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Abstract

The generalized cross-correlation (GCC) is regarded as the most popular approach for esti-
mating the time difference of arrival (TDOA) between the signals received at two sensors.
Time delay estimates are obtained by maximizing the GCC output, where the direct-path
delay is usually observed as a prominent peak. Moreover, GCCs play also an important
role in steered response power (SRP) localization algorithms, where the SRP functional
can be written as an accumulation of the GCCs computed from multiple sensor pairs.
Unfortunately, the accuracy of TDOA estimates is affected by multiple factors, including
noise, reverberation and signal bandwidth. In this paper, a sub-band approach for time
delay estimation aimed at improving the performance of the conventional GCC is pre-
sented. The proposed method is based on the extraction of multiple GCCs corresponding
to different frequency bands of the cross-power spectrum phase in a sliding-window fash-
ion. The major contributions of this paper include: 1) a sub-band GCC representation of
the cross-power spectrum phase that, despite having a reduced temporal resolution, pro-
vides a more suitable representation for estimating the true TDOA; 2) such matrix repre-
sentation is shown to be rank one in the ideal noiseless case, a property that is exploited
in more adverse scenarios to obtain a more robust and accurate GCC; 3) we propose a set
of low-rank approximation alternatives for processing the sub-band GCC matrix, leading
to better TDOA estimates and source localization performance. An extensive set of experi-
ments is presented to demonstrate the validity of the proposed approach.

Index Terms: Time delay estimation, GCC, SVD, weighted SVD, sub-band processing, SRP-
PHAT.
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I INTRODUCTION

Time delay estimation (TDE) refers to finding the time differences-of-arrival (TDOAS) be-
tween signals received at an array of sensors. Traditionally, TDE has played an important
role in many location-aware systems, including radar, sonar, wireless systems, sensor cali-
bration or seismology. In acoustic signal processing, TDE is essential for localizing and
tracking acoustic sources [1, 2]. Automatic camera steering [3], speaker localization [4] or

The generalized cross-correlation (GCC), originally proposed by Knapp and Carter in their
1976 seminal paper [6], is still today the most popular technique for TDE. By using GCCs,
the TDOA between two signals is estimated as the time lag that maximizes the cross-corre-
lation between filtered versions of such signals. In this context, the GCC may consider dif-
ferent weighting functions (filters) characterized by a particular behavior [7, 8, 9]. Roth,
smoothed coherence transform, Eckart or Hannan-Thomson (maximum likelihood) are
examples of such weighting schemes [6, 10]. The GCC with phase transform (GCC-PHAT)
has been repeatedly shown to be a suitable alternative for TDE in real reverberant sce-
narios [11, 12]. However, it has also been demonstrated that its performance can only be
considered optimal under uncorrelated noise conditions and a high signal-to-noise ratio
(SNR) [13]. The present work is particularly focused on PHAT weighting, thus, the terms
GCC and GCC-PHAT will be used indistinctly throughout this paper. Since the GCC was first
proposed, many approaches have appeared to ameliorate the robustness of TDE tech-

niques, with improvements that are mostly achieved by exploiting the spatial diversity

Further improvements to deal with reverberation and correlated noise fields have also
been proposed [22], addressing some of the limitations of the GCC. In addition, other
methods exploiting temporal diversity by means of Bayesian filtering have shown great
potential [23, 24]

In contrast to the above methods, this paper proposes a novel sub-band approach to TDE
with two sensors which is not directly categorized within the above processing improve-
ments. Concretely, the method is based on the exploration of the cross-power spectrum
phase by following a sliding window approach, obtaining a set of sub-band GCCs that en-

code the contribution of different frequency bands to the estimated TDOA. The resulting



sub-band GCC matrix is shown to be rank-one for a full-band signal in the noiseless single-
path case. This fact is exploited to obtain a robust GCC in adverse scenarios, proposing
low-rank approximations of the sub-band GCC matrix that ultimately lead to better esti-
mation accuracy, reduced level of spurious peaks and lower probability of anomalous
estimates.

The rest of the paper is structured as follows. Section II summarizes the background con-

I TiMeE DELAY ESTIMATION

This section summarizes the conventional GCC approach for TDE. To this end, the ideal
anechoic model is first presented, discussing the main problems arising in realistic acous-
tic conditions.

II-A Anechoic Signal Model

Let us consider a pair of sensors with spatial coordinates given by column vectors m,, m,
€ R’ and an emitting acoustic source located at s € R®. The time difference-of-arrival
(TDOA) measured in samples is defined as

lIs —my || —Is — m,]|

Toél c fs]=771_772’ (1)

where ¢ is the wave propagation speed, |-] denotes the rounding operator and f, is the
sampling frequency. The terms n, and n, represent the time of flight (TOF) of the sound to
the sensors in samples.

Assuming an anechoic scenario, the signals received by the two sensors can be modeled
as

Xm[n] = B,sln—mn,1+wn[n], m=1.2, 2)

where g€ R, is a positive amplitude decay factor, s[n] is the source signal and w;,[n] is
an additive noise term. In the discrete-time Fourier transform (DTFT) domain, the sensor
signals can be written as

X (w) = ,BmS(a))e_j“”’m +Whlw), m=1,2, (3)

where S(w), W, (w) € C, are the DTFTs of the source signal and the noise signal, respec-
tively, and j = —1.



II-B Generalized Cross-Correlation

The GCC of a pair of sensor signals is defined as the inverse Fourier transform of the
weighted cross-power spectrum, i.e.

R[t] & %f:[ Y(w)e!" dw = T_l{‘P(w)}, 4)

where 7 € Z represents time delay and ¥(w) € C represents the phase transform (PHAT)
Cross-power spectrum:

W(w) & X1 (0)X3(w)

= x| ©

where ()" denotes complex conjugation. Note that, in the ideal anechoic and noiseless
case,

B B,IS(w)*
= e

Y(w) = ———
B,8,15(@)P’|

—jwTy — e—ja)‘l.'o, (6)

leading to
R[t] = FH{e 9™} = [t — 1], (7)

where §[7] is the Kronecker delta function. Therefore, the ideal GCC-PHAT for a full-band
source signal will show a unit impulse located at the true TDOA. This motivates the use of
the following estimator for time-delay estimation over signals acquired by a pair of
Sensors:

T, = arg max R[7]. (8)

The GCC-PHAT inherently discards the magnitude information of the signals and provides
a time-delay estimate based only on the phase of the cross-power spectrum, i.e. the phase
of the frequency domain analysis of the cross-correlation between the two signals. It is
important to remark that the measured time delay is an integer multiple of the sampling
period. Note, however, that a finer resolution can be achieved by interpolating between
consecutive samples of the GCC function if necessary.

II-C Problems in Realistic Scenarios

It is well-known that several problems arise when using GCC-PHAT for estimating the
TDOA in realistic scenarios. Indeed, TDOA measurements are very sensitive to reverbera-
tion, noise, and the presence of potential interferers:

* In reverberant environments, for certain locations and orientations of the source sig-
nal, the peak of the GCC related to a reflective path could overcome that of the direct



path.

* In noisy scenarios, for some time instants, the noise level could exceed that of the sig-
nal, making the estimated TDOA unreliable.

* Peaks corresponding to the direct path, reflections or combinations of interfering sig-
nals may also lead to errors when estimating the TDOA of a target source.

The above issues can be even more problematic when the spectral characteristics of the
target source or the additive noise lead to a reduced signal-to-noise ratio (SNR) at some
frequency bands [25]. The phase information can be completely lost at those frequency
bands where either there is no signal information or where its content is especially af-
fected by the noise. Consider, for example, the (normalized) GCCs shown in Figure 1. The
top row corresponds to the ideal case of a noiseless full-band signal. The other two rows
correspond to the same signal but affected by different spectral noise profiles. As it can be
observed, the noisy phase introduces many spurious peaks that can cause anomalous
TDOA estimates. Although noisy frequency bands could be filtered out to obtain a cleaner
GCC (last column of Fig. 1), knowing beforehand the best frequency range accommodating
the time delay information is not always straightforward. Moreover, the rippling GCCs re-
sulting from pass-band-like signals (third row) complicate substantially source localiza-

tion tasks in adverse conditions [25].
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Figure 1: GCCs obtained from two signals corrupted by additive white noise (SNR = —15
dB) affecting different frequency bands: (a) No noise. (b) Noise affecting high frequencies.
(c) Noise affecting high and low frequencies. The true TDOA is 7, = 40 samples.



III FREQUENCY-SLIDING GENERALIZED CROSS-CORRELATION

This section proposes a frequency-sliding GCC-PHAT method that generalizes the filtering
approach discussed in the last section with the aim of obtaining a robust GCC representa-
tion. This representation will be useful to explore the likelihood of different frequency
bands contributing to a direct-path delay estimate.

III-A Sub-band GCCs

Let us define the sub-band GCC for an arbitrary frequency band [ as

R[z,1] = 2_171 J" W(w + w)®(w)e*" dw
= F U+ w)d(w)}],

where o, is the frequency offset corresponding to band [. The function ®(w) € R is a sym-
metric frequency-domain window, centered at « = 0 with frequency support B, € [0, 7],
i.e. ®(w) = 0 for |w| = By.

The effect of the window and the cross-power spectrum can be separated as follows:

R[z,1] FHY(w+w)} *FHo(w)}

(e7erF {®(w)}) * pl1] (10)
= (e7“R[1]) * P[],

or equivalently,

R[t,l] = FH{¥(w)P(w —w)}eTor

= (B[t * (¢ltlefor) )eor,

(11)

where ¢[7] € R represents the inverse Fourier transform of the spectral window ®(w) and
+ denotes convolution.

A frequency-sliding sub-band GCC can be obtained by sweeping the cross-power spectrum
phase over (possibly) overlapping frequency bands:

w, =My, 1=0,..,L-1, (12)

where Mg is the frequency hop. The number of bands L can be conveniently chosen to
cover those frequencies up to the Nyquist limit:

T[_Bd)+M<DJ

L=|—0p
[

(13)
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Figure 2: Interpretation of the frequency-sliding GCC.

An interpretation of such sliding operation is shown in Fig. 2. As given by Eq. (11), the

sub-band GCCs can be interpreted as the product of ¥(w) with a shifted version of ®(w) to
w;, shifted back in frequency to zero before taking the inverse Fourier transform.

III-B Frequency-Sliding GCC Matrix

In practice, sub-band GCCs are extracted considering the discrete Fourier transform (DFT)
of the microphone signals x,,[n]:

X,, = [X,[0], X,[1], . X, [N=1]]", m=1,2, (14)

m

where the elements of X,, € C" are the coefficients X, [k] corresponding to the discrete fre-

quencies w, = kzwn. Similarly, consider the vector & containing the discrete-frequency

samples ®[k] = ®(w,) of the selected spectral window
® = [®[0], @[1],...,0,0,...,0[N —1]]" € RY, (15)

symmetrically padded with zeros to contain only B = [ZB(D%] non-zero elements.

The sub-band GCC vectors r; € C" are obtained by taking the inverse DFT of the windowed
PHAT spectrum, i.e.

r, = [r[0], r[1],..n[N—1]]", 1=0,..,L—1, (16)

with



1 V=1 X [k + IM|X5[k + IM 2,
rin] = = 1l ] f[ ]q)[k]e]Nk’ an
N =0 [Xi[k + IM]X5[k + IM]|

where M = [Mq,%] is the discrete frequency hop.

The frequency-sliding GCC (FS-GCC) matrix is constructed by stacking all the sub-band
GCC vectors together; i.e.

R = [ro, 1'1, ceey I'L_l] € CNXL’ (18)
noting that

R[n, 1], n=0,...,.N/2—-1.

R[n,l]= {R[n_N,l]’nzN/z,...,N—l- 49

III-C Ideal Sub-band GCC Model

To get an insight into the properties underlying the presented FS-GCC representation, let
us start by considering the ideal full-band cross-power spectrum of Eq. (6), ¥(w) = e/,

by

R[t,1] = e 8[t—10] * ¢[7]

= e Jwtog[r — ), l=1,..,L.

By analyzing the above result, some interesting observations arise:

The magnitudes of the sub-band GCCs are independent of the selected frequency offset
w;, and correspond to the inverse Fourier transform of the sub-band analysis win-
dow centered at the true TDOA:

Rz, l]| = |plt—70]| VL (21)

The maximum value of |R[z,[]| is located at t = 7, for every sub-band [, 1 =0,...,L — 1.

The peak width at the true TDOA (W) as well as the level of its side lobes, depends on
the selected type of window @ and its frequency support B (e.g. W = 2N / B for a rec-
tangular window, while W = 4N / B for a Hann window).

Since the spectral window is real and even, ¢[z] is also real and even. Then, the phase
pattern of the set of sub-band GCCs corresponds to a downsampled version of
£ (¥(w)), modulated by the sign of ¢[z].

The full-band conventional GCC can be recovered from the sub-band GCCs if the con-
stant overlap-add (COLA) property is fulfilled.



Consequently, the FS-GCC matrix will present the following features:

* The columns of R correspond to the window response shifted to the true TDOA and
multiplied by a different complex number; i.e.

'f"l = e‘jwlfod)o’ (22)
where ¢ € RY is a vector containing N samples of the shifted window response:

¢y 2d[n—wl=[¢lo-r0] ..0[N / 2-1-1]

23
$[-N | 2-19] .p[-1-10]]T. (23)

« The ideal FS-GCC matrix, R, can be expressed as an outer product, resulting in a rank-
one matrix:

R=¢e", (24)

where e 2 [e/“, ..., e/o.-1%]" € ¢t and ()" denotes the conjugate transpose operator.

This last observation will be used to estimate robustly the time-delay in realistic cases
(noisy and/or reverberant scenarios with reduced/varying bandwidth signals).

III-D Noisy Sub-band GCC Model

In a more general case, the columns of the FS-GCC matrix will contain different amounts
of noise depending on the SNR characterizing the different sub-bands, i.e.

r = alFl+(1—al)nl, l= o,..,L—1, (25)

where n, € C¥ models the GCC noise component of the [-th sub-band, and «, € [0,1] is a
scalar that balances the contribution of the noise in the [-th sub-band. Since the noise vec-
tors in the frequency domain have a normalized magnitude spectrum given by the spec-
tral window &®(w), it follows from Parseval’s theorem that

n'n, = > = [l¢1° = [, @*(w) do. (26)
Similarly, the R matrix can be expressed as:
R = RG + N(I - G), (27)

where I € REXL is the identity matrix, N € CV*? is the matrix containing all the noise vec-
tors, i.e.

N=[nypny,..,n,_;], (28)

and G € R*! is the diagonal matrix



¢=|%a@- 0 | (29)
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In contrast to the ideal case, the non-ideal FS-GCC matrix R will have rank L unless more
than one of the diagonal entries «; are equal to 1.
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l
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dB, 7, = 40): magnitude (left), real part (center) and imaginary part (right).

III-E  Examples

Fig. 3(a-c) show the resulting FS-GCCs for the three signals analyzed in Fig. 1. A Hann
spectral window with a frequency support of B = 64 bins (B = 0.1) and 50% overlap was
used, resulting in L = 32 sub-bands. As it can be observed, the first row corresponding to
the noiseless full-band signal shows a peak perfectly aligned across all the analyzed bands
and centered at the true TDOA (t, = 40 samples). Due to the use of the Hann window, the
side-lobes are considerably small. The other rows corresponding to the signal affected by
noise show also a similar pattern, but only at those sub-bands where the SNR is sufficient
to preserve the phase information of the cross-power spectrum. The noise over the rest of
sub-bands can be also identified, showing that no useful delay information can be ex-

tracted from other frequencies.



An example considering a more realistic signal can be observed in the first column of Fig.
4, corresponding to three different time frames of a male speech signal (N = 2048 samples,
fs = 44.1 KHz). In this case, B has been set to 128 bins, resulting in a narrower peak. As ob-
served, the useful bandwidth of common audio signals as speech may change consider-
ably with time and the FS-GCC representation shows clearly which frequency bands are
actively contributing to a reliable time delay estimate. Note also that the last speech frame
(c) shows a bandwidth that is considerably narrower than the other two, which makes

TDE more difficult in this case.

While the full-band ideal case results in a high peak continuously present over all the fre-
quency-bands leading to a rank one matrix, in a general case, noise and reflections will
interact with the linear phase component corresponding to the direct-path delay, produc-
ing a matrix with full column rank. TDE from the FS-GCC matrix should be therefore ori-
ented towards the extraction of the reliable components of R, discarding properly the in-
formation from noisy bands.

Finally, a rule of thumb to select an appropriate value for the involved parameters can be
established by allowing the main lobe width (W) of the GCC to fit within the expected

range of possible time delays, i.e. W < fs%, where d is the inter-sensor distance. For exam-

ple, for a Hann window (W =4N / B), d = 0.5 m and f, = 44100 Hz, it follows that B =~ 128
and M = 32 (75% overlap).

IV Low-Rank ArPPROXIMATIONS OF THE FS-GCC MATRIx

This section exploits the properties of the presented sub-band FS-GCC representation by
proposing a low-rank approximation framework based on singular value decompositions.
Such low-rank representations will be shown to provide a robust GCC for TDE in adverse
conditions.

IV-A Singular Value Decomposition

A low-rank approximation of R can be obtained by solving

min ||R — ﬁ||F, subject to rank(ﬁ) <r (30)
R

where r is the rank of the approximating matrix R, and |- » denotes the Frobenius norm.
The problem has analytic solution in terms of the singular value decomposition (SVD) of R
, as given by the Eckart-Young-Mirsky theorem. Let us factorize R as

R = UzV”, (31)

where U € C€"*!is the matrix containing the left singular vectors, 2 € R“*! is the diago-

nal matrix containing the ordered singular values and V € C“** is the matrix containing



the right singular vectors. The particular rank-r matrix that best approximates R is given
by

T
Rr = .21 UiuiV’{‘, (32)
l=

where u; and v; are the i-th columns of the corresponding SVD matrices and o; are the or-
dered singular values [26].

IV-B Separation of GCC Components

Let us assume that the sub-band GCC matrix can be expressed by two separable compo-
nents: a target-path delay component and a noise component. Moreover, as it will be later
discussed in Section IV-C, we assume that the direct-path component is the one contribut-

ing to the greatest singular value, while the noise component is obtained by the addition
of the rest of separable matrices, i.e.

R@reet — R1 — o'lulv{, (33)

L
RHOise = Z O'iul'VlT. (34)
i=2

An example decomposition applied over the three speech frames discussed in the previ-
ous section is shown in Fig. 4. Note that the true delay is substantially enhanced by the

target delay component of the SVD. The third speech frame (row 3) is the one having the
noisiest FS-GCC, due to its reduced SNR.

IV-C Target GCC Extraction

The singular values and the left singular vectors correspond, respectively, to the square-
root of the eigenvalues and the orthonormal eigenvectors of RR”. In the ideal case, taking

RR' = ¢ elleq! = Lo 0! (35)

is singular, with (L — 1) zero eigenvalues and one non-zero eigenvalue 1 = Lgbgcpo = L||¢|I°
associated to the eigenvector ¢ . This means that such eigenvector should contain the in-

In the general noisy case, the left singular vectors will be eigenvectors of

RRI

(RG+N(I-6)) (RG+N(I-6))" (36)

L—1 L1
H 2
(lZ a12>¢0¢0 + 12 (1—a)nn]



L—-1

+ —_ 2\ pjwTy H
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L—-1
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It is readily seen that when G = I, i.e. when no noise is present in any of the sub-bands, the
which depends on the noise components of the GCC, is a rank L hermitian matrix with L
non-zero real eigenvalues. The third term is a rank-one matrix with a non-zero eigen-
value associated to a noise-dependent complex eigenvector. Finally, the fourth term is an-
other rank-one matrix, with one non-zero eigenvalue related to the eigenvector ¢ .

As a simplified example, a matrix G with L, ones and (L — L,) zeros in its diagonal, i.e. ei-
ther with perfect sub-bands or completely noisy sub-bands, will only contain the first (tar-
get) rank-one term and the second (noise) term with rank (L — L,). The eigenvalue corre-
sponding to the target term will be L ||¢ >, while the sum of the eigenvalues of the second
term will be (L — L,)||¢ I>. In most practical cases, the greatest singular value is expected to
be dominated by the target rank-one component, which justifies the use of a rank one ap-
proximation in terms of u;.

Taking the above discussion into account, under high SNR conditions, the first left singu-
lar vector should be dominated by the first term of Eq. (36) corresponding to the eigenvec-

tor ¢, . Since such eigenvector should be ideally real, we take the real part of u;, R{u, }:
él\)o[n] = R{u, }sign(R{w[v]}), (37)
where R{u,[y]} is the element of ®{u, } having the maximum absolute value, i.e.

y = argmax|R{u, [n]}]. (38)

solving the singular vector sign ambiguity (both u, and —u,; are eigenvectors of RR¥), forc-
ing a positive peak in </¢\> o~ The estimated TDOA is given by the position of such peak:

2, = arg max g?)o[n]. (39)

The fourth column of Fig. 5 shows the recovered GCCs from the target SVD (SVD FS-GCO),

$0, for the three speech frames shown in the previous examples. For comparison pur-
poses, the results for conventional GCC-PHAT are shown in the third column.
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Figure 4: Extracted SVD components from three different speech frames (SNR =25 dB)
with true TDOA 7, = 92. Left column: FS-GCC matrix. Middle column: target time-delay
component. Right column: noise component.

IV-D Weighted Low-Rank Approximation

The Frobenius norm weights uniformly all the elements of the approximation error
(R — R). However, it can be very useful in practice to assign particular weights to the dif-
ferent sub-band GCCs, based on some defined confidence measure. Therefore, weighted
low-rank approximations are of interest here, where the problem is now to solve [27]

min ||(R — ﬁ) O W], subjectto rank(ﬁ) <r, (40)
R F

where W € RY** is a weight matrix with non-negative weights and © denotes the

Hadamard product operator. The above equation is equivalent to solving a weighted

Frobenius norm, where a given weight is assigned to each entry of the matrix R, i.e.

N L
Yy 3 WE,I<R[n,l] —ﬁ[n,l])z, (41)

n=11l=1

I(r-k) owll_=

where w, ; are the weight entries of the matrix W. To address the problem, it is useful to
consider the decomposition R = ABY, where A € C"*" and B € C*". Any pair of matrices
(A, B) providing such a decomposition of a rank-r matrix could be a potential solution, so



the problem can be formulated as an unconstrained minimization over pairs of matrices
(A,B) [27]:

. _ARH
min [|(R~AB") O W]| . (42)

In our particular application, the weight matrix can be restricted to follow the specific
structure:

WoW;...W; _,
W = V‘fO V‘fl WL:_1 — IWT, (43)

WO Vl}l . WL.—I
where 1 is a column vector of length N and w = [w,, w,,..., w, _,]" is a vector containing
confidence weights w, € [0, 1] assigned to each of the L sub-bands. Under such case, due to

the structure of W, the problem of Eq. (40) can be rewritten as the factorization of a modi-
fied matrix R, [28]:

: H
min ||(RW—ABW)||F, (44)
where
R, = RW, (45)
B, = WB, (46)
W = diag(wy, wy, ..., w)). (47)

By applying SVD factorization to R, and conveniently truncating to the largest r singular
1/2 1/2

values, the estimates of A and B,, are obtained as A =UE and 8, =V$ , where £ is the
truncated singular value matrix. The rank-r approximation is therefore recovered as:
PN NN H 48)
R =AB =AW B8,) . (

Taking again into consideration that the noiseless sub-band GCC matrix is rank one, the
target and noise components are extracted as:

H
R = 46, (49)
i L H
Rnoise  — Z ﬁiﬁi, (50)

where a; and ﬁi are, respectively, the columns of A and B. Similarly to the SVD case, the re-
covered GCC is obtained as

$,ln] = R{4, Jsign(w{a,[y1}), (51)



where %{4,[y]} is the element of %{4, } having the maximum absolute value, i.e.

y= argmr?xm{ﬁl[n]“. (52)

The target components resulting from the considered speech examples are shown in the
second column of Fig. 5, while the recovered GCCs from the weighted SVD (WSVD FS-GCC)

are shown in the last column.’

1Code available at https://github.com/spatUV/fs-gcc

EVD F3.GCC WEVD F3-GCC

Figure 5: Results for three speech frames using SVD FS-GCC and WSVD-FSGCC. The two
first columns show the extracted target components using SVD and WSVD. The rest of
columns show the recovered GCCs and the true TDOA (red line, 7, = 92 samples). Note that
the conventional GCC (third column) fails in speech frame (c).

IV-D1 Weighting

Note that the weights w;, can be directly related to the «; coefficients of the model in
Eq. (25). Weights having a value close to 1 must reflect that the corresponding band pro-
vides almost perfect delay information. In contrast, weights close to zero should reflect
that the frequency band is dominated by noise and its information should be discarded.
Similarly, perfect sub-bands are expected to have a magnitude GCC which is only depen-

age of the magnitude of a perfect sub-band GCC («; = 1), regardless the true TDOA, will be:



p[n]]. (53)

1
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In contrast, GCCs from completely noisy sub-bands (a; = 0) are given by noise realizations

n;. The magnitude of a noisy band, which follows a Rayleigh distribution, will tend to its
mean value:

— 1 2TC
|rl||a=0 = W”(P” 5 (54)

Taking the above two extreme cases into account, the proposed weights are:

9,9,20
le{ol gl<0 (55)
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Therefore, the weights are expected to vary between 1 (perfect sub-bands) and 0 (com-
pletely noisy sub-bands). Note that the above equations were derived by assuming that
“noisy” sub-bands only comprise frequency bins where either the SNR is very low or
there is no signal at all. These bands are not expected to incorporate early echoes or re-
verberation effects, at least, as long as the frame size is longer than the length of the
acoustic channel. Under this assumption, the cross-power spectrum phase will be uni-
formly distributed in the range [—=, 7], and so the sub-band GCC coefficients wil corre-
spond to a filtered complex Gaussian process [29] with Rayleigh-distributed magnitude.

V  EXPERIMENTS

This section describes the experiments conducted to show the advantages of the proposed
FS-GCC method in terms of TDE performance. The criteria used to assess such perfor-
mance and the complete experimental set-up are next described.

V-A Performance Criteria

We classify a time delay estimate as either an anomaly or a nonanomaly according to its
absolute error e; = |t — %,|, where 7 is the true time delay and 7; is the i-th time delay esti-
mate. If e; > T,/ 2, the estimate is assumed to be anomalous, where T, is the signal correla-
tion time [30]. For our particular source signal (speech), 7. was computed as the width of

the main lobe of its autocorrelation function (taken between the -3 dB points), which is
equal to 24 samples. The TDE performance is evaluated in terms of the percentage of



anomalous estimates over the total estimates (P,), the average GCC first-to-second peak ra-
tio (FSPR), the mean and the standard deviation of the absolute error (all for the subset of
nonanomalous estimates: FSPR, _, MAE, ,SDAE, ).These measures are defined as

N
P, = a
, 57
‘ Ny 7
_ 1
MAE, = = — 3 e (58)
naiE){ml
SDAE, = 1 2
.na % (ei—MAE,,. ), (59)
NnaiEXna ’

where N, denotes the total number of estimates, N, is the number of estimates that are
identified as anomalies, N,, is the number of nonanomalous estimates, and y__ represents
the subset of nonanomalous estimates. The FSPR is defined as the average gain (over the
subset of nonanomalous estimates) of the maximum GCC peak with respect to the second
larger peak, i.e.

NOIN
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Figure 6: Performance evaluation in anechoic scenario (r; = 0). The fitting curve is a third
order polynomial.
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Figure 7: Performance evaluation in reverberant scenario (r; = 0.8, T, = 0.3 s). The fitting
curve is a third order polynomial.

V-B Simulation Set-up and Algorithm Parameters

We consider a rectangular room simulated by the image-source method in a single source
scenario [31]. Synthetic impulse responses were generated for a pair of sensors separated
0.5 meters considering 10 random array positions and orientations within the room, as
well as 10 random source locations for each microphone configuration. The simulations

were repeated for each reverberant condition. The following parameters were used:
* Room dimensions: 6 x 7 x 3 meters (x X y X z).

» Uniform reflection coefficients: r; € {0.0, 0.8}.

» Source positions: 10 random positions on the plane (x, y, z = 1.25).

* Microphone positions: two-microphone array with inter-sensor spacing 0.5 m, with 10
random positions and orientations on the x — y plane (z = 1.25).

* SNR: Varying between -10 dB and 20 dB. For each array set-up and source position, 10
different noise realizations were generated for each SNR condition. To control the
SNR, mutually independent white Gaussian noise was properly scaled and added to
each microphone signal.

» Source signal: A male speech signal of 2 seconds duration, digitized with 16-bit resolu-
tion at 44.1 kHz. The signal was processed to eliminate non-activity segments.

The synthetic microphone signals obtained by convolving the source signal with the gen-
erated impulse responses were processed by the different methods in the Short-Time
Fourier Transform (STFT) domain. We used a frame length of 2048 samples and Hann
windowing with 75% overlap, leading to 177 frames per audio example. The total number
of estimates used to evaluate each method at each SNR and reverberant condition is
therefore N =10 x 10 X 10 X 177 = 177, 000.



The parameters used for evauating the FS-GCC approach were B = 128 (spectral window
length) and M =32 (hop) frequency bins. Results for a blind channel identification
method, Adaptive Eigenvalue Decomposition (AED) [17], and a method based on ratios of

for comparison purposes. The AED method was configured to use rectangular windows of
the same size (2048), a filter length of 512 samples and an adaptation step of u = 0.003. The
RS1 method was configured as in a tracking scenario, considering as frames rectangular
windows of 2048 samples with 75% overlap. The power spectral density (PSD) estimation
needed for RS1 was performed using the Welch [32] method with Hann windows of 256
samples and 50% overlap, resulting in 15 periodograms for each PSD estimate. The
Recursive Least Square (RLS) method, applied in RS1, was configured using a forgetting
factor of a =0.8222, following [22]. Since AED and RS1 are not GCC-based methods, the

FSPR is not provided for such algorithms.

V-C TDE Results

The results for the anechoic condition with a varying SNR are shown in Fig. 6. The per-
centage of anomalous estimates is clearly reduced for all the methods with respect to the
conventional GCC-PHAT, with significant improvements achieved by WSVD FS-GCC, RS1
and, especially, AED. At the lowest SNR, RS1 is the most robust method, but its perfor-
mance seems to be bounded for higher SNRs. Note that the different behavior of RS1 may
be due to the aforementioned tracking scenario configuration. AED and WSVD FS-GCC fol-
low a similar behavior. The biggest improvement is observed for SNR = 0 dB, where the
difference between WSVD FS-GCC and conventional GCC is close to 35 percentage points
(40 in the case of AED and RS1). The FSPR is significantly better for the FS-GCC methods
than for the conventional GCC, especially at higher SNRs. All the methods outperform as
well the conventional GCC-PHAT in terms of mean and standard deviation of time-delay
errors, following a similar behavior (except RS1, which has a higher average error). This
is an interesting result, since it means that having a lower temporal resolution due to the

windowing effect does not affect negatively the TDE accuracy of FS-GCC.

The results for the reverberant case r; = 0.8 (reverberation time, T4, ~ 0.3 s) are shown in
Fig. 7. The percentage of anomalous estimates are now worse for all the methods, but in
this case, both AED and RS1 are significantly affected by reverberation. In contrast, WSVD
FS-GCC still shows very good robustness, with the most significant difference (more than
40 percentage points) at SNR = 10 dB. The FSPR is again considerably better for both FS-
GCC methods, with SVD providing slightly better results than WSVD. Regarding
nonanomalous TDOA errors, the FS-GCC methods provide slightly better results at low
SNRs. At higher SNRs the conventional GCC-PHAT seems to be slightly more accurate, al-

though in all cases the differences are very small (below 1 sample).

V-D Impact on Source Localization Performance



Although accurate time delay estimates are assumed to lead to better localization results,
the advantages in terms of FSPR are also expected to contribute to better localization in
SRP-based approaches, due to the mitigation of noise in the GCCs. To support such claim,
experiments were conducted considering the same acoustic conditions and source signals
but with six distributed microphones placed at the walls and corners of the room. The
modified SRP algorithm (M-SRP) [33] was applied considering a grid resolution of 0.15 m.

and the proposed WSVD FS-GCCs (b) for the same signal frame (SNR = 0 dB). The improve-
ment in terms of robustness to noise is clearly observed. The results for the mean and me-
and reverberant conditions. For comparison purposes, localization performance for AED
is also provided by estimating the source location as the point of the grid having the low-
est mean squared error considering all the available TDOAs. It can be observed that FS-
GCC provides always more accurate location estimates and less anomalous detections
(lower median) both in the anechoic case and in the reverberant case. Note that in the
very worst case of SNR = —10 dB and reverberation, all the methods provide unreliable
location estimates.

M-SRP (Conventional GCC) M-SRP (WSVD FS-GCC)




Figure 8: Example M-SRP maps (SNR = 0 dB). Microphones are represented with black
dots. The circle indicates the source location. (a) Using conventional GCCs. (b) Using WSVD
FS-GCCs.

TABLE I: Localization error [meters] for »; =0

h SNR=20dB SNR=10dB SNR=0dB SNR =-10 dB
Method Mean Median Mean Median Mean Median Mean Median
GCC 0.2510 0.0839 0.6786 0.0844 19216 1.8230 2.7655 2.7102
FS-GCC 0.0716 0.0595 0.0819 0.0702 0.3685 0.0839 1.5298 0.4895
AED 0.9542 0.0702 0.9802 0.0702 1.3457 0.5862 1.9669 1.7781

TABLE II: Localization error [meters] for r; = 0.8, T¢o = 0.3 S

SNR =20 dB SNR =10dB SNR=0dB SNR =-10 dB
Method Mean Median Mean Median Mean Median Mean Median
GCC 1.5722 09079 24151 2.4198 2.7016 2.6541 2.7025 2.6055
FS-GCC 0.2825 0.0839 0.6675 0.0926 1.5757 0.9293 2.7053 2.5615
AED 1.8427 1.6497 1.8589 1.6620 1.9365 1.8054 2.6129 2.5434

V-E Direction of Arrival Estimation in Real Recordings

In order to prove the effectiveness of the FS-GCC method also in a real environment, we
tested Direction of Arrival (DoA) estimation performances over the LOCATA challenge
dataset [2]. Specifically, we considered Task 1, consisting in a single static source and a
single static microphone array, from the evaluation version of the dataset, for a total of 13
different recordings and 43122 samples. Among available setups, we chose the DICIT pla-
nar array, and considered as sub-arrays, microphones separated by a distance of 0.032 m,
since this is the closest setup to the ones considered in the rest of the paper, thus facilitat-
ing the comparison. DoA estimation is performed using the M-SRP algorithm with a uni-
form spherical grid of regular triangles formed by 5 icosahedron subdivisions. Voice-
Active Periods (VAP) were extracted considering the Voice-Activity Detection (VAD) labels

provided with the dataset.

Azimuth and elevation average errors during VAP for Task 1 are shown in Tab. III. FS-GCC

based M-SRP outperforms GCC both with respect to azimuth and elevation estimation, al-
though only by a small amount. This behavior is expected, since the LOCATA dataset is not



excessively noisy and, as shown in Fig. 7, FS-GCC and GCC TDE performances become pro-
gressively similar as the SNR increases. Results related to elevation are significantly worse
than the ones related to the azimuth, due to the fact that the DICIT array has a lower di-
versity on the z-axis (of the 15 microphones considered only two are positioned at a dif-
ferent height with the respect to the remaining ones). Although [2] provides only mean az-
imuth average errors, the values obtained using both FS-GCC and GCC are comparable
with the other methods submitted to the LOCATA challenge and considering Task 1. It
should be also emphasized that no tracking mechanism was used, as opposed to some of

the methods evaluated in LOCATA.

TABLE III: Average azimuth and elevation errors [degrees] for task 1 of the LOCATA
challenge

Method Azimuth Elevation
GCC 2.514 9.333
FS-GCC 2.391 8.536

VI CoONCLUSION

This paper presented an improved GCC-based technique for TDE based on a sub-band
analysis of the cross-power spectrum phase. The properties resulting from the so-called
frequency-sliding GCC (FS-GCC) allows the recovering of denoised correlation signals by
means of low-rank approximations of the FS-GCC matrix. The use of SVD and weighted
SVD for obtaining both robust GCCs and accurate time delay estimates has been validated
and compared to other well-known approaches, showing the relevant impact that the pro-
posed technique can have in TDE and source localization performance.
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