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Abstract

This work presents a numerical method for the simulation of landslides generated impulse waves and its application to the historical
Vajont case study. The computational tool is based on the Particle Finite Element Method (PFEM), a Lagrangian strategy that
combines the finite element solution of the governing equations with an efficient remeshing strategy to deal with large deformation
problems. After presenting the numerical formulation, different landslide impulse wave problems with Froude number ranging
from 0.5 to 2.8, are analyzed to validate the proposed methodology. The computational method is shown to be able to reproduce
accurately the landslide runout, the momentum transfer between the sliding material and the impounded water, and the consequent
wave propagation observed in experimental physical models. Then, the PFEM model is applied to the numerical simulation of the
Vajont disaster, which is analyzed with a fully-resolved three-dimensional model. The numerical results are discussed and compared
to the post-event observations and the numerical results of other computational methods. The results in terms of landslide velocity
and runout, geometry of the deposit, maximum water runup, dam overtopping wave, and water discharge in the downstream valley
are in good agreement with observations and reconstructions. The calibration and validation performed for this study form the basis
for the PFEM analyses presented in a companion paper finalized to simulate different scenarios of the Vajont rockslide considered
in the experimental tests done a year before the disaster.
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1. Introduction

Landslides are responsible for significant human and eco-
nomic losses worldwide (Froude and Petley, 2018). Between
1995 and 2014, landslides caused over 160,000 deaths and
11,000 injured worldwide (Haque et al., 2019) and, only con-
sidering 27 European countries, an approximated economic loss
of 4.7 billion Euros (Haque et al., 2016). According to World
Bank data (Dilley et al., 2005), about 300 million people live
in landslides-prone areas. Global warming effects, the intensi-
fication of extreme rainfalls and new settlements in risk areas,
driven by the rise of the world population, are contributing to
increasing the number of deadly landslides worldwide (Haque
et al., 2019). This critical scenario puts in the foreground the
urgency of improving the current predicting techniques for this
major natural hazard.

Due to the complexity of landslide dynamics and the diffi-
culty in defining the material properties and behavior, predict-
ing landslide effects on natural and human environments is a
hard endeavor. This task is even more complicated when land-
slides are accompanied by other natural hazards in a cascad-
ing mode, as in the case of landslides falling into water reser-
voirs and generating impulse waves. Depending on the slide
initial position, geometry, material, velocity, evolution, and wa-
ter reservoir characteristics, tsunami-type waves may form and
affect the shoreline of the reservoirs.

The fjord area of western Norway is one of the world re-
gions most susceptible to this type of natural hazard (Harb-
itz et al., 2014). In this area, rock avalanches and associated
tsunamis caused more than 170 casualties during the last 100
years (Blikra et al., 2005). The most tragic event occurred in
Tajford in 1934, when a massive rockslide of around 3 million
cubic meters dropped into the fjord resulting in a devastating
flood wave that washed over 60m on the opposite shorelines
and the nearby Tafjorden communities (Braathen et al., 2014).

More recently, landslide induced tsunami waves were
recorded in Greenland (Gauthier et al., 2018; Paris et al., 2019;
Bloom et al., 2019), where the seriousness of this type of
phenomena can become more and more relevant considering
present-day climate changes, especially at high latitudes.

The highest recorded wave runup produced by a landslide oc-
curred on July 9th 1958 at the head of Lituya Bay on the south-
ern coast of Alaska (Miller, 1960; Fritz et al., 2009). On that
occasion, an 8.3 magnitude earthquake along the Fairweather
fault triggered a major rockslide which, after impacting the wa-
ter of the lake, generated a giant tsunami and a water runup of
524m (Fritz et al., 2001).

The landslide impulse wave event of Vajont (northern Italy)
was the one with the highest number of associated casualties
(around 2000). On the night of October 9th 1963, about 275
million cubic meters of rock detached from the northern side
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of the Mount Toc, slumped on the water basin and produced a
massive water runup of around 200m on the opposite flank of
the valley (Semenza, 1965, 2002, 2010; Semenza and Ghirotti,
2010; Ghirotti, 2012; Paronuzzi et al., 2013). A significant part
of the huge impounded water volume overtopped the dam and,
after traveling about 1.5km through the Vajont gorge, reached
the Piave valley destroying almost entirely the village of Lon-
garone (Viparelli and Merla, 1968; Ward and Day, 2011). As
highlighted by serveral authors (Hendron and Patton, 1985; Se-
menza, 2002; Alonso and Pinyol, 2010), the catastrophic Va-
jont landslide consisted of the reactivation of an ancient land-
slide that was triggered by the filling–drawdown cycles of the
Vajont reservoir and heavy rains occurring in the same period.
According to Paronuzzi et al. (2013), the variation of reservoir
level caused a decrease in the slope factor of safety (FOS) up to
12% of the initial value (already close to the critical conditions,
FOS ≈ 1.14), while the maximum decrease in FOS associated
with rainfall was estimated to about 4%.

The critical issues related to landslide impulse-wave events
make more and more desirable the implementation of new tech-
nologies for improving the predictive capabilities of current
forecasting methods. The recent advancements in hardware
and numerical technologies put computational methods in the
foreground for this objective. However, the numerical simu-
lation of these multi-hazard scenarios is still challenging. In-
deed, even assuming the failure surface and the initial volume
of the landslide as known, the computational method must be
able to track the deforming shape of the landslide during the
runout, to reproduce carefully its complex constitutive behav-
ior, to limit mass variations, and to be applicable to large-scale
three-dimensional (3D) geometries based on real topographic
data. Furthermore, in case of landslides impacting onto wa-
ter reservoirs, the numerical tool must be able to deal with se-
vere topological changes undergone by the water (splashes and
breaking waves), and to have good mass and energy conserva-
tion properties to reproduce accurately the momentum transfer
at the impact and the consequent wave propagation.

Lagrangian approaches have several advantages versus tradi-
tional Eulerian methods to solve large deformation problems
as landslide impulse-wave events. Thus, while Lagrangian
strategies track naturally the deforming shape of the computa-
tional domain, Eulerian methods require additional tools, such
as Level Set (Osher and Fedkiw, 2002) or Volume of Fluid (Hirt
and Nichols, 1981) methods. On the other hand, mesh-based
Lagrangian methods may lead to mesh distortion when applied
to large deformation problems (Zienkiewicz et al., 2005). This
issue is naturally overcome by Lagrangian meshless methods,
such as the Smooth Particle Hydrodynamics (SPH) (Gingold
and Monaghan, 1977), the Lattice Boltzmann Method (LBM)
(Chen and Doolen, 1998) and the Discrete Element Method
(DEM) (Cundall and Strack, 1979). In the SPH, the compu-
tational domain is discretized into Lagrangian particles over
which the material properties are smoothed by kernel functions.
The LBM divides the space into regular lattices and solves the
kinetic Boltzmann equations over the particle distribution func-
tions defined for each lattice. Finally, in a DEM approach, the
particles move according to the second Newton’s law, taking

into account the contact forces between particles and the effect
of the fluid on particle motion (buoyancy and drag forces). Ex-
amples of applications of SPH, LBM and DEM techniques to
landslides impulse wave problems can be found in McDougall
and Hungr (2004); Minatti and Pasculli (2011); Pastor et al.
(2015, 2009), Pak and Sarfaraz (2014); Qiu et al. (2019), and
Zhao et al. (2016); Shan and Zhao (2014), respectively.

The Material Point Method (MPM) still uses Lagrangian par-
ticles to follow the deforming domain, but, unlike the particle-
methods presented above, adopts a background Eulerian mesh
for solving the governing equations with the Finite Element
Method (FEM) (Sulsky et al., 1994). This hybrid Eulerian-
Lagrangian nature confers the possibility of using complex con-
stitutive laws for the landslide material and, at the same time,
the capability of tracking the deforming shape of the triggered
material. These features explain the considerable attention
gained by the MPM in the last two decades in the field of land-
slides modeling (Pinyol et al., 2017; Andersen and Andersen,
2010; Soga et al., 2016; Yerro et al., 2016, 2019).

Unlike all the previously mentioned particle-based methods,
the Particle Finite Element Method (PFEM) (Idelsohn et al.,
2004; Oñate et al., 2004; Larese et al., 2008) uses a Lagrangian
mesh to solve the governing equations as in standard FEM.
The issue of mesh distortion is overcome through an efficient
remeshing strategy based on an enhanced Delaunay Triangula-
tion algorithm (Edelsbrunner and Tan, 1993; Edelsbrunner and
Mucke, 1999). The combination of the FEM solution of the
governing equations with the treatment of mesh nodes as ma-
terial particles makes of the PFEM a suitable method for large
deformation problems, including the numerical simulation of
landslides (Zhang et al., 2015, 2017) and their interaction with
water reservoirs (Cremonesi et al., 2011; Salazar et al., 2012,
2016; Cremonesi et al., 2017; Zhang et al., 2019; Mulligan
et al., 2020).

This work aims to show the effectiveness of the PFEM for
simulating complex 3D landslide impulse wave events. Af-
ter presenting and validating the PFEM technique against some
well-known benchmarks, the computational method is applied
to the simulation of the Vajont disaster.

In the last two decades, several numerical strategies have
been applied to model the Vajont disaster. Zaniboni and Tinti
(2014) subdivided the rockslide into six sub-slides and their
motion was computed with a one-dimensional (1D) Lagrangian
model. A two-dimensional (2D) Discontinuous Deformation
Analysis was used by Sitar et al. (2005) to analyze the rockslide
failure. Thermal effects on the Vajont sliding velocity were
studied by Pinyol et al. (2017) using a 2D MPM model. The Va-
jont rockslide and the consequent impulse wave were analyzed
in 2D by Zhao et al. (2016) using a DEM-CFD (Computational
Fluid Dynamics) method and by Manenti et al. (2016, 2018) us-
ing SPH. The hydraulic analysis of the Vajont disaster was the
main focus of the shallow-water model used by Bosa and Petti
(2011, 2013), while the rockslide was modeled as a prescribed
boundary condition. A similar choice was adopted by Vacon-
dio et al. (2013), who modeled the landslide as a rigid body
with assigned motion, while water was simulated with a 3D
SPH model. The so-called Tsunami Balls method (Ward and
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Day, 2008) was used by Ward and Day (2011) to simulate the
landslide and the consequent water motion, including the flow
over the dam and the flooding of the Piave valley. Nevertheless,
at the best of the authors’ knowledge, the only fully 3D simula-
tion of the Vajont disaster was presented by Crosta et al. (2016),
where both water and landslide were modeled with a 3D Arbi-
trary Lagrangian-Eulerian (ALE) method (Crosta et al., 2006,
2009). In this work, the Vajont case study is analyzed with the
PFEM using a 3D fully-resolved model and, at the best of our
knowledge, with the highest mesh resolution ever published. In
a companion paper (Franci et al., 2020), hypothetical scenarios
of the Vajont disaster are analyzed and related to the pre-event
experimental predictions of Ghetti (1962).

The paper is structured as follows. In Section 2, the PFEM-
based numerical model used in this work is presented. First, the
governing equations and the constitutive models are described,
and then, the PFEM algorithm is explained. Section 3 is ded-
icated to the validation of the method against two benchmark
experimental tests for landslide impulse wave problems. Fi-
nally, Section 4 presents the Vajont case study and discusses
the results of the 3D numerical simulations. The conclusions of
the work are given in Section 5.

2. Numerical formulation

2.1. Balance equations

In this work, both the landslide material and the water are
analyzed in a fluid dynamics framework. The governing equa-
tions are solved in an updated Lagrangian description as in the
standard Particle Finite Element Method (PFEM). These equa-
tions are the linear momentum balance and mass conservation
and they read

ρ
∂vi

∂ t
−

∂σi j

∂x j
−bi = 0 in Ωt × (0,T ) (1)

1
κ

∂ p
∂ t

+
∂vi

∂xi
= 0 in Ωt × (0,T ) (2)

where ρ is the bulk density of the material (either the landslide
or the water), vi is the ith component of the velocity field, t is
the time, σi j is i jth component of the Cauchy stress tensor, bi
is the ith component of the body force per unit of volume, κ

is the material bulk modulus, p is the pressure, Ωt is the up-
dated computational domain, and T is the total duration of the
analysis.

We remark that the mass conservation equation (Eq.2) is not
solved with the divergence-free form of the standard Navier-
Stokes problem ( ∂vi

∂xi
= 0), but admitting a small (practically,

negligible) compressibility controlled by the material bulk
modulus (Idelsohn et al., 2008; Ryzhakov et al., 2012; Franci
et al., 2015).

The Cauchy stress tensor is computed as the sum of its devi-
atoric and volumetric parts as

σi j = τi j− pδi j (3)

where τi j is i jth component of the deviatoric stress tensor and
δi j is the Kronecker delta.

For both landslide material and water, the deviatoric part of
the Cauchy stress can be written as

τi j = µ̄ γ̇i j (4)

where µ̄ is the apparent viscosity (defined for each constitutive
model in Section 2.2) and γ̇i j is the deviatoric strain rate, which,
assuming as negligile the volumetric strain rate, is computed
from the velocities as

γ̇i j =
∂vi

∂x j
+

∂v j

∂xi
(5)

To close the problem, appropriate initial and boundary con-
ditions must be defined.

2.2. Constitutive model
Water is modeled as a standard Newtonian fluid with a con-

stant and uniform apparent viscosity µ̄ (Eq.(4)) that coincides
with the fluid dynamic viscosity µ . Hence:

µ̄ = µ (6)

For the landslide material, a frictional viscoplastic model in-
spired on the Bingham model has been used. The Bingham
model has been largely used for modeling geophysical flows,
such as mudflows, debris flows and lahars (Pastor et al., 2015).
The shear stress of a Bingham material is defined for a steady
case as

τi j = τ0
γ̇i j

|γ̇|
+µγ̇i j for |τ| ≥ τ0

γ̇i j = 0 for |τ|< τ0

(7)

where τ0 is the shear yield stress and |γ̇| is the equivalent strain
rate which is computed as

|γ̇|=
√

1
2

γ̇i j γ̇i j (8)

.
To overcome the well-known numerical drawbacks of the

standard Bingham model, the previous power law is regular-
ized with an exponential function (Papanastasiou, 1987). For a
general 3D case, this regularized model reads

τi j =

[
µ +

τ0

|γ̇|

(
1− e−m|γ̇|

)]
γ̇i j (9)

where m is the regularization parameter.
For problems in which the effect of friction is not negligi-

ble, a frictional viscoplastic model is used. In this case, the
above viscoplastic model is modified defining a non-constant
yield limit as follows

τ0 = c+ p tan(φ) (10)

where c is the cohesion and φ is the material friction angle.
This modification is commonly used for the flow of materi-

als that follow a Mohr-Coulomb type criterion (Quecedo et al.,
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2004; Larese et al., 2012; Salazar et al., 2016). It is worth re-
marking that this mono-phase model lacks the concept of ef-
fective stresses. Consequently, p represents the pressure of the
landslide material rather than the effective pressure of the soil
skeleton.

Combining Eq.(9) and Eq.(10), the following frictional vis-
coplastic model is obtained

τi j =

[
µ +

c+ p tan(φ)
|γ̇|

(
1− e−m|γ̇|

)]
γ̇i j (11)

2.3. PFEM solution algorithm
In this work, the dynamics of both the water and landslide

material are solved with the PFEM (Idelsohn et al., 2004; Oñate
et al., 2004). The method is based on a fully Lagrangian strat-
egy designed to solve large deformation problems. The solu-
tion of each time step is obtained with a FEM solver, while
mesh distortion issues are managed with an efficient remesh-
ing strategy combining the Delaunay Triangulation with a topo-
logical method for real-time definition of the computational
boundaries. In the following, the FEM solution strategy and the
remeshing procedure used in this PFEM formulation are briefly
described.

2.3.1. FEM solver
The governing equations Eqs.(1-2) are discretized with a

standard Galerkin finite element approach using tetrahedral ele-
ments with linear interpolation for both velocities and pressure
unknowns. For the transient solution we use the implicit sta-
bilized scheme proposed in Oñate et al. (2014). The method
is based on a two-step velocity-pressure scheme and uses a Fi-
nite Increment Calculus (FIC) stabilization (Oñate, 1998; Oñate
et al., 2014; Pouplana and Oñate, 2017) to avoid the spurious
oscillations induced by the unfulfillment of the in f -sup condi-
tion (Brezzi and Fortin, 1991). Details can be found in in Oñate
et al. (2014), Franci et al. (2015), and Franci and Zhang (2018).

For a generic time step [nt; n+1t] of duration ∆t, the momen-
tum balance and mass conservation equations are solved in time
iteratively for the increments of nodal velocities and pressures
according to the following algorithm.

At each non-linear iteration k:
1. Compute nodal velocity increments ∆v̄: Kk∆v̄ = R(v̄k, p̄k)

2. Update nodal velocities: n+1v̄k+1 = n+1v̄k +∆v̄
3. Update nodal coordinates: n+1x̄k+1 = n+1x̄k + ū(∆v̄)

being ū the nodal displacements.
4. Compute nodal pressures p̄k+1: Hk p̄k+1 = F p(v̄k+1, p̄k)

5. Update Cauchy stress: σ k+1 = τ(v̄k+1)− pk+1I

6. Check convergence:
‖∆v̄k+1‖
‖nv̄‖

≤ ev,
‖ p̄k+1− p̄k‖
‖n p̄‖

≤ ep

with ev and ep prescribed error norms for velocities
and pressures.

If condition 6 is not fulfilled, return to 1 with k← k+1.

All variables marked with an upper bar refer to nodal values.
The vectors and matrices introduced in the previous algorithm
are detailed in Appendix A.

2.3.2. Lagrangian mesh management

In Lagrangian approaches, such as the PFEM, the mesh
nodes move according to the FEM solution of the governing
equations, as explained in Sections 2.1-2.2. However, as shown
in Figs. 1a- 1b, this may lead to an excessive distortion of the
mesh when large deformation problems are solved.

(a) Initial mesh

(b) Deformed mesh after computation

(c) 1st remeshing step: erase elements

(d) 2nd remeshing step: Delaunay Triangulation

(e) 3rd remeshing step: Alpha Shape method

Figure 1: PFEM solution algorithm for a large deformation problem.
(a)-(b) Mesh distortion due to computation. (c)-(e) Remeshing steps.
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Thus, whenever the mesh exceeds a pre-fixed distortion level,
a new discretization is built over the nodes of the previous (dis-
torted) mesh, redefining the elemental connectivity (Idelsohn
et al., 2004). This is done in the PFEM with a three-step pro-
cedure (Figs. 1c- 1e). First, all the elements of the distorted
mesh are removed (Fig. 1c), and the problem information is
stored at the nodes. Then, a new mesh is built over this cloud
of points by performing a Delaunay triangulation (Edelsbrun-
ner and Tan, 1993) (Fig. 1d). Finally, in order to recover the
actual contours of the computational domain, the so-called Al-
pha Shape method (Edelsbrunner and Mucke, 1999) is applied
(Fig. 1e). During this step, all the elements that are considered
excessively distorted according to a prefixed criterion are re-
moved from the discretization. The resulting mesh is now ready
to be used for the FEM solution of the next computational time
step. More details of the PFEM procedure can be found in Idel-
sohn et al. (2003), Oñate et al. (2004), Franci and Cremonesi
(2017), and Cremonesi et al. (2020).

3. Validation tests

In this section, the proposed PFEM technique is validated in
the context of submarine landslides and tsunami wave genera-
tion against the experimental tests of Rzadkiewicz et al. (1997)
and Fritz (2002).

In the first analysis, a saturated sand submarine landslide was
modeled with a 3D regularized Bingham model. In the second
one, the impact of a granular mass against a water reservoir and
the subsequent wave were reproduced.

3.1. Subaqueous sandflow

The submarine landslide reproduced in one of the experimen-
tal tests of Rzadkiewicz et al. (1997) is here simulated numer-
ically with the proposed PFEM model. The fully submerged
sliding mass is composed of saturated sand and it is placed
over a slope with inclination 45◦. Following Rzadkiewicz et al.
(1997), a Bingham model was used for the landslide using the
following material parameters: ρ = 1985kg/m3, τ0 = 200Pa,
and µ = 0.001Pa · s. A regularization parameter m = 1000s−1

was adopted. Water was modeled as a Newtonian fluid using
ρ = 1000kg/m3 and µ = 0.001Pa · s. For this test, the Froude
number Fr = vs/(gh)0.5, being vs the sliding velocity and h the
reservoir height, is estimated equal to 0.5. No-slip conditions
between the sliding mass and the inclined surface are assumed.
Fig. 2 shows a graphical representation of the initial geometry
of the test.

The problem was solved with both 2D plane strain and 3D
models. The initial mesh had 16,574 triangles in the 2D case
and 749,165 tetrahedral elements in the 3D model. In both
cases, a mean mesh size of 2.75 cm was used.

A lateral view of the 3D numerical results obtained at t = 0.4s
and t = 0.8s is given in Fig. 3. The landslide body reached
peak velocities of around 2m/s before depositing over the lower
horizontal plane. As shown in the figure, the sliding of landslide
material induces the motion of the water contained in the tank
perturbating its free-surface contour.

Figure 2: Subaqueous sandflow. Initial geometry.

(a) t = 0.4s

(b) t = 0.8s

Figure 3: Subaqueous sandflow. Numerical results at t = 0.4s and
t = 0.8s.

The profile of the upper water surface obtained experimen-
tally at t = 0.4s and t = 0.8s (Rzadkiewicz et al., 1997) is
plotted in Fig. 4 together with the results given by a 2D SPH
model (Rzadkiewicz et al., 1997) and those obtained here with
the PFEM.

The graphs show an overall good agreement between the 3D
PFEM results and the experimental observations. Instead, the
2D analyses with SPH and PFEM, although showing good mu-
tual agreement, have clear discrepancies versus the experimen-
tal values. These results confirm the potential of the PFEM for
this type of problems and its agreement with literature results.
Moreover, they show the relevance of 3D effects in landslide
events and, thus, the importance of using 3D models for their
numerical simulation.
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Figure 4: Position of water free-surface at two time instants. Experimental values and SPH results from Rzadkiewicz et al. (1997).

3.2. Granular slide impact and wave generation

This test aims to analyze the suitability of the proposed
PFEM model for the simulation of impulse waves generated
by the impact of landslides. For this purpose, the series of ex-
periments presented in Fritz (2002) was considered. In these
experimental tests, different masses of granular material were
made to slide on an inclined plane and to impact the water at
rest placed in the underlying tank. Different shapes and initial
velocities of landslides were studied in the laboratory tests. In
this section, only two cases of the experimental series are ana-
lyzed. In the first test, the sliding material has an initial length
d = 0.3m and zero velocity. This analysis aimed to verify only
the accuracy of the used model for frictional material. For this
reason, water is not modeled and only the landslide motion is
analyzed. In the second test, also water is simulated and, a
larger mass (d = 0.6m) with an initial velocity of 3.17m/s was
considered for the sliding material. For both cases, 2D plane
strain conditions were assumed in the numerical simulations. In
terms of slide Froude number, Fritz (2002) estimated Fr = 1.7
for the first test and Fr = 2.8 for the second one. Due to the rel-
evance of frictional effects, the granular material was modeled
with the frictional viscoplastic law of Eq.(11). The model was
fed with the material parameters provided in Fritz (2002), us-
ing a friction angle of 43◦, a density of 1620kg/m3, and a null
viscosity for the sliding material. The basal plane was mod-
eled with a reduced friction angle of 24◦ following Fritz (2002)
and considering no-slip conditions. A possible alternative to ac-
counting for the different behavior of the basal surface could be
using Navier slip conditions (see e.g. Cremonesi et al. (2017)).

Fig. 5 shows the initial geometry of the tests together with
the auxiliary coordinates (x;y) and (x∗;y∗) and the location of
the four probes used to monitor the sliding material motion and
the water wave amplitude.

Concerning the mesh, a very fine mesh (mean element size
of 5mm) was used for both tests. In the first one, the whole
model was discretized with 3,210 3-noded triangles, while in
the second test, 6,420 and 113,000 linear triangular elements
were used for discretizing the granular material and the water,
respectively.

3.2.1. Subareal slide motion
Fig. 6 shows for the first case (Fr = 1.7) the time evolution of

the height of the granular mass measured at probe P1 (Fig. 5).

Figure 5: Granular slide impact and wave generation modeling setup.
The subareal slide motion is monitored at probes P1 and P2 (x∗ =
−0.4m and −0.07m, respectively). The water wave amplitude is mea-
sured at probes P3 and P4 (x = 1.43m and 2.43m, respectively).

In the graph, both numerical and experimental results are plot-
ted, and, for both, T = 0 is the time instant at which the height
of the sliding mass at the measuring point P1 reaches the 25% of
the initial height. The graph shows a very good agreement be-

 0

 0.2

 0.4

 0.6

 0.8

 1

−0.5  0  0.5  1  1.5  2  2.5

y*
/h

 [−
]

T(g/h)0.5 [−]

Experimental at P1
Numerical at P1

Figure 6: Time evolution of sliding material height measured at probe
P1 of Fig. 5. Results for the test with Fr = 1.7. Comparison to experi-
mental observations of Fritz (2002).

tween the numerical results and the experimental observations.
The duration and maximum height of the landslide are very well
captured by the numerical method proving the accuracy of the
frictional model.

In the second test (Fr = 2.8), the height of the sliding granu-
lar mass was measured also at P2, placed very close to the water
reservoir. Fig. 7 shows the time evolution of the numerical and
experimental profiles at the measuring points P1 and P2.

In this case, although the numerical model captures well the
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Experimental at P1
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Figure 7: Time evolution of sliding material height measured at probes
P1 and P2 of Fig. 5. Results for the test with Fr = 2.8. Comparison to
experimental observations of Fritz (2002).

landslide duration and timing, the numerical results seem to be
less accurate than in the first test. This disagreement is prob-
ably due to the inaccurate modeling of the initial sliding con-
ditions. In particular, the initial tangent velocity vi = 3.17m/s
was imposed to all the nodes of the granular mass. This may
be not representative of the initial landslide kinematic condi-
tions given by the pneumatic acceleration mechanism used in
the experiments.

3.2.2. Impact and subaqueous slide motion
Fig. 8 shows a qualitative comparison of numerical and ex-

perimental results at the impact zone. Both in the experiment
and in the simulation, the initial time t = 0 represents the im-
pact moment, which, in the numerical simulation, happens af-
ter 0.175s from the landslide release. Despite some discrepan-

(a) t(g/h)0.5 = 0.72

(b) t(g/h)0.5 = 2.24

(c) t(g/h)0.5 = 3.77

(d) t(g/h)0.5 = 4.53

Figure 8: Granular slide impact and wave generation. Left column:
experimental observations (Fritz, 2002). Central column:water stream-
lines (Fritz, 2002). Right column: PFEM results.

cies, the pictures show an overall good qualitative agreement
between the numerical and the experimental results. In partic-
ular, the PFEM model can reproduce the initial flow separa-
tion (Fig. 8a), the following backward collapsing impact crater
(Figs. 8b-8c), and the formation and propagation of the major
wave (Fig. 8d).

In Fritz (2002), the following normalized relations for the
subaqueous landslide duration and runout obtained from multi-
ple regressions (Ratkowsky, 1990) were provided.

x∗/h = 3.7
(

vs/
√

gh
)0.3(

Vs/
√

dh2
)0.3

t
√

g/h = 5.2
(

vs/
√

gh
)−0.2(

Vs/
√

dhs
)0.3 (12)

where vs, Vs and s are the slide impact velocity, volume and
thickness, respectively.

Fig. 9 compares the obtained normalized subaqueous land-
slide duration and runout (measured data) with the values ob-
tained with Eqs.(12). The observations of the experimental test
obtained in Fritz (2002) are plotted in the same graph. The pic-

(a) Landslide runout
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Figure 9: Granular subaqueous landslide runout and duration. PFEM
results, experimental observation of Fritz (2002) and computed values
from Eqs.(12).

tures show a very good agreement between the obtained results
and the experimental regression formula.

3.2.3. Wave propagation
Fig. 10 shows the normalized time evolution of the normal-

ized wave amplitude at x = 1.43m (P3) and x = 2.43m (P4).
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Both numerical and experimental results are reported. As for
the subaqueous slide analysis, the impact time instant is con-
sidered as the initial time t = 0 for both numerical and experi-
mental analyses. The graphs show a general agreement of the
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Figure 10: Wave amplitude measured at probes P3 and P4 (Figure 5).
Experimental results from Fritz (2002).

numerical results with the experimental observations, although
the numerical analysis slightly overestimates the velocity and
the maximum amplitude of the wave. Looking at these results
it should be considered that material permeability and 3D ef-
fects were neglected in the numerical model, and both these
assumptions have the effect of overestimating the impact force
of the landslide.

4. Case study: Vajont disaster

The Vajont rockslide occurred on October 13th 1963 during
the drawdown of the hydroelectric reservoir when the water
altitude was at about 700m above sea level (a.s.l.) (Semenza,
1965). The sliding mass had an estimated volume of about
275 million cubic meters (Selli and Trevisan, 1964; Ciabatti,
1964; Datei, 1969; Viparelli and Merla, 1968) and a charac-
teristc M-shape given by two main volumes with similar shape
(west and east lobes). The Massalezza creek flowing down from
the Mount Toc divided the two blocks, as shown in Fig. 11.

According to several authors (Muller, 1964; Selli and Tre-
visan, 1964; Ciabatti, 1964; Voight and Faust, 1982; Hendron
and Patton, 1985; Nonveiller, 1987), the rockslide moved some
360-450m to north and 140m upwards on the opposite valley
with an estimated maximum velocity of 15-30m/s. The rock-
slide front thickness was comparable to (or even larger than) the
depth of the water reservoir, causing the complete displacement
of the water body from the reservoir. Based on these observa-

Figure 11: Vajont valley map before the landslide (edited from Vipar-
elli and Merla (1968)).

tions, the Froude number of the Vajont rockslide can be esti-
mated as ranging between 0.26 and 0.75 (Crosta et al., 2016).

About 170 million cubic meters of water were pushed up-
wards over the northern flank of the valley eroding the soil up
to an elevation of about 950m a.s.l. (Semenza, 1965).

Part of the impounded water (about 25 · 106m3 according to
Selli and Trevisan (1964); Viparelli and Merla (1968)) over-
topped the dam crest (725m a.s.l) with an estimated flow rate
of about 105m3/s (Viparelli and Merla, 1968). Another part of
the wave came back towards the mobilized landslide material,
and a third part moved eastward in the upstream direction as a
tsunami wave propagating in the residual Vajont lake towards
the Erto village.

A summary of the observed and estimated magnitudes of the
Vajont disaster is given in Table 1.

4.1. Computational domain and mesh
The Vajont rockslide and consequent impulsive water wave

were reproduced with a 3D PFEM model. The geometry of the
landslide body was the same as the one used in Crosta et al.
(2016). The sliding volume was reconstructed starting from the
pre- and post-failure topographic information obtained by topo-
graphic data, geological maps and cross sections by Rossi and
Semenza (1965) and (Rossi and Semenza, 1986), Lidar surveys
(provided by the Regione Friuli Venezia Giulia), borehole data
(Broili, 1967), and field checks.

Fig. 12 shows the computational domain at its initial con-
figuration. From a top view, the area of study is a 4km× 3km
rectangle. As shown in the picture, the origin of (x,y) refer-
ence system is placed at the easternmost point of the dam, at a
distance in x-direction of 795m from the northernmost point of
the computational domain, and 710m in the y-direction from the
westernmost one. Fig. 12 also shows the eight sections that will
be used in the following study to analyze specific aspects of the
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Table 1: Vajont case study. Summary of observations data.

Magnitude Value and reference

Landslide volume [m3] 270-300 ·106 (Selli and Trevisan, 1964; Ciabatti, 1964; Viparelli and Merla, 1968; Datei, 1969)
Landslide duration [s] 20-25 (Caloi, 1966), 30-45 (Muller, 1964), 45 (Selli and Trevisan, 1964; Ciabatti, 1964)
Landslide velocity [m/s] 15-20 (Selli and Trevisan, 1964; Ciabatti, 1964; Nonveiller, 1987), 20-30 (Muller, 1964; Voight and Faust, 1982; Hendron and Patton, 1985)
Water runup [m] 200-250 (Viparelli and Merla, 1968)
Water flow [m3/s] about 100 ·103 (Viparelli and Merla, 1968)
Flooded volume [m3] about 25 ·106 (Selli and Trevisan, 1964; Viparelli and Merla, 1968)

multi-hazard event dynamics. Section A is placed at x = 0m,
while sections B, C, D, E, F , G and H are located at y = 0m,
500m, 870m, 1700m, 2240m, 2450, and 2840m, respectively.
Sections A and B are used to analyze the wave overtopping the
dam, sections C, D and E to monitor the sliding velocity of the
rockslide, and sections F , G and H to measure the amplitude of
the tsunami wave propagating in the residual lake.

Figure 12: Computational domain considered for the Vajont analysis
and position of cross-sections.

The crest of the dam has an altitude of about 725m a.s.l. and
the initial water level is placed at 700m a.s.l., which was the
actual reservoir level at the time of the disaster.

Space was discretized with a finite element mesh with a mean
element size of 10m. Remarkably, this mesh size is almost half
of that used in the only other 3D analysis of the Vajont disaster
available in the literature (Crosta et al., 2016). At the beginning
of the computations, the landslide volume is discretized with
around 2,800,000 tetrahedral elements, while around 1,120,000
tetrahedra are used for the water reservoir. The mountain and
the dam surfaces are discretized with 242,738 and 1,411 linear
triangular elements, respectively. Fig. 13 shows a detailed view
of the mesh used.

All the numerical analyses were run for an overall time dura-
tion of 100s.

4.2. Material parameters

The rockslide was solved with the regularized frictional
visco-plastic model of Eq.(11). Two different values of fric-
tion angle were used for the landslide material and the basal

Figure 13: Detail of the PFEM mesh. View from behind the dam.

surface. For the bulk landslide material, friction and cohesion
were taken equal to φlan = 34◦ and clan = 1000kPa, respec-
tively. For the basal surface, a lower value of friction was used,
namely φbas = 11◦. It is important to note that the values of
friction angles and cohesion are the same as the residual ones
used in Pinyol et al. (2017) and the reduced friction angle of the
landslide basal plan (11◦) fit into the ranges 4◦-23◦, 5◦-16◦ and
2◦-36◦ proposed for the failure surface in Tika and Hutchinson
(1999), Hendron and Patton (1985) and Ferri et al. (2011), re-
spectively. A density ρlan = 2400kg/m3 has been considered
for the landslide material. Water was modeled as a standard
Newtonian fluid with dynamic viscosity µ f = 0.001Pa · s and
density ρ f = 1000kg/m3. Finally, the mountain and the dam
were modeled as fixed rigid bodies.

As in the other fully 3D analysis of the Vajont disaster
(Crosta et al., 2016), no-slip conditions were considered for the
mountain and the dam surfaces.

4.3. Overall dynamics

Fig. 14 shows the 3D PFEM results at eight time instants
taken at regular time intervals of 10s. The pictures show that
the PFEM can reproduce the main phenomena occurred in the
Vajont disaster, such as the detachment, spread, and stoppage of
the landslide (Figs. 14a-14d), the consequent impounding wa-
ter wave and runup on the opposite valley flank (Figs. 14a-14e),
the water overtopping of the Vajont dam (Figs. 14c-14h), and
the generation and propagation of the tsunami wave through the
residual lake (Figs. 14d-14h). Within the duration of the anal-
ysis (100s), the numerical simulation does not show the forma-
tion of the small Massalezza lake over the deposited rockslide,
observed after the event (Bosa and Petti, 2011).
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(a) t = 0s (b) t = 10s (c) t = 20s (d) t = 30s

(e) t = 40s (f) t = 50s (g) t = 60s (h) t = 70s

Figure 14: PFEM Results of the simulation of the Vajont disaster at eight time instants. View from the dam side (i.e. from east).

4.4. Landslide dynamics
Fig. 15 shows a zenithal view of the PFEM numerical results

for the velocity field. For the sake of clarity, the post-process
velocity contours are shown with a fixed limit of 40m/s, beyond
which the dark red color is used.

The pictures show clearly the motion of the landslide against
the water initially at rest and the progressive stoppage of the
mobilized mass.

From a general view of landslide velocities, the higher values
are obtained at the top of the sliding material, as also reported
by Crosta et al. (2016). The maximum velocities at the land-
slide front are around 15m/s, while at the top the velocities are
of the order 25-30m/s, with even higher local peak values.

The maximum sliding velocities are obtained between 15s
and 25s and are experienced at its eastern part (Figs. 15c-15e),
where peak values of almost 40m/s were reached. The faster
motion of the eastern part of the landslide was already high-
lighted in Crosta et al. (2016), where similar values of velocities
were obtained. For the rest of the landslide, the obtained veloc-
ities are in agreement with what is reported in the literature (see
Table 1).

Regarding the sliding duration, Fig. 15f shows that after 30s
most of the rockslide already stopped and some motion was
still occurring only at its eastern side. This is confirmed by
Fig. 16 plotting the results of sections C, D and E at four dif-
ferent time steps. The sections cut the landslide body at three
different zones: in particular, section C at the western lobe, sec-
tion D in correspondence with Massalezza creek, and section E
at the eastern lobe (see Fig. 12).

The pictures show that at t = 35s the landslide body has an al-
most zero velocity at every section allowing to estimate a land-

(a) t = 5s (b) t = 10s (c) t = 15s

(d) t = 20s (e) t = 25s (f) t = 30s

Figure 15: Plan view of the Vajont computational domain with plot of
velocity vector modulus results (velocity upper limit of 40m/s).
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(a) Section C

(b) Section D

(c) Section E

Figure 16: Results at sections C, D and E of the Vajont computational domain given in Fig. 12. Velocity results at four time instants: t = 5s,
t = 15s, t = 25s, and t = 35s, from the left to the right (velocity upper limit of 40m/s).

slide duration of around 30-35s, a time interval that agrees with
the considerations of Muller (1964).

The results of Fig. 16 also show that the Vajont landslide has
a clear three-dimensional behavior. Indeed, the motion and the
velocities of the western lobe (Fig. 16a) are much different from
the ones at the eastern lobe (Fig. 16c).

4.5. Landslide deposit

Fig. 17 plots the final deposit obtained with the PFEM to-
gether with the one measured after the rockslide event (Se-
menza, 1965) and the results of the other 3D Vajont model in
the literature (Crosta et al., 2016). The results show an overall
good agreement between the numerical results and the observed
data, although there are some discrepancies, especially at the
southern boundary (uphill) of the landslide. There, the numeri-
cal model gives a much flatter landslide surface and a less clear
separation between lobe east and west than the one shown by
the observed data. A similar behavior was also obtained with
the ALE FEM model of Crosta et al. (2016), although it must
be taken into account that in that work the mesh size was almost
twice the one used in this PFEM analysis.

4.6. Upstream propagating wave

The propagation of a huge wave in the Vajont residual lake
was responsible for important human and economic losses on
the shoreline of the reservoir. The village that was most affected
by this tsunami wave was Erto (Fig. 11), placed at about 1.5km
upstream.

The numerical results show that the first main wave starts
propagating in the lake after around 25s from the rockslide de-
tachment (Fig. 15e). At that time, the impounded mass of water
is still moving upwards on the northern flank of the Vajont val-
ley, as shown in Fig. 18a plotting the velocity vectors at t = 30s

Figure 17: Final Vajont landslide deposit. Comparison with observed
data of Rossi and Semenza (1965) and the numerical results of (Crosta
et al., 2016).

(the maximum runup is reached at around t = 35s, as it will
be shown in Section 4.8). These results suggest that the first
main wave propagating upstream was produced directly by the
first push of the rockslide onto the water reservoir and not by
the impact of the impounded water volume coming down from
the northern valley flank, which occurred some seconds later,
between t = 40s and t = 60s (Figs. 18b-18d). Fig. 18 is also
helpful to perceive the crucial effect on the tsunami wave given
by the push of the easternmost part of the rockslide (Figs. 18a-
18b), as it is confirmed by the analyses of the companion paper
(Franci et al., 2020) analyzing the solely collapse of the eastern
lobe of the rockslide.

The main wave takes only around 50s to cover the 1.5km
separating the eastern boundary of the landslide and the limit of
the computational domain, resulting in an impressive average
velocity of 30m/s. After around 75s from the landslide trigger-
ing, the main wave on the Vajont reservoir reaches the village
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(a) t = 30s (b) t = 40s

(c) t = 50s (d) t = 60s

Figure 18: Wave propagating upstream in the residual Vajont lake
(east direction). Zoom on the eastern side of the Vajont valley (land-
slide is at the bottom of the pictures and at the right hand side). Both
water and landlslide material are represented with transparent color to
better appreciate the velocity vectors.

of Erto, located at the north-east limit of the computational do-
main (Fig. 11). This time interval agrees well with that obtained
in Ward and Day (2011) with a tsunami ball model and in Bosa
and Petti (2011) with a shallow water method.

Fig. 19 shows the time evolution of the maximum water level
measured in the eastern part of the reservoir at sections F , G
and H (see Fig. 12). In all cases, the water level overcomes the
initial one of more than 40m, agreeing well with the post-event
observations of Viparelli and Merla (1968).

The results of section F , the closest one to the landslide,
show two clear peaks, one at about t = 45s and the other at
around t = 80s. These results support the theory of the for-
mation of two main waves in the lake: the first one generated
immediately by the force applied by the sliding material on the
water reservoir, and the second one generated successively by
the descending water volume which was pushed by the land-
slide over the northern flank of the valley.
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Figure 19: Time evolution of the maximum water level of Vajont
reservoir at sections F , G and H of Fig. 12.

4.7. Overtopping wave

Fig. 20a shows the time evolution of water altitude above the
dam. The graph shows that the overtopping of the dam crest
level occurs after only around 12s from the rockslide release.

(a) Maximum overtopping wave
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Figure 20: Time evolution of (a) maximum water level and (b) flow
rate above the Vajont dam, both measured at section B of Fig. 12.

After that, two main waves take place over the dam: the first
one has its maximum at around t = 40s, while the second one
at t = 70s. Both overtopping waves reach peak amplitudes of
around 120m. The time evolution of the outflow rate from the
dam is shown in Fig. 20b. This has been computed as the av-
erage flow rate crossing section B of Fig. 12. The flow rate
graph, like the one for the overtopping wave height, shows two
peaks, being the second one almost 25% smaller than the first
one. The timing of both the initial overtopping wave and the
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hydrograph peaks agree with the 3D results presented in Vacon-
dio et al. (2013). The presence of two peaks in the hydrograph
of outgoing water was also observed in the shallow water so-
lution of Bosa and Petti (2011). As reported by Viparelli and
Merla (1968), during the first minutes of the event, the mag-
nitude of the water flow at the dam crest was of the order of
100 ·103m3/s, which is in line with the PFEM results.

Fig. 21a illustrates the numerical results at t = 40s when the
first peak of the overtopping wave is reached. The aerial view
also shows the huge water runup on the northern slope and the
tsunami wave propagating towards the eastern side of the valley.
To better appreciate the overtopping wave, Fig. 21b plots the
results on sections A and B for the same time instants. The
picture shows that the central part of the reservoir is largely
occupied by the mobilized landslide body.

(a) Plan view

(b) Results on sections A and B

Figure 21: Results at t = 40s. (a) Plan view of the three-dimensional
Vajont computational domain. (b) Results at sections A and B.

Fig. 21 also shows that the overtopping flow does not occur
over the dam crest only but also over its lateral abutments, and,
mainly, from the northern one, being the southern one occupied
by the landslide body. This aspect of the outflow dynamics was
also found in Bosa and Petti (2011).

4.8. Water runup

The Vajont rockslide generated an imponent water motion
on the northern flank of the valley, whose profile was traced in
Rossi and Semenza (1986). Fig. 22 shows the observed runup
limit together with the predicted runup given by the 3D SPH
method of Vacondio et al. (2013), the ALE 3D method of Crosta
et al. (2016) and our PFEM model. In this work, the runup line
is obtained as the envelope of the maximum northern positions
reached by water at each computational step.

Figure 22: Water runup on the North flank of the Vajont lake. Nu-
merical results from this PFEM approach, the SPH model of Vacondio
et al. (2013) and the ALE-FEM of Crosta et al. (2016). The observed
runup line Rossi and Semenza (1965) is plotted with red color.

From a general analysis, the PFEM model seems to underes-
timate the maximum runup in the zone close to the dam, while
it captures quite well the water profile in the eastern part. Re-
markably, the same behavior is shown by the results of Vacon-
dio et al. (2013) obtained modeling the landslide as a rigid body
moving at a velocity established by a retrofit analysis.

The maximum water height is reached in the central zone of
the landslide, where the water reaches 910m a.s.l., so more than
200m over the initial reservoir level. This value of maximum
water runup is close to the post-event observations of Rossi and
Semenza (1986) and Viparelli and Merla (1968), and the nu-
merical simulations of Bosa and Petti (2011), Vacondio et al.
(2013), and Crosta et al. (2016).

To better appreciate the magnitude of the runup, Fig. 23
shows the computational domain both at the initial state and
at the moment of the maximum runup (t = 35s).

(a) t = 0s (b) t = 35s

Figure 23: 3D view of the Vajont computational domain at the initial
state and the time instant of the maximum runup (t = 35s).

5. Discussion and conclusions

This work has presented a Lagrangian computational method
for the simulation of landslides impulse waves using a fluid dy-
namics approach. The numerical technique is based on the Par-
ticle Finite Element Method (PFEM) which combines the so-
lution of the governing equations via the finite element method
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with an efficient remeshing procedure to solve large deforma-
tion problems.

The PFEM has been first applied to benchmark experimen-
tal tests for impulse water waves generated by landslides com-
posed of different materials. In the first test, the landslide was
formed by a saturated and dense sand flow, while in the second
one, the fast impact of dry granular material has been analyzed.
These numerical tests were used to verify the accuracy of the
regularized viscoplastic constitutive models and to assess the
capability of the PFEM to deal with problems involving large
topology changes of the computational domain. The numerical
results were compared to experimental observations and pub-
lished numerical results. In all cases, the PFEM was capable of
simulating accurately the landslide motion, the interaction with
the fluid and the generation and propagation of water waves,
demonstrating very good energy conservation properties and
the capability of dealing with large deforming computational
domains, both in 2D and 3D.

One of the main objectives of the work was to show the appli-
cability of the method to large-scale landslide events and com-
plex scenarios. For this reason, the Vajont disaster was simu-
lated with a fully 3D model with a fine mesh.

The PFEM showed to be capable to reproduce the main phe-
nomena occurred in the Vajont disaster, such as the detachment,
propagation, and stoppage of the rockslide, the 200m water
runup on the opposite flank of the valley, the propagation of
the tsunami wave along the residual Vajont lake and the over-
topping water flow above the dam crest.

The numerical results agree with acceptable accuracy with
the observations in terms of landslide velocity, duration, and
final deposit, maximum water runup, and order of magnitude
of the flow rate over the dam. Good agreement has been also
found with other numerical methods focusing on the hydraulic
part of the disaster (Vacondio et al., 2013; Bosa and Petti, 2011)
and the only other fully 3D simulation of the Vajont case study
(Crosta et al., 2016).

Thanks to the 3D representation of the Vajont case, this study
allowed to highlight some interesting aspects of the disaster dy-
namics, such as the mechanism of formation of the two main
water waves, the time evolution of the water outflow rate, the
3D behavior of the landslide, and the higher velocities reached
in the most eastern part of the landslide. In this respect, three-
dimensional models including the complete landslide geometry
and realistic material properties outperform the models which
introduce a simplified 1D and/or a rigid representation of the
landslide, allowing to gain more insight about the real phenom-
ena occurred during these complex multi-hazard events.

In a companion paper (Franci et al., 2020), hypothetical sce-
narios of the Vajont disaster obtained by varying the extent of
the unstable slope (as in the pre-event experiments of Ghetti
(1962)) and some of the model features and parameters, have
been analyzed by the same numerical approach presented here,
confirming its robustness and applicability to large-scale land-
slide impulse-wave scenarios.

Appendix A. Definition of matrices and vectors of PFEM
solution scheme

The matrices and vectors used for the time step solution and
introduced in Section 2.3.1 are given below. At each iteration,
the fully discretized linear momentum equations are solved for
the increments of nodal velocities as

K∆v̄ = R(v̄, p̄) (A.1)

with K = Km(x̄,c)+Kρ(x̄), where x̄ are the nodal coordinates,
and matrices Km and Kρ and the residual term R are defined as
follows

Km
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being, for 2D problems
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where I is the second-order identity tensor and N are the lin-

ear shape functions.
At each non-linear iteration, the nodal pressures are obtained

from the discretized continuity equation in the following form

H p̄ = F p(v̄, p̄) (A.3)

with
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and

Fτ =
M
∆t

n p̄+
Mτ

∆t2 (
n p̄+ n ¯̇p∆t)−QT v̄+ f τ (A.5)

where

MIJ =
∫

Ω

1
κ

NINJdΩ

MτIJ =
∫

Ω

τ
ρ

κ
NINJdΩ

MτbIJ =
∫

Γt

2τ

hn
NINJdΓ

LτIJ =
∫

Ω

τ(∇T NI)∇NJdΩ

QIJ =
∫

Ω

BT
I mNJdΩ

fτI =
∫

Γt

τNI

[
ρ

Dvn

Dt
− 2

hn
(2µ̄dn− tn)

]
dΓ−

∫
Ω

τ∇
T NIbdΩ

(A.6)

14



where Γt are the free-surface contours of the domain, m =
[1,1,0]T and τ is the stabilization parameter defined as in Oñate
et al. (2014)

τ =

(
8µ̄

h2 +
2ρ

δ

)−1

(A.7)

being h and δ characteristic distances in space and time (Oñate
et al., 2014).
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