a new
ressure-based formulation of the Baer–Nunziato model [2] for weakly compressible applications, such as the transport
f CO2 for the carbon capture and storage (CCS) process [3,4]. Various pressure-based models exist for the volume of

fluid approach [5,6] and for a simplified Kapila model [7]. We chose the model by Re and Abgrall [1] as it allows for
arbitrary equations of state (EoSs) and is, to our knowledge, the only pressure-based approach for a full disequilibrium
Baer–Nunziato type model. The aim of the present paper is to extend their 1D work to multidimensional unstructured
grids, within the simulation framework provided by the open-source software suite SU2 [8]. In this paper, we will only
consider the hyperbolic part of the model and neglect the relaxation terms.

One of the main problems that arise when moving from a 1D staggered approach to a multidimensional unstructured
ollocated variable arrangement in the weakly compressible regime is pressure checkerboarding [9]. This phenomenon
an be circumvented by using a staggered variable arrangement [10,11] which can be fairly straightforward for structured
eshes, but is more difficult to implement over unstructured meshes [12,13] and which also adds to the computational
ost. Another popular approach used to mitigate pressure checkerboarding is the Rhie & Chow interpolation [14,15], also
nown as the Momentum Weighted Interpolation (MWI). This approach has found great success, particularly in many
nstructured codes such as OpenFOAM [16]. MWI has been studied for both single [17–19] and multiphase [20–23]
lows, but there is no formulation in the literature for the Baer–Nunziato model. For this paper, we, therefore, derive
new formulation of the Rhie & Chow correction [14] specific for the Baer–Nunziato equations, following a procedure

nspired by the one in Bartholomew et al. [24]. Due to its importance in avoiding spurious oscillations across multi-
aterial interfaces, the pressure and velocity non-disturbance condition [25] is preserved by the proposed Rhie & Chow
orrection.
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The governing equations are discretized following the finite-volume approach by Re and Abgrall [1] wherever possible,
ut some adaptation is required since we are using a collocated variable arrangement on a multidimensional unstructured
esh instead of a 1D staggered approach. We integrate in time implicitly to overcome the acoustic limitation posed on

he timestep that in the weakly compressible regime may become very stringent.
This work’s main aim is to present the most straightforward extension of the 1D model by Re & Abgrall [1] to a

ollocated unstructured solver making use of the framework of tools provided by the open-source software suite SU2 [8].
ince we decided to move from a staggered variable arrangement, we need an alternative way of dealing with the
ressure checkerboarding problem. For this reason we derive a Momentum Weighted Interpolation specifically for the
aer–Nunziato equations to dampen such oscillations. We also showcase the capabilities of said model to work outside
he weakly compressible regime.

The paper starts with an outline on the conservation laws in Section 2, followed by the numerical discretization in
ection 3, with the Momentum Weighted Interpolation derived in Section 3.1.1. Numerical results obtained using the
eveloped solver are then presented. Since the solver has been built from the ground up for this work, we first show
ts validity by performing a pure advection test to check that the non-disturbance condition is fulfilled in Section 4.1,
nd a no-mixing shock tube test to check time and space convergence to the entropic solution in Section 4.2. Then,
he effectiveness of the MWI formulation is assessed in a custom-built multiphase test involving a helium slip bubble
n Section 4.3, and in the Helium shock interaction test in the compressible regime, for which experimental results are
vailable, in Section 4.4. Finally, conclusions are drawn in Section 5.

. Model

In this section, we recall the model by Re & Abgrall [1] which is used in this paper to model full disequilibrium two-
hase flows in the weakly compressible regime. In this regime, the reference Mach number Mr tends to zero, so the
lassical adimensional momentum equation presents a singularity (1/M2

r ) in front of the pressure gradient. This can be
avoided using a particular pressure scaling as done by Wenneker et al. [26]. This scaling was originally applied to the
1D Baer–Nunziato equations by Re and Abgrall [1]. First, we define the reference dimensional variables (·)r , as in Eq. (1),
here ρ is the density, U is the speed, P is the pressure, t is the time, and L is the length.

ρr Ur Pr M2
r =

ρrU2
r

Pr
tr =

Lr
Ur

(1)

We denote with the subscript (·)k the kth phase quantity, α the volume fraction, αρ the density, αρu the momentum,
nd P the pressure. Also, ˜(·) denotes dimensional quantities and (·) adimensional ones. We define the interfacial velocity

˜ I and interfacial pressure P̃I as

ũI =

∑
k αkρ̃kũk∑
k αkρ̃k

P̃I =

∑
k

αkP̃k. (2)

Let us now define for an arbitrary EoS the following dimensional thermodynamic quantities (c̃k is the speed of sound and
ẽk is the internal energy per unit of volume) and derivatives (χ̃k and κ̃k), as they will be later needed to define an equation
for the evolution of the phasic pressure.

c̃2k = χ̃k + κ̃k
P̃k + ẽk

ρ̃k
κ̃k =

(
∂ P̃k
∂ ẽk

)
ρ̃k

χ̃k =

(
∂ P̃k
∂ρ̃k

)
ẽk

. (3)

By analogy with the form of the speed of sound, a dimensional interfacial speed of sound c̃I,k is defined as c̃2I,k =

χ̃k + κ̃k
P̃I + ẽk

ρ̃k
. This is not a thermodynamic quantity but it is useful to write the phasic pressure evolution equation.

Now, all dimensionless quantities (·) can be computed from their dimensional counterpart ˜(·) as in Eq. (4). More details
n the derivation can be found in the original paper by Re & Abgrall [1].

Pk =
P̃k − Pr
ρrU2

r
uk =

ũk

Ur
ρk =

ρ̃k

ρr
ek =

ẽk
ρrU2

r
t =

t̃
tr

χk =
χ̃k

U2
r

κk = κ̃k c2I,k =
c̃2I,k
U2
r

−
1
M2

r

κk

ρk
c2k =

c̃2k
U2
r

−
1
M2

r

κk

ρk
x =

x̃
Lr

(4)

Finally, the dimensionless Re & Abgrall [1] pressure formulation of the Baer–Nunziato equations [2] is defined as in
Eq. (5). We maintain the definition of the interface quantities identical to Eq. (2) but we compute them with the
dimensionless counterparts of all the variables (e.g. PI =

∑
k αkPk). Note that there is one of each of these equations

or each phase, except for the volume fraction equation where the last phase’s volume fraction can be simply computed
2
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Fig. 1. Node centered finite volume control volume sketch.

as αNphases = 1 −
∑Nphases−1

k=1 αk.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αk

∂t
+uI · ∇αk = 0

∂αkρk

∂t
+∇ ·

(
αkρkuk

)
= 0

∂αkρkuk

∂t
+∇ ·

(
αkρkuk ⊗ uk + αkPkI

)
− PI∇αk = 0

M2
r αk

(
∂Pk
∂t

+uk · ∇Pk

)
+
(
M2

r αkρkc2k + κkαk
)
∇ · uk −

(
M2

r ρkc2I,k + κk
) (

uI − uk
)
· ∇αk = 0

(5)

As in the original work [1], the model is written in primitive variables and therefore conservation or convergence to
the weak solution are not guaranteed. These equations are agnostic to the choice of the equation of state, as long as it
can be expressed in the form ẽk = ẽk(ρ̃k, P̃k). For this particular work, we used the stiffened gas EoS [27], which is the
simplest model able to describe attractive and repulsive molecular effects, suitable for both liquids and gases. Its pressure
EoS reads

P̃k(ẽk, ρ̃k) = (γ̃k − 1)
[
ẽk − ρ̃kq̃0,k

]
− γ̃kP̃∞,k, (6)

where P̃∞,k and q̃0,k are gas-specific constants, which can be determined by fitting experimental data [28]. Note that if
P̃∞,k = 0 and q̃0,k = 0, the stiffened gas EoS devolves into the ideal gas EoS. The thermodynamic quantities and derivatives
for the stiffened gas EoS in the dimensional form are computed from Eq. (6) in Eq. (7), and the adimensional scaling is
done by following Eq. (4). Here cv,k is the specific heat capacity at constant volume, Tk is the temperature and γk is the
specific heat ratio.

ẽk =
P̃k + γ̃kP̃∞,k

(γ̃k − 1)
+ ρ̃kq̃0,k χ̃k = − (γ̃k − 1) q̃0,k κ̃k = (γ̃k − 1) T̃k =

P̃k + P̃∞,k

ρ̃kc̃v,k (γ̃k − 1)
(7)

3. Numerical discretization

In this section we describe the time implicit, finite volume, node-centered, dual-mesh, edge-based approach we use to
numerically discretize and solve Eq. (5) within the open source software SU2 [8]. Conservative terms are discretized using
pseudo-Rusanov fluxes and non-conservative terms are discretized using central difference schemes unless otherwise
specified (Section 3.1). To mitigate pressure checkerboarding, the divergence of the velocity is discretized by not using a
central difference scheme but using a Momentum Weighted Interpolated (MWI) velocity derived specifically in this work
for the Baer–Nunziato pressure formulation [1] (Section 3.1.1). To advance the unsteady simulation in time, a pseudo-
Newton–Raphson strategy is applied following the standard tools and procedures found in SU2 [8] (see Section 3.2).
Control volumes (CVs) are constructed around the primary mesh’ nodes as depicted in Fig. 1. We also depict the unit
normal n̂i,j and the unit vector êi,j along the edge between the control volumes Ci and Cj, which will be useful later.

We report the space–time discrete form of the integral form of a general system of conservation equations over the
th CV (Ci) in Eq. (8) before defining the residuals. Quantities related to the ith CV are denoted (·)i, quantities related to
ts jth CV are denoted (·) and quantities related to the current tn and the next tn+1 time step are denoted (·)n and (·)n+1
j

3
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respectively. Note that qn
i is the vector of variables we are solving for at time tn in Ci, |Ci| is the CV’s volume, Ai,j is the

area shared between Ci and Cj, S(qn+1
i ) is the vector of non-conservative terms computed in Ci, F cons

i,j is the conservative
umerical flux computed between Ci and Cj, R i is the residual at node i. The definition of R i is important for the implicit
ime discretization that will be briefly described in Section 3.2.

Rn+1
i = |Ci|

qn+1
i − qn

i

∆t
+

∑
Cj∈∂Ci

Ai,jF cons
i,j − |Ci|S(qn+1

i ) = 0 (8)

Since non-conservative terms of Eq. (5) are all gradient terms, and we will be using the Green–Gauss theorem to discretize
them, it is useful to rewrite the non-conservative contribution |Ci|S(qn+1

i ) of Eq. (8) as a boundary integral. To do so we
recall the Green–Gauss theorem for a generic quantity f .

∇f
⏐⏐⏐⏐
Ci

=
1

|Ci|

∮
∂Ci

f n̂ds ≃
1

|Ci|

∑
Cj∈∂Ci

Ai,j
(
fi + fj

)
n̂i,j (9)

If we assume that all terms multiplying the gradients in the non-conservative term are constant within a CV, we can
take them out of the integral and therefore rewrite the residual from Eq. (8) as.

Rn+1
i = |Ci|

qn+1
i − qn

i

∆t
+

∑
Cj∈∂Ci

Ai,j
(
F cons
i,j + F non−cons

i,j

)
= 0 (10)

.1. Space discretization

In this section, we define the spatial residuals used in this work, for both conservative and non-conservative terms. The
iscretization of the boundary integral (

∑
Ai,j
(
F cons
i,j + F non−cons

i,j

)
) outlined previously in Eq. (10) is specified in Eq. (13)

for each equation using the naming scheme defined in Eq. (11). To ease the notation the subscript (·)k denoting the phase
s been dropped from here on. All subscripts now denote to which CV the quantities are referred to.

Volume Fraction
∫
Ci

uI · ∇αdV ≃

∑
Cj∈∂Ci

Ai,jF
non−cons [α]

i,j

Mass
∫

∂Ci

αρu · n̂ds ≃

∑
Cj∈∂Ci

Ai,jF
cons [αρ]

i,j

Momentum
∫

∂Ci

(
αρu ⊗ u + αPI

)
· n̂ds −

∫
Ci

PI∇αdV ≃

∑
Cj∈∂Ci

Ai,j

(
F cons [αρu]

i,j + F non−cons [αρu]

i,j

)
Pressure

∫
Ci

M2
r αu · ∇PdV +

∫
Ci

(
M2

r αc
2
+ κα

)
∇ · udV

−

∫
Ci

(
M2

r c
2
I + κ

) (
uI − u

)
· ∇αdV ≃

∑
Cj∈∂Ci

Ai,jF
non−cons [P]

i,j

(11)

The conservative fluxes for mass and momentum are discretized using pseudo Rusanov [29] fluxes, using the local
velocity λ = |u · n̂| instead of the eigenvalue λ = |u · n̂| + c as it was the most natural path to extend the work from Re

Abgrall [1]:

F cons
i,j =

1
2

(
F (qi) + F (qi)

)
−

1
2
max
i,j

(λ)
(
qj − qi

)
(12)

he discretization of the non-conservative terms involving the gradient of the volume fraction is a critical point in any
umerical scheme for compressible multi-phase flows. Indeed, oscillations and other computational inaccuracies may
riginate across multi-material interfaces if the pressure equilibrium among the different components is not properly
ddressed [30]. To reach this, we will follow the so-called non-disturbance condition by Abgrall [25], which states that,
o avoid spurious oscillations across multi-material interfaces, a flow field uniform in pressure and velocity should be
reserved exactly by the numerical discretization as time evolves. The fulfillment of this condition is guaranteed by
onstructing accurately the discretization of the non-conservative terms [31]. As a result, the discretizations of the phase
oupling terms in the volume fraction and pressure equations resemble the pseudo-Rusanov fluxes used for the convective
erms, with a central and an upwind term, but with a slightly different choice for the velocities, as shown in (13). The
ressure gradient term in the pressure equation has a similar expression, reported in (13), but the reason is different:
hile integrating this term over the cell Ci, the velocity that pre-multiplies the pressure gradient can be approximated
s constant and equal to the velocity in that cell, i.e., u . All other gradient terms are computed using central differences
i

4
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(also the non conservative momentum term, see Appendix A) except the velocity divergence in the pressure equation
which uses MWI as described in Section 3.1.1.

Volume Fraction F non−cons [α]

i,j =
1
2

(
uI,i · n̂i,j

) [
αi + αj

]
−

1
2
|uI,i · n̂i,j|

[
αj − αi

]
Mass F cons [αρ]

i,j =
1
2

[
αρui · n̂i,j + αρuj · n̂i,j

]
−

1
2
max
i,j

(
|ui · n̂i,j|, |uj · n̂i,j|

) [
αρ j − αρ i

]
Momentum F cons [αρu]

i,j =
1
2

[
αρui

(
ui · n̂i,j

)
+ αiPin̂i,j + αρuj

(
uj · n̂i,j

)
+ αjPjn̂i,j

]
−

1
2
max
i,j

(
|ui · n̂i,j|, |uj · n̂i,j|

) [
αρuj − αρui

]
F non−cons [αρu]

i,j = −
1
2

(
αi + αj

)
PI,in̂i,j

Pressure F non−cons [P]

i,j = M2
r αi

{
1
2

[(
ui · n̂i,j

) (
Pi + Pj

)]
−

1
2
|ui · n̂i,j|

[
Pj − Pi

]}
+
(
M2

r αic2i + κiαi
) [

uF · n̂i,j
]

+
(
M2

r c
2
I,i + κi

) {1
2

((
uI,i − ui

)
· n̂i,j

) [
αi + αj

]
−

1
2

⏐⏐(uI,i − ui
)
· n̂i,j

⏐⏐ [αj − αi
]}

(13)

The face velocity uF used to compute the velocity divergence term in the pressure equation can be one of two reported
in Eq. (14). The Momentum Weighted Interpolated (MWI) face velocity uMWI

F will be derived in Section 3.1.1 with the goal
f suppressing pressure checkerboarding, and its final form can be found in Eq. (21).

uF =
1
2

(
ui + uj

)
if using central differences

uF = uMWI
F if using Momentum Weighted Interpolation

(14)

.1.1. Momentum weighted interpolation
In this section, we derive the MWI face velocity uMWI

F for a pair of CVs Ci and Cj using a procedure similar to
artholomew et al. [24]. This procedure, called Momentum Weighted Interpolation (also known as Rhie & Chow
nterpolation [14]), mimics a staggered variable arrangement by deriving a velocity from an imaginary momentum
onservation equation written on an imaginary staggered control volume, centered on the face F between the CVs Ci
nd Cj (see Fig. 1). This should in principle mitigate the well-known pressure checkerboard problem that may arise in
o-located schemes at low Mach numbers while removing the complexity of using a staggered variable arrangement on
n unstructured mesh. The oscillations arise from the central differences in the pressure gradient (momentum equation)
nd velocity divergence (pressure equation).
The discrete equations for the momentum conservation over two neighboring control volumes Ci and Cj can be

ewritten as Eq. (15), regardless of the discretization we are using. Note that (·)i and (·)j indicate what CV that term
efers to. Also subscript (·)k(i) refers to the CV Ck neighboring Ci. This is done by lumping in single coefficients (Bn+1

i ,
n+1
i , T n

i ) various terms according to what variable they multiply and from what term’s discretization they arise from.
n T n+1

i and T n
i we lump everything that comes from the time derivative discretization and that multiplies un+1

i and un
i

respectively. In Bn+1
i we lump everything that comes from the conservative term discretization and that multiplies un+1

i .

|Ci|T n+1
i un+1

i + |Ci|T n
i u

n
i + Bn+1

i un+1
i +

∑
Ck∈∂Ci

Bn+1
k(i) u

n+1
k(i) + |Ci|∇ (αP)i − |Ci|PI,i∇ (α)i = 0

|Cj|T n+1
j un+1

j + |Cj|T n
j u

n
j + Bn+1

j un+1
j +

∑
Ck∈∂Cj

Bn+1
k(j) u

n+1
k(j) + |Cj|∇ (αP)j − |Cj|PI,j∇ (α)j = 0.

(15)

o ease the derivation, we define some auxiliary quantities in Eq. (16) by lumping various terms appearing in the discrete
omentum Eqs. (15), as done by Bartholomew et al. [24]. Each of these auxiliary quantities is then referred to its control
olume through the subscript (·)i or (·)j.

ũi = −
1

Bn+1
i

∑
Ck∈∂Ci

Bn+1
k(i) u

n+1
k(i)

di =
|Ci|

n+1 → ti = di · T n
i mi = di · T n+1

i + 1 gi = di · PI,i
(16)
Bi

5
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Then, after dividing them by Bn+1
i and Bn+1

j respectively, the momentum Eqs. (15) can be written as

miun+1
i = ũi −di∇ (αP)i +gi∇ (α)i −tiun

i

mjun+1
j = ũj −dj∇ (αP)j +gj∇ (α)j −tjun

j
(17)

e assume that it is possible to also write a discrete conservation of momentum across the imaginary control volume CF
n the same form. The resulting equation is:

mFun+1
F = ũF − dF∇ (αP)F + gF∇ (α)F − tFun

F (18)

Unfortunately, ũF is unknown. We therefore assume that interpolating ũ between control volumes ũi and ũj is a
good approximation. It is possible to show, following the approach shown in detail by Bartholomew et al. [24], that the
interpolation amounts to Eq. (19). Note that quantities denoted with an overbar (·)F are interpolated at the face between
i and Cj.

ũF = mFun+1
F + dF∇ (αP)F − gF∇ (α)F + tFuF

− dF∇ (αP)F + gF∇ (α)F − tFuF

(19)

Some assumptions on dF , mF , gF , tF need to be taken since they are unknown. Therefore:

• Following Bartholomew et al. [24], to ensure that the MWI correction vanishes for a constant or linearly varying
pressure gradient we assume di = dj = dF

• Following Bartholomew et al. [24], to ensure that we recover the correct steady state solution we assume tF = tF
and mF = mF

• In addition to Bartholomew et al. [24], to ensure that the MWI correction vanishes for a constant pressure and
velocity field we assume gF = gF . More details are given in Appendix B.

Plugging Eq. (19) into the discrete momentum conservation over the imaginary control volume, Eq. (18), we obtain
the following MWI face velocity in Eq. (20). The terms df , mF , gF and tF can be pulled out of the interpolation operator
ue to the assumptions we took in the above.

uMWI
F = un+1

F = · · ·

= un+1
F −

dF
mF

[
∇ (αP)F − (αP)F

]
+

gF
mF

[
∇ (α)F − ∇ (α)F

]
−

tF
mF

[
un
F − uF

]
.

(20)

To account for mesh non-orthogonality, we follow the approach proposed by Zhang et al. [32]. Note that n̂ and ê are
unit vectors, and ê = (xj − xi)/∥xj − xi∥.

uMWI
F = un+1

F −
dF
mF

[
αPj − αPi

∆xi,j
− ∇ (αP)F · ê

]
n̂

n̂ · ê

+
gF
mF

[
αj − αi

∆xi,j
− ∇ (α)F · ê

]
n̂

n̂ · ê

−
tF
mF

[
un
F − uF

]
(21)

We use uMWI
F to compute the divergence of the velocity in the pressure equation term

∫
Ci

(
M2

r αc
2
+ κα

)
∇·udV , instead

of using central differences (Green–Gauss). Finally, the divergence is computed as.

∇ · u
⏐⏐⏐⏐
Ci

≃
1

|Ci|

∑
Cj∈∂Ci

Ai,j
(
uMWI
F · n̂

)
(22)

We want to stress that the presence of both ∇ (αP) and ∇α in the MWI correction is fundamental for preserving
he non-disturbance condition as shown in Appendix B. Interpolation on the gradients (e.g. ∇ (αP)F in Eq. (21)) can
be performed using density weighting, Eq. (23), as proposed by Bartholomew et al. [24] to mitigate oscillations across
multi-material interfaces.

f = αρF

[
Ix

fi
αρ i

+ (1 − Ix)
fj

αρ j

]
where

1
αρF

=
Ix

αρ i
+

(1 − Ix)
αρ j

(23)

In this work we will use the weighting parameter Ix = 1/2 (illustrated in Fig. 2) for simplicity, and also to retain the
filtering properties of the MWI on skewed elements at the cost of some accuracy, as proposed in [24]. This negates the
previously mentioned density weighting.
6
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d
r

Fig. 2. MWI interpolation factor Ix definition.

3.2. Time discretization

We use a fully implicit time integration scheme to overcome the very stringent acoustic limitation posed by the weakly
compressible regime. We briefly describe here the pseudo Newton–Raphson method used in SU2 to advance implicitly in
time the unsteady simulation in SU2 [8]. Noting that numerical fluxes are computed at the next time step tn+1.

F cons
i,j + F non−cons

i,j = F cons
i,j

(
qn+1
i , qn+1

j

)
+ F non−cons

i,j

(
qn+1
i , qn+1

j

)
(24)

The solution at time (·)n+1 is iteratively (k → k + 1) computed solving the linear system. The Jacobian’s [i, j] element
denoted as J[i,j] is defined in Eq. (25) together with the implicit solution method.

J[i,j](k) =
∂Rn+1

[i]

∂q[j]
(k) →

{
J (k)∆qn+1(k) = −Rn+1(k) linear system solution

qn+1(k + 1) = qn+1(k) + ∆qn+1(k) solution update
(25)

4. Results

In this section four numerical tests will be shown. First, in Section 4.1 we will show that the non disturbance condition
is met in a volume fraction advection test. Second, in Section 4.2 we will evaluate convergence to the entropic solution
and no spurious mixing in a shock tube. Third, in Section 4.3 the effect of MWI will be assessed on a newly devised slip
bubble test case mimicking the flow over a cylinder in a two-phase flow setting. Lastly, in Section 4.4 we will try to
match well known experimental visualizations of a helium bubble interacting with an air shock. This last test case is a
compressible one, therefore outside the main scope of the scheme, but it has been added to show how the model is also
able to satisfactorily capture the physics of flows with M > 1.

The present numerical approach suffers from an issue when the volume fraction tends to zero and we have sharp
gradients as in the case of an interface between pure fluids. When the volume fraction of a phase goes to zero, solving for
that phase’s pressure loses physical meaning. If we position ourselves across a pure fluid interface (∇αk ≫ 1), the time
discrete pressure equation from Eq. (5) for the fluid with very small volume fraction (αk ≪ 1) shows the following:

M2
r αk

(
Pn+1
k − Pn

k

∆t
+ uk · ∇Pk

)
  

∝αk≪1

+
(
M2

r αkρkc2k + κkαk
)
∇ · uk  

∝αk≪1

−
(
M2

r ρkc2I,k + κk
) (

uI − uk
)
· ∇αk  

∝∇αk≫1

= 0 (26)

A numerical update of the pressure may lead to a negative pressure due to a division by αk. This is a well documented
problem that prevents us from treating low volume fractions, see for example Saurel & Abgrall [33], Abgrall & Saurel [34].
In more conventional approaches this is sometimes circumvented by changing the numerical approach when the volume
fraction goes below a certain threshold. This is an area where further work is needed.

4.1. Volume fraction advection - Non disturbance condition

This simple test consists in the advection of a circular area with a higher content of water centered in x = 0.3 m and
surrounded by a flow of air, at pressure and velocity equilibrium. For simplicity we will refer to it as a droplet, even if the
volume fraction is not ≃ 1. Exploiting the symmetry of the problem, the domain, sketched in Fig. 3, represents only half of
the tube. The corresponding triangular mesh is reported in Fig. 4. The initial flow conditions, along with the information
about the discretization and the thermodynamic data, are given in Table 1. The goal of this test is twofold: check that the
droplet interface is advected correctly and that the non-disturbance condition is satisfied, namely that the velocity and
pressure remain constant.

In Fig. 5(c) we compare results obtained using CFL(|u| + c) = 10 and h = 0.005 m (which corresponds to nx = 200
elements in 1D) with 1D results from Re & Abgrall [1] obtained using a finer mesh with nx = 400 elements and
CFL(|u|) = 0.5. This comparison is not meant to be quantitative as the numerical settings are different. The volume
fraction plots compare well although the 1D results have been obtained with a larger time step than the 2D ones. The
droplet is advected at the correct speed of 100 m/s, although some smearing of the interface can be noticed in Fig. 5(c),
ue to the use of a first-order scheme over a coarse mesh. The pressure and velocity profile, shown in Figs. 5(b) and 5(a),
espectively, do not present any oscillations, confirming that the non-disturbance condition is preserved.
7
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a
a

Fig. 3. Volume fraction advection domain definition.

Fig. 4. Volume fraction advection mesh with triangular elements of typical mesh size h =
1

200
[m]

[elements x] = 0.005 m.

Table 1
Numerical setup for volume fraction advection test.
Numerics CFL(|u| + c) = 10

Mesh h =
1

200
[m]

[elements x] = 0.005 m triangular

I.C. Droplet αair = 0.1 αH2O = 0.9
ρair = 1 kg/m3 ρH2O = 1000 kg/m3

Pair = 106 Pa PH2O = 106 Pa
uair =

[
100 0

]
m/s uH2O =

[
100 0

]
m/s

I.C. Free-Stream αair = 0.9 αH2O = 0.1
ρair = 1 kg/m3 ρH2O = 1000 kg/m3

Pair = 106 Pa PH2O = 106 Pa
uair =

[
100 0

]
m/s uH2O =

[
100 0

]
m/s

Thermodynamics γair = 1.4 γH2O = 4.4
cv,air = 717.60 J/kg K cv,H2O = 4178 J/kg K
q∞,air = 0 J/kg q∞,H2O = 0 J/kg
P∞,air = 0 Pa P∞,H2O = 6 · 108 Pa

4.2. No mixing shock tube - Entropic solution convergence

The goal of this test is to assess mesh convergence to the entropic solution of a shock tube with a jump of pressure
nd temperature at x = 0 m and everything initially at rest. The domain is sketched in Fig. 6. The tube is filled with water
nd air, both with α = 0.5. The two phases are supposed to not mix since we are only considering the hyperbolic part of

the Baer–Nunziato equations. Both phases should evolve following their separate pure fluid analytic solution of the Euler
equations. Initial conditions, mesh and time discretization data, and the thermodynamic properties of the fluids are given
in Table 2. Results for this test case have been obtained on uniform orthogonal meshes with quadrilateral elements.

Results in Fig. 7 show great agreement with the exact solution for the finest mesh with nx = 3200. Wave speed are
caught accurately for both phases. The volume fraction in Fig. 7(a) remains constant, and phases do not mix.

We can compute a measure of the error as Eq. (27). The resulting plots show convergence towards the entropic solution
both with spatial refinement in Fig. 9 and with time step refinement in Fig. 8. We do not aim to measure the rate of
8
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i

Fig. 5. Droplet advection results at t = 3 ms at the symmetry axis with CFL(|u|+c) = 10 and h = 0.005 m (which corresponds to nx = 200 elements
n 1D) compared to Re & Abgrall [1] 1D results with nx = 400 elements and CFL(|u|) = 0.5.

Fig. 6. No mixing shock tube domain definitions.
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Table 2
Numerical setup for no mixing shock tube test.
Mesh regular quadrilateral

Mesh convergence
nx

ny
=

50
3

,
100
6

,
200
12

,
400
24

,
800
48

,
1600
96

,
3200
192

CFL(|u| + c) = 1

Time convergence
nx

ny
=

400
24

CFL(|u| + c) = 1, 2, 4, 8, 16

I.C. Left αair = 0.5 αH2O = 0.5
ρair = 129 kg/m3 ρH2O = 159 kg/m3

Pair = 107 Pa PH2O = 107 Pa
uair =

[
0 0

]
m/s uH2O =

[
0 0

]
m/s

I.C. Right αair = 0.5 αH2O = 0.5
ρair = 64.5 kg/m3 ρH2O = 157.7 kg/m3

Pair = 5 · 106 Pa PH2O = 5 · 106 Pa
uair =

[
0 0

]
m/s uH2O =

[
0 0

]
m/s

Thermodynamics γair = 1.4 γH2O = 4.4
cv,air = 717.60 J/kg K cv,H2O = 4178 J/kg K
q∞,air = 0 J/kg q∞,H2O = 0 J/kg
P∞,air = 0 Pa P∞,H2O = 6 · 108 Pa

Fig. 7. No mixing shock results at t = 0.16 ms compared to the analytic solution for each phase for nx = 3200 with CFL(|u| + c) = 1.
10
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Fig. 8. No mixing shock L1 error for time convergence with nx = 400.

Fig. 9. No mixing shock L1 error for mesh convergence with CFL(|u| + c) = 1.

onvergence but only show convergence to the entropic solution.

L1 error(t) =

∫
Ω

|fnumeric(t) − fexact (t)|dΩ∫
Ω

|fexact (t)|dΩ
(27)

.3. Low Mach Helium slip-bubble - Pressure checkerboarding

This case has been devised to test pressure checkerboarding, with and without MWI, in a weakly compressible setting.
t is supposed to mimic the flow over a cylinder, which is the trademark 2D incompressible test case. It consists of an air
ubble moving 20% slower than the Helium around it (MHe ≃ 0.05). See Fig. 10 for a domain sketch and Table 3 for the
etup data.
We use two different meshes, Fig. 11, with the same typical mesh size h = 0.0053 m to showcase how a more regular

mesh exhibits a much bigger amount of pressure checkerboarding.
11
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Fig. 10. Low Mach Helium slip-bubble domain definitions.

Table 3
Numerical setup for low Mach Helium slip-bubble test.
Numerics CFL(|u| + c) = 0.1

Mesh h = 0.0053 m triangular

I.C. Bubble αair = 0.6 αHe = 0.4
ρair = 1 kg/m3 ρHe = 0.1626 kg/m3

Pair = 101 325 Pa PHe = 101 325 Pa
uair =

[
34.719 0

]
m/s uHe =

[
34.719 0

]
m/s

I.C. Free-Stream αair = 0.6 αHe = 0.4
ρair = 1 kg/m3 ρHe = 0.1626 kg/m3

Pair = 101 325 Pa PHe = 101 325 Pa
uair =

[
45 0

]
m/s uHe =

[
45 0

]
m/s

Thermodynamics γair = 1.4 γHe = 1.667
cv,air = 717.60 J/kg K cv,He = 3115.6 J/kg K
q∞,air = 0 J/kg q∞,He = 0 J/kg
P∞,air = 0 Pa P∞,He = 0 Pa

Fig. 11. Meshes for the low Mach Helium slip-bubble.

The results of Fig. 12(a) obtained on mesh Fig. 11(a) show a great deal more checkerboarding than the results of
Fig. 13(a) obtained on mesh Fig. 11(b). The use of MWI (Figs. 12(b) 13(b)) can decrease the amount of checkerboarding,
but cannot prevent it completely as staggering would. The dampening of pressure oscillations occurs at the cost of
some additional numerical dissipation on the pressure field, with the pressure waves arising from the velocity difference
between the bubble and the free-stream being slightly more smeared with MWI.

MWI does cure checkerboarding almost completely in the irregular mesh Fig. 15(b), while the regular mesh Fig. 14(b)
still exhibits some, although reduced.

4.4. Helium bubble shock interaction - Experimental data matching

Finally, to put everything together we show here a test recreating an experiment from [35]. An initially stationary
Helium bubble is impacted by an air shock at M = 1.22 at time t = 0 µs, after 36 µs from the start of the simulation.
he goal is to match the position and overall shape of the bubble using the schlieren imagery from [35]. See Fig. 16 for a
ketch of the domain and Table 4 for the setup data.
As Fig. 17 shows in two separate time steps (t = 427 µs and t = 674 µs after the shock reaches the bubble’s leading

dge), the bubble shape and position is overall well caught. Considering this solver is aimed at weakly compressible cases
12
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Fig. 12. Low Mach Helium slip-bubble pressure, pressure field at t = 0.3 ms for the regular mesh.

Fig. 13. Low Mach Helium slip-bubble pressure, pressure field at t = 0.3 ms for the irregular mesh.

Fig. 14. Low Mach Helium slip-bubble pressure, pressure field at t = 0.3 ms for the regular mesh.
13
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Fig. 15. Low Mach Helium slip-bubble pressure, pressure field at t = 0.3 ms for the irregular mesh.

Fig. 16. Helium bubble shock interaction domain definitions.

Table 4
Numerical setup for Helium bubble shock interaction test from [35].
Numerics ∆t = 0.1 µs ∆t = 6 µs

Meshes nx = 250 quadrilateral

I.C. Bubble αair = 0.07 αHe = 0.93
ρair = 1.4 kg/m3 ρHe = 0.2546 kg/m3

Pair = 100 000 Pa PHe = 100 000 Pa
uair =

[
0 0

]
m/s uHe =

[
0 0

]
m/s

I.C. Shock αair = 0.93 αHe = 0.07
ρair = 1.92691 kg/m3 ρHe = 0.2546 kg/m3

Pair = 156 980 Pa PHe = 100 000 Pa
uair =

[
−104.42 0

]
m/s uHe =

[
0 0

]
m/s

I.C. Free-Stream αair = 0.93 αHe = 0.07
ρair = 1.4 kg/m3 ρHe = 0.2546 kg/m3

Pair = 100 000 Pa PHe = 100 000 Pa
uair =

[
0 0

]
m/s uHe =

[
0 0

]
m/s

Thermodynamics γair = 1.4 γHe = 1.667
cv,air = 717.60 J/kg K cv,He = 3115.6 J/kg K
q∞,air = 0 J/kg q∞,He = 0 J/kg
P∞,air = 0 Pa P∞,He = 0 Pa

and that the Baer–Nunziato equations are derived through an ensemble average, and therefore they describe the flow in
a statistical repeatability sense, the agreement with experimental data is more than satisfactory. Furthermore, an increase
in time step has negligible effects on the prediction of the bubble position, with some expected smearing of the interface.
Although the mesh is not fine enough to resolve the bubble core’s topology, results compare well with the ones presented
by Daude et al. [36] using HLL and HLLC. The bubble’s trailing edge in Fig. 17(a) is not perfectly aligned with experimental
data. This could be due to the non-conservative scheme in use not being able to accurately predict shock speeds.

5. Conclusions

In this paper a set of strategies to simulate weakly compressible two phase flows on unstructured meshes is presented.
n particular, a novel formulation of the Momentum Weighted Interpolation (Rhie-Chow) has been derived for the Baer–
unziato equations. The proposed approach has been thoroughly tested against analytic results and experimental data. The
onvergence rate (both in time and space) has been approximately evaluated in a worst case scenario with discontinuities.
14
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Fig. 17. Helium bubble shock interaction, experimental visualization comparison [35]. Numerical bubble contours of the volume fraction for
= [0.4, 0.5, 0.6] are overimpressed for ∆t = 0.1 µs in pink, and ∆t = 6 µs in green. In blue the t = 0 ms bubble initial position.

he fully implicit formulation allows the use of high CFL numbers. The effectiveness of the Momentum Weighted
nterpolation has been assessed on a purpose built test case, showcasing a great reduction in pressure checkerboarding.
s a final test, an experimental visualization of a shock-bubble interaction has been simulated showing good agreement
lso with real world behavior.

ata availability

The authors are unable or have chosen not to specify which data has been used.

cknowledgments

Rémi Abgrall is partially funded by SNF, Switzerland Grant 200020_204917. Giuseppe Sirianni was partially funded by
émi Abgrall’s UZH Einrichtungkredit, Switzerland.

ppendix A. Momentum phase coupling term derivation

The discretization of the momentum phase coupling term must preserve the non-disturbance condition. To derive it
e start by writing the discrete mass and momentum equations for the ith control volume (·)i:

|Ci|
αρn+1

i − αρn
i

∆t
+

∑
Cj∈∂Ci

Ai,j

[
1
2

(
αρui · n̂i,j + αρuj · n̂i,j

)
−

1
2
λαρ

(
αρ j − αρ i

)]
= 0

|Ci|
αρun+1

i − αρun
i

∆t
+

∑
Cj∈∂Ci

Ai,j

[
1
2

(
αρuiui · n̂i,j + αiPin̂i,j + αρujuj · n̂i,j + αjPjn̂i,j

)
−

1
2
λαρu

(
αρuj − αρui

)]
− NCPI∇α = 0 .

(A.1)

e now assume that u and P are constant in space and that the discretization of the non-conservative momentum
coupling term NCPI∇α does not affect this, and therefore u and P remain constant in time too:

|Ci|
αρn+1

i − αρn
i

∆t
+

∑
Cj∈∂Ci

Ai,j

[
1
2

(
αρ i + αρ j

) (
u · n̂i,j

)
−

1
2
λαρ

(
αρ j − αρ i

)]
= 0

|Ci|
αρn+1

i − αρn
i

∆t
u +

∑
Cj∈∂Ci

Ai,j

{[
1
2

(
αρ i + αρ j

)
u
(
u · n̂i,j

)
+

1
2

(
αi + αj

)
P n̂i,j

]

−
1
λαρu

(
αρ j − αρ i

)
u
}

− NCPI∇α = 0

(A.2)
2
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If we now assume that λαρ = λαρu, therefore we use the same wave speed for both mass and momentum convective
luxes, we can substitute the mass equation into the momentum equation.

−

∑
Cj∈∂Ci

Ai,j

[
����������1
2

(
αρ i + αρ j

)
u
(
u · n̂i,j

)
−
��������1
2
λαρ

(
αρ j − αρ i

)
u

]

+

∑
Cj∈∂Ci

Ai,j

{[
����������1
2

(
αρ i + αρ j

)
u
(
u · n̂i,j

)
+

1
2

(
αi + αj

)
P n̂i,j

]

−
���������1
2
λαρu

(
αρ j − αρ i

)
u
}

− NCPI∇α = 0

(A.3)

For a constant pressure field the interface pressure PI is

PI =

Nphases∑
i

αiPi =

�
�
�
�
�>

1⎛⎝Nphases∑
i

αi

⎞⎠P = P . (A.4)

herefore a valid choice for the discretization of the momentum non-conservative phase-coupling term is

−NCPI∇α = −

∑
Cj∈∂Ci

Ai,j

[
1
2

(
αi + αj

)
PI n̂i,j

]
. (A.5)

Appendix B. Momentum Weighted Interpolation and the non disturbance condition

In this section, we show that the MWI correction is identically zero when pressure and velocity are constant under
the assumption that gF = gF , therefore it does not affect the non-disturbance condition. Let us assume u and P constant
n space and time, and rewrite Eq. (21) with this assumption in Eq. (B.1).

uMWI
F = u −

dF
mF

[
αj − αi

∆xi,j
− ∇ (α) · ê

]
n̂

n̂ · ê
· (P)

+
gF
mF

[
αj − αi

∆xi,j
− ∇ (α) · ê

]
n̂

n̂ · ê

−

�
����⌃

0
tF
mF

[
u − u

]
(B.1)

Note that g = dPI but PI = P under the constant pressure assumption, therefore gF = dFP .

uMWI
F = u −

˂˂˂˂˂˂˂˂˂˂˂˂˂˂dF
mF

[
αj − αi

∆xi,j
− ∇ (α) · ê

]
n̂

n̂ · ê
· (P)

+

˂˂˂˂˂˂˂˂˂˂˂˂˂˂dF
mF

[
αj − αi

∆xi,j
− ∇ (α) · ê

]
n̂

n̂ · ê
· (P)

(B.2)

ince u is constant, ∇ · u is identically zero, and pressure is not disturbed by the MWI.
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