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A B S T R A C T

This paper focuses on the solution of the dispersed phase of Eulerian–Lagrangian one-way coupled particle
laden flows. An efficient two-constraint domain partitioning for 2D and 3D unstructured hybrid meshes is
proposed and implemented in distributed memory architectures. A preliminary simulation, using a set of
representative particles, is performed first to suitably tag the cells with a weight proportional to the probability
of being crossed by a particle. In addition, an innovative parallel ray-tracing location algorithm is presented. A
global identifier is assigned to each particle resulting in a significant reduction of the overall communication
among processes.

The proposed approaches are verified against two steady reference cases for ice accretion simulation: a
NACA 0012 profile and a NACA 64A008 swept horizontal tail. Furthermore, a cloud droplet impact test case
starting from an unsteady flow around a 3D cylinder is performed to evaluate the code performances on
unsteady problems.
1. Introduction

Particle-laden turbulent flows have significant importance in var-
ious natural phenomena and industrial processes [1,2]. Lagrangian
particle tracking has been adopted in recent studies to simulate respira-
tory droplets in turbulent flows [3] or internal combustion engines [4,
5], ink-jet printing [6] or in-flight ice accretion problems [7–9].

The accuracy of Lagrangian methods is proportional to 1∕
√

𝑁 with
𝑁 the number of sample particles. In order to obtain high-fidelity
results, a large set of particles is required [10]. Parallel algorithms can
be adopted to reduce computational time. In addition, a distributed-
memory parallelization becomes a requisite if large datasets are to be
used. Nevertheless, due to the a-priori unpredictable behavior of the
flow solution and the particle evolution, some critical aspects have to be
considered in an efficient parallelization. First, an effective technique
to subdivide the domain based only on the flow solution usually leads
to an unbalanced particle workload [11]. Secondly, the physics of the
problem is also reflected in the particle movement among processes.
Indeed, during particle integration, a direction is usually predominant.
A standard all-to-all communication tends to perform slower since most
of the processes do not exchange information. A set of non-blocking
send and receive calls is more efficient. Indeed, communication is
performed between two processes only when at least one particle has
to be sent. Finally, the computational cost at each time step is dictated
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by the process with the highest number of particles to integrate, con-
sidering an equal integration time step for all particles. If an unsteady
flow solution is analyzed, all the mentioned points are even more
critical since the flow solution is updated multiple times during the
simulation. Another aspect to consider is the initial particle location.
The computation of the initial position within the computational mesh
cannot be performed using a standard serial algorithm. The arbitrary
shape of each subdomain due to the mesh partitioning can lead to
non-simply connected and multi-part subdomains.

In literature, several parallel implementations have been proposed.
In [12], a Lagrangian particle tracking model in a mixed Eulerian–
Lagrangian commercial CFD software is presented. Specifically, the
parallelization treats the fluid phase solution and the particle inte-
gration. In addition, a domain decomposition scattering technique
is discussed to improve the parallel efficiency. Another example of
parallel code is presented in [13]. The implementation focuses on
finite element applications using 2D and 3D unstructured meshes. An
extensive description of the particle tracking algorithm is reported.
Finally, in [14], a 3D coupling algorithm between Volume of Fluid
and Lagrangian particle tracking is presented for the open-source CFD
library OpenFOAM.

This work focuses on the efficient parallelization of the computation
of a Lagrangian dispersed phase in a given Eulerian continuous flow.
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Fig. 1. Particles around a NACA 0012 profile.
The narrow scope of this work is justified by the target application,
that is the computation of the water mass captured by a flying object
in icing conditions. Such flows are usually one-way coupled, and the
particle phase is obtained as a post-processing of the continuous aerody-
namic field [15,16]. In this work, a two-constrained mesh partitioning
based on a graph representation is developed in Section 2. The code
can handle unstructured hybrid meshes. In two dimensions, triangular
and quadrilateral elements are considered, while in three-dimension,
cells can be tetrahedra, hexahedra, prisms, and pyramids. A standard
partitioning based only on the geometric constraint is performed using
Parmetis. After, a preliminary simulation with few significant particles
is computed to suitably tag the cells. In this manner, a constraint
proportional to the probability of being crossed by particles is added
to the graph partitioning. The changes from the serial particle tracking
algorithm are reported in Section 3. In particular, the main loop is
described to obtain a non-blocking communication of particles among
processes. In Section 4, a parallel ray-tracing procedure is described to
locate particles inside the mesh at the beginning of the simulation. The
performances of the location algorithm are reported. In Section 5, two
steady reference cases for ice accretion simulation are studied: a two-
dimensional NACA 0012 profile (Fig. 1) and a three-dimensional NACA
64A008 swept horizontal tail. In addition, a cloud droplet impact test
case starting from an unsteady flow around a 3D cylinder is performed.
In both cases, steady and unsteady, the speed-up factor is evaluated.

2. Cell tagging

A mesh partitioning algorithm is usually adopted when using a
domain decomposition approach. The standard subdivision technique,
based only on the mesh connectivity, creates a set of subdomains
composed of a similar portion of nodes to avoid imbalances among the
processes, while the number of cut edges is minimized to reduce the
communication. In a particle-laden flow, simulated with a Lagrangian
approach, a multi-constrained subdivision should be used to balance
all the contributions to the computation. In the present work, mesh
partitioning is carried out using Parmetis library [17,18] that offers
a parallel multi-level and multi-constraint k-way subdivision [19,20]
through a C/C++ API. Parmetis guarantees a sequential complexity of
the serial multi-constraint algorithm of 𝑂(𝑚𝑛) where 𝑚 is the number
of constraints and 𝑛 of graph nodes. Also, other libraries, such as
PT-Scotch [21] and Zoltan [22], were successfully used for large-scale
parallel CFD computations [23]. Parmetis has been chosen since the
2

API allows straightforward integration with the existing serial code,
granting the required parallel performances.

The mesh can be treated as a nodal graph or a dual graph. In
the first case, each mesh node corresponds to a graph node and all
mesh edges coincide with graph edges. After the mesh redistribution,
based on the computed graph subdivision, each mesh node is owned
by only one process, while elements can be present in multiple ones.
In the second case, each graph node refers to an element, and the
graph edges represent the mesh faces. Opposite to the nodal graph
representation, nodes can be shared among multiple processes, and
elements are present in only one. In this work, the mesh partitioning
is based on the nodal graph. The main reason is linked to particle
communication. If the dual graph representation is adopted, in the
position where the domain is cut, new non-physical boundaries are
created, and adjacent processes share only nodes and faces. This usually
leads to finite precision arithmetic issues when a particle has to be
sent to the new owner because the two processes own only 1D and 2D
geometric entities. The nodal graph representation, instead, naturally
generates a layer of overlapping elements, called halo cells, that allows
straightforward particle communication. The particle that has to be
moved automatically satisfies the inclusion test in all the processes that
own that halo cell. More details about the particle communication are
provided in Section 3. Another key aspect that has been considered
in the type of graph representation is the computational time. Indeed,
converting the original domain into the dual graph can be time de-
manding as much as the graph subdivision [24]. Adopting the nodal
graph representation avoids the expensive graph extraction from the
domain since the mesh connectivity is the same as in the graph. The last
reason is linked to the CFD solver SU2, the node-based Finite Volume
code used to compute the fluid solution.

The adopted two-constrained mesh partitioning aims at equally
subdividing the mesh nodes and the particle workload among the
processes. Parmetis API requires an integer weight per constraint for all
the nodes. The geometric constraint, related to the mesh connectivity,
is accounted for by assigning each node a weight equal to the number
of edges that own that node. The second constraint, linked to the
particle workload, is computed using the cell tagging technique. The
main idea is to perform a preliminary simulation to tag the cells crossed
by particles to obtain a weight proportional to the number of particles
that pass through each cell. The preliminary simulation uses mesh
partitioning based only on mesh connectivity. This strategy works,
and it is adopted for steady and unsteady flow simulation since it is
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Fig. 2. Trajectories and number of particles that crossed each cell.
equivalent to a standard particle simulation with a reduced particle
number. The particle workload can be unbalanced among the processes,
but the overall execution time of this phase is negligible compared
with the actual simulation. Indeed, only a few significant particles are
evolved to tag the cells. The present algorithm initializes a uniform
particle distribution, also referred to as cloud, enclosed in a Carte-
sian box. Usually, ten particles per Cartesian direction are sufficient
to describe the behavior of the cloud containing all the particles of
the actual simulation. In 3D, the number of particles for the actual
simulation is at least in the order of millions making the preliminary
cloud integration three orders of magnitude faster or more. During the
tracking, when a particle crosses an element, a cell counter is updated.
If the distance traveled by a particle in a time step is smaller than the
cell size or it is not sufficient to exit from the cell, the counter is updated
multiple times. This is why in Fig. 2, where it is possible to see a color
representation of the cell tagging technique outcome, the elements on
the left and the right of the domain have a higher particle count. In this
manner, a cell weight is obtained. Thanks to the full mesh connectivity
previously calculated, the cell count is converted into a node one.
Parmetis is called a second time to compute the final partitioning that
accounts for both constraints. The process is significantly faster than
the previous partitioning because it starts from an already computed
subdivision, not a random one. A two-dimensional example with and
without the tagging strategy is presented in Fig. 3. It is clear how
the subdomain shapes change according to the particle trajectories.
Without the cell tagging technique, many available resources are con-
centrated around the airfoil where the element size is small. Instead, in
the second domain subdivision, a portion of elements near the geometry
is owned by each process, which is also achieved for the farther ones.
A drawback of this implementation is the higher possibility of having
non-simply connected or multiple-part subdomains. However, the code
can handle all these possible shapes.

3. Particle tracking

The parallel particle tracking algorithm presents some differences
from the serial one reported in Refs. [25,26]. The code is a one-way
3

coupled Lagrangian particle tracking developed at Politecnico di Mi-
lano and supports forward Euler and explicit Runge–Kutta integration
schemes.

Two new features have been added in the current implementation:
particle communication and the possibility to handle a cloud where
each particle is evolved until an arbitrary time. The last feature allows
for avoiding blocking MPI communication in favor of non-blocking one,
thus reducing the overall idle time.

During the cloud evolution, when a particle reaches a non-physical
boundary created by the mesh partitioning, it has to be sent to a new
process. The current code checks if the element in which the particle is
included is a halo cell and if the final trajectory point for the current
time step is outside the subdomain. If this is the case, the algorithm
verifies the number of processes that own the halo cell. If it is two,
the new process is easily retrieved. Otherwise, if multiple processes
share the same halo cell, the algorithm finds the face that intersects
the particle trajectory, and the new owner is the process that includes
that face. All the information about the neighbor processes is built
from the node distribution computed with Parmetis. For instance, a
face is in a subdomain if all the nodes that compose it are also part
of the subdomain. In order to speed up the particle integration, all the
data structures related to neighbor processes and halo cells are pre-
computed just after the mesh partitioning. The particle tracking code
relies on a mapping from local ID to global ID, and vice-versa, for the
elements and nodes of the mesh, where local refers to a numbering for
the geometric entities in each process, and global is the original mesh
numbering for the entire domain. The element mapping is fundamental
when a particle is communicated because the global ID is used to
identify the halo cell in the entire domain uniquely, but the mesh
connectivity in each subdomain is based on the local IDs.

Each particle in the code is described with a C++ structure con-
taining all the relevant quantities. The data structure contains physical
quantities like the position, the velocity, the diameter, and the current
time and support variables such as the global particle ID. When the
cloud is integrated, the code loops over the particles. Integration starts
at the particle time and is evolved until the current simulation time
is reached or when a non-physical boundary is encountered, and the
particle has to be communicated. In order to respect the maximum
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Fig. 3. Example of mesh subdivision in 8 parts, each color corresponds to a subdomain.
Algorithm 1: Cloud evolution.
while simulation time < max time do

forall particles do
while particle time < simulation time do

update particle position;
if particle has to be communicated then

store particle ID;
break while;

end
end

end
wait and complete communication from previous time step;
add received particles to the cloud;
forall stored particle IDs do

buffer particle data sorted by receiver rank;
end
send particles to new owners;

end

time step imposed by the user, a nested while loop is adopted to split
the integration from the particle time to the current simulation time or
until another non-physical boundary is reached.

The main loop to evolve the cloud is composed of three main
steps and is summarized in Algorithm 1. First, all the particles owned
4

by a specific process are evolved until the current simulation time.
Since the communication is non-blocking, the particle integration is
overlapped with the communication of the previous time step. During
the particle update, if a particle reaches a non-physical boundary and
has to be communicated, its ID is stored, and the particle is no more
updated because the trajectory is outside the subdomain. Then, the
communication from the previous step is completed, and the code waits
until all the particles have been received to add them into the new
process cloud. Finally, the particles are sent to the new owners if their
trajectories intersect an internal interface looping over the stored IDs.
All the particle data is buffered and sorted by the receiver MPI rank.
The flow solution at the particle position is not transferred because it
can be easily computed once received. This choice does not affect the
results because it takes advantage of halo cells and the flow solution is
interpolated starting from the flow values at the same nodes. The asyn-
chronous evolution is effective but also presents some disadvantages.
The first one is, as mentioned before, the possibility that each particle
is evolved until a physical time different from the simulation one.
Another drawback relates to the necessity of synchronizing the cloud,
for instance, when it is saved. In unsteady simulations, the cloud is also
synchronized when the flow solution has to be updated according to the
particle simulation time. This leads to a reduction in performances, as
highlighted in Section 5. Another disadvantage of unsteady simulations
is related to the preliminary particle evolution needed for the cell
tagging technique introduced earlier. Even if only a few particles are
integrated, the flow solution must be updated multiple times, leading
to an increased execution time. The code uses the parallel MPI I/O
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interface to speed up the loading time of each flow solution. The binary
VTK files [27], where the solution is stored, are loaded using an MPI-
indexed variable. This is created to describe the non-contiguous data
among the processes, and the collective MPI-I/O function is used to
read the file efficiently [28].

4. Parallel ray-tracing

Before the actual particle simulation can start, the location of each
particle within the mesh is to be computed. It consists in finding
per each particle the cell in which it is included. In literature, three
main methods are present: brute force, tree-based [29,30], and ray-
tracing [31]. A brute force approach works in every situation but is
inefficient, especially when the number of particles is high, or the
domain is large. Vicinity algorithms are not sufficiently robust if the
domain is not simply connected or comprises more than one part, as is
the case here. Indeed, particles can be near a boundary element and,
at the same time, be outside the subdomain. A possible solution to
the problem is to verify each time if the particle is actually inside the
element through an inclusion test, but it is computationally expensive.
Ray-tracing requires a convex mesh portion that encloses the cloud,
which is not granted due to the arbitrary subdomain shapes. The
present code solves the issues by considering a parallel ray-tracing
algorithm to recover the convexity and efficiently locate the cloud. In
this perspective, a ray always starts from a known point and ends at
the position of the particle to be located. The computational time of
the ray-tracing algorithm is proportional to the number of crossed cells.
For this reason, the starting point coincides with the previous particle
if it has been located. Otherwise, the code searches for the closest
element centroid among 20 random elements. Therefore, the ray covers
a shorter distance. Since the code integrates the ray-tracing algorithm
for particle integration, a simplified dummy particle, in which the
position and the cell ID are stored is adopted to represent and evolve
a ray.

The particle position is computed from a uniformly distributed
cloud enclosed by a rectangular parallelepiped oriented along the
three Cartesian directions. Each subdomain’s bounding box is compared
with the initial cloud’s box to avoid searching for particles in empty
subdomains. At this stage, the code has to determine the correct owner
because the particles near the boundaries can be present in more than a
subdomain. The code assigns a particle in a halo element to the process
with the lowest MPI ID. This rule applies only when the particle are
located the first time inside the computational domain, and, even if it
slightly increases the number of particles owned by lower MPI ranks, it
does not affect the particle evolution where particles in the halo cells
are naturally evolved based on their trajectories. The subdomain shapes
can be quite challenging for the ray-tracing algorithm. For instance,
a ray can cross a subdomain multiple times. Another possibility is
that it passes across more than one subdomain, ending in the original
one. Another rare event is that a ray goes through a process with no
particles to initialize, so all the processes can compute trajectories even
if they are empty. These situations arise more frequently when three-
dimensional meshes are considered, but they can be present also in
two-dimensional ones. For instance, Fig. 4 shows a sliced 3D domain
with located particles. The developed parallel code is summarized in
Algorithm 2. Each part of the present algorithm is executed in parallel
to avoid bottlenecks when using a large set of processes. First, one
particle is located starting from the closest element centroid among
twenty randomly selected. Then, all the other particles are located
in each process using the ray-tracing algorithm in each subdomain.
In this phase, there is no communication among the processes. If a
particle is located, the last element ID of the dummy particle is assigned
to the actual particle. On the contrary, if a ray reaches an internal
boundary, the particle is marked. Before sending the rays to all the
subdomains, the algorithm checks if the marked particles have already
5

been located in an adjacent subdomain. If this is the case, the particle is
Algorithm 2: Parallel ray-tracing.
locate first particle;
forall particles do

if previous particle has been located then
dummy = previous particle;

else
dummy = nearest element centroid among 20 random
elements;

end
trace ray from dummy to particle position, namely try to
locate particle;
if located then

particle element ID = last dummy element ID;
end

end
communicate to adjacent subdomains the particle IDs that have
been located;
forall non located particles do

if located in adjacent subdomain then
remove in the current process;

end
end
while dummies are not all located do

forall non located particles do
send the dummy to the new process;

end
forall received dummies do

try to locate dummy;
if located then

particle element ID = last dummy element ID;
remove particle in the starting process;

end
end

end

eliminated. Checking adjacent processes allows a significant reduction
of communication in the following stages. Then, all the rays, initialized
in the first phase, are tracked until they reach the final position. The
starting process is stored in the dummy particle to keep track of all the
rays. When a particle is located, its ID is sent to the starting process that
deletes it. While the process in which the particle is located stores, as
done previously, the last element ID of the ray. If multiple rays reach a
particle, the code does not need any modification because the element
ID is always the same, and the particles are eliminated in the starting
process. If this occurs, some computational power is wasted.

In order to speed up the execution and increase scalability, some
improvements are included in the code. First, the global ID assigned
to each particle allows a direct comparison between two particles
in different subdomains. Also, less information is exchanged among
processes to identify a particle because only an integer number has to
be specified instead of the position vector. Furthermore, when a ray is
communicated, the new starting point coincides with the centroid of
the element it belongs to. Even in this case, only the cell ID has to be
communicated instead of a three-dimensional array.

4.1. Performances

The location algorithm has been tested on a 16-node cluster. Each
node has two 6-core Intel Xeon X5650 @2.66 GHz equipped with
32 GB of DDR3 memory. A dual Gigabit Ethernet network connects all
the nodes. The performances of the location algorithm are evaluated
inside an unstructured tetrahedral mesh generated from a unitary cube
geometry. During the tests of the location algorithm, 24 cores were
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Fig. 4. Mesh and particle slice, each color corresponds to a subdomain.
Fig. 5. Location time using 24 cores.
used. In Fig. 5(a), one million particles are located in different mesh
sizes. It is noticeable that the mesh size slightly influences the algorithm
because the computational time is mainly related to the number of
crossed cells. Starting a ray from the previously located particle allows
keeping this value almost constant, taking advantage of the ordered
distribution of the particles. The other test is performed by varying
the number of particles in a mesh composed of two million elements.
The implementation scales almost linearly with the number of particles,
as reported in Fig. 5(b). Also in this case, the result is expected since
the algorithm traces a ray for each located particle. In addition, Fig. 6
reports the overall speed-up factor of the algorithm for a strong scaling
test. The specific test case shows a speed-up factor of 3.5 moving from
24 to 96 cores. If we consider the real number of initialized particles,
including the ones that are localized multiple times since they are
owned by more than one process, and we normalize the result, scaling
is almost superlinear.

5. Results

The collection efficiency of two steady flow test cases, and an
unsteady one, is computed to assess the current code. All the flow
solutions are calculated using the SU2 suite. The compressible Reynolds
averaged Navier–Stokes equations are discretized using a vertex-based
finite volume method. Convective fluxes are discretized using a limited
6

Fig. 6. Speed-up factor of the location algorithm.

second-order MUSCL scheme with an Approximate Riemann Solver
of Roe type. The Venkatakrishnan slope limiter is employed. Viscous
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Fig. 7. Comparison at 𝛼 = 0◦ with Guo et al. [34].
Fig. 8. Comparison at 𝛼 = 4◦ with Guo et al. [34].
𝛽

fluxes are discretized using a standard corrected average of gradi-
ents approach. Gradients are obtained via a weighted least-squares
approach. For steady computations, a time-marching approach is used
to drive the RANS system to a steady solution using an implicit Euler
scheme, whereas unsteady simulations are performed via a dual time
stepping technique yielding formal second-order accuracy in time. The
turbulence model of Menter [32] is used in the three-dimensional cases,
whereas the one-equation Spalart–Allmaras model [33] is used in the
two-dimensional ones to close the RANS system.

For each test case, proper mesh resolution was obtained via a grid
independence study. The pressure coefficient distribution on the clean
airfoil was used to assess grid independence. Where available, the
computed pressure coefficient was compared to the experimental one
to identify possible wind tunnel corrections to the angle of attack. The
particles are integrated using an explicit Euler scheme and a maximum
time step of 10−5 in all the following computations.

The first test case is a classical NACA 0012 wing section analyzed
at different angles of attack and flow conditions. The second is a three-
dimensional NACA 64A008 swept horizontal tail at negative incidence.
The unsteady simulation starts from a flow over a 3D cylinder at
Reynolds equal to 5000. The computed collection efficiency, namely,
the water impinging per unit surface, is compared with data obtained
in previous experimental campaigns or by other codes. The collection
7

efficiency 𝛽𝑖 for each cell is defined according to the following equation

𝑖 =
𝜌𝑖
𝜌∞

where 𝜌𝑖 is the particle density at the 𝑖th element and 𝜌∞ the undis-
turbed one. If the cloud is uniformly distributed, the equation can be
simplified as follows

𝛽𝑖 =
𝑚𝑖∕𝐴𝑖
LWC

where 𝑚𝑖 and 𝐴𝑖 are the collected water mass and the area of the 𝑖th
element, respectively, and the LWC is the liquid water content of the
free-stream cloud.

5.1. NACA 0012 wing section

The NACA 0012 symmetric wing section is used here because it
was thoroughly tested in icing wind tunnel experiments [35–37]. Fur-
thermore, collection efficiency simulated with NUAA-ICE2D [34] and
LEWICE [38] codes is available. First, we compare the implemented
code with the one presented by Guo et al. [34]. Then, we consider
another flow condition, maintaining the geometry unchanged, to verify
if the computed collection efficiency agrees with results presented in
literature [36,37]. In both cases, we first assess the convergence of the

computed collection efficiency by changing the number of particles. An
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-Grid mesh has been adopted for the computation with 55.7k elements
nd 56.1k nodes.

The flight and icing conditions in the first analysis are taken
rom Guo et al. [34]. The free-stream velocity is set equal to 𝑉∞ =
67 m/s, while ambient pressure is 𝑃∞ = 98900 Pa, the static temperature
is 𝑇∞ = −7 ◦C, the angle of attack is 𝛼 = 0◦ and 𝛼 = 4◦, the median
olume diameter is MVD = 25 μm, and the profile chord measures
.914 m.

In Figs. 7 and 8 are reported the results at 0◦ and 4◦, respectively.
he first angle of attack has been chosen since a symmetric solution

s expected. The symmetry of the solution is well captured, and results
lightly differ from the data reported in [34]. At positive incidence,
he data computed by Guo et al. [34] is close to the one presented
n this work. The second conditions are set according to the ones
resented by Silveira et al. [36]. The free-stream velocity is set equal
o 𝑉∞ = 44.39 m/s, while the ambient pressure is 𝑃∞ = 1 atm,
he static temperature is 𝑇∞ = 265 K, the angle of attack is 𝛼 =
◦, the median volume diameter is MVD = 20 μm, and the profile
hord measures 0.914 m. In Fig. 9, particle convergence and computed
ollection efficiency are presented. All solutions are in good agreement
ear the profile nose. Moving away from the stagnation point, the
resent code and the one presented in [36] slightly underestimate
he experimental collection efficiency. On the opposite, the LEWICE
ode significantly overestimates it. This is due to the experimental
article diameter distribution adopted in the LEWICE computation. The
resence of droplets with a diameter greater than the mean value used
n the other cases tends to increase the collection efficiency [39,40].

.2. NACA 64A008 swept horizontal tail

The three-dimensional NACA 64A008 swept horizontal tail has
een chosen since numerical results from the LEWICE code and NASA
xperimental data [41] are available. In addition, it is a test case of the
st AIAA Ice Prediction Workshop. The hybrid mesh adopted provided
s part of the workshop is composed of 16.8M cells (tetrahedra and
risms) and 3.82M nodes [42]. The air and ice conditions are equal
o Papadakis et al. [41] and correspond to 𝑉∞ = 78.68 m/s, 𝑃∞ =
5147 Pa, 𝑇∞ = 280 K, Mach 𝑀∞ = 0.23, Reynolds 𝑅𝑒∞ = 5 ⋅ 106,
nd median volume diameter MVD = 21 μm. First, we compare the
ressure distributions with the experimental ones. Wind tunnel effects
re compensated in the numerical flow simulation changing the angle
f attack 𝛼 from −6◦ to −6.25◦. In Fig. 10, it is visible how the
wo solutions are almost overlapping. The comparison of collection
8

fficiency, Fig. 11, presents little discrepancies on the upper part of the s
Table 1
Steady simulation execution time to evolve 1M particles.

Cores Without tagging (s) With tagging (s) Time reduction

24 47244 15144 67.95%
48 41552 8858 78.68%
96 36819 5183 85.92%

Table 2
Unsteady simulation execution time to evolve 1M particles.

Cores Without tagging (s) With tagging (s) Time reduction

24 33343 16100 51.71%
48 30789 10401 66.22%
96 29213 6421 78.02%

profile. On the lower, LEWICE data and the computed result overlap,
while the experimental campaign presents a higher value.

The parallel performances are tested by evolving one million parti-
cles in the three-dimensional geometry. The simulations are run using
2, 4, and 8 nodes corresponding to 24, 48, and 96 cores, respectively.
The particle integration is computed twice, with and without the cell
tagging technique. The results are summarized in Fig. 12 and Table 1.
The speed-up factor using a standard domain subdivision is almost flat.
The behavior is entirely changed by adopting the proposed improve-
ments, reducing the execution time by a factor of 3, passing from 24 to
96 cores. Also, the overall time is significantly lower, becoming about
one-sixth in the last case.

5.3. Unsteady 3D cylinder

An unsteady three-dimensional cylinder at Reynolds equal to 5000 is
ested. This case has been chosen because the flow solution is strongly
ime-dependent and presents recirculating bubbles and 3D structures in
he wake [43]. The cylinder length is ten times the diameter. The flow
olution is computed using SU2 [44] on a hexahedral mesh composed
f 3.5M elements. A second-order dual time stepping technique is
sed to solve the unsteady RANS equations with a 0.01 s time step.
he free-stream conditions are: Mach number 𝑀∞ = 0.1, temperature
∞ = 288.15 K and Re∞ = 5000. Two different particle simulations are
erformed, the first using a Median Volume Diameter (MVD) = 20 μm
nd the second MVD = 50 μm. In both cases, the collection efficiency
s evaluated over one period (Fig. 13).

The first test case aims to evaluate the code performances, evolving
M droplets. The particle diameter, and consequently the inertia, is too

mall to impact the cylinder surface, so the impinging droplet density
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Fig. 10. Pressure coefficient comparison with Papadakis et al. [41].
Fig. 11. Comparison with Papadakis et al. [41].
Fig. 12. Steady simulation speed-up factor evolving 1M particles.

per unit surface, namely, the collection efficiency, is negligible. In
Fig. 15, a graphical representation of the cloud is given at a different
time. For the specific case, the speed-up factor is reported in Fig. 14.
9

It is clear how the performances improve by adopting the cell tagging
technique. Doubling the number of cores in the naive implementation
leads to a 1.07 speed-up factor, while in the presented implementation,
it reaches 1.55. A reduction of the execution time up to 78% is
achieved using 96 cores as reported in Table 2. Not surprisingly, the
performances are lower than in the steady case mainly due to the need
to synchronize the particle time at each CFD time level [45].

6. Conclusions

An efficient parallel Lagrangian particle tracking is presented to
solve dispersed flows. The main novelty concerns the subdivision of the
domain among processes. Indeed, the problem’s multi-physics nature
is also reflected in the partitioning algorithm. The naive domain sub-
division based only on the fluid mesh elements leads to unacceptable
performances during particle integration. Adopting the two-constrained
partitioning allows an equal subdivision of cells for each process, ac-
counting for the memory limit and, simultaneously, the computational
power necessary to evolve the cloud. The innovative tagging technique
can reduce the resources significantly, providing the same results in
steady and unsteady simulations.

An efficient parallel ray-tracing algorithm to locate particles in
unstructured meshes is presented. It can handle arbitrarily shaped
subdomains and shows an almost ideal scaling in the test cases. The
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a
m

t
d

Fig. 13. Convergence of particles (MVD = 50 μm).
Fig. 14. Unsteady simulation speed-up factor evolving 1M particles.

lgorithm can perform cloud localization using less than one order of
agnitude of computational time than a brute force procedure.

Since the problem assumes a collision-less one-way coupling be-
ween fluid and particle systems, each particle is evolved indepen-
10

ently. A shared-memory parallelization is perfectly suitable for cloud
integration and can be implemented on top of the present work, ob-
taining a hybrid parallelization. However, the cell tagging technique
aims at providing an efficient and straightforward strategy for using
multi-node and distributed architectures.
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Fig. 15. Cloud evolution (MVD = 20 μm), each figure is taken after a 𝛥𝑡 = 0.0025 s.
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