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A RECURRENT DEEP ARCHITECTURE FOR QUASI-OPTIMAL
FEEDBACK GUIDANCE IN PLANETARY LANDING

Roberto Furfaro*, llaria Bloise’, Marcello Orlandelli*, Pierluigi Di
Lizia%, Francesco Topputof, Richard Linares!

Precision landing on large planetary bodies is an important technology that en-
ables future human and robotic exploration of the solar system. For example, over
the past decade, landing systems for robotic missions have been developed with
the specific goal of deploying robotic agents (e.g. rovers, landers) on the planetary
surface (e.g. Mars, Moon). Considering the strong interest for sending humans
back to the Moon within the next decade, the landing system technology will con-
tinue to progress to keep up with the demand for more stringent requirements.
Indeed, more demanding planetary exploration requirements implies a technol-
ogy development program that calls for more precise guidance systems capable
of delivering rovers and/or landers with higher and higher degree of precision. In
this paper we design, test and validate a deep Recurrent Neural Network (RNN)
architecture capable of predicting the fuel-optimal thrust from sequence of states
during a powered planetary descent. Here, the principle behind imitation learning
(supervised learning) are applied. A set of propellant-optimal open loop landing
trajectories are computed using direct transcription methods (e.g. Gauss Pseudo
Spectral methods). Such sequences comprise the training set (i.e. the teacher)
employed during the learning phase. A Long-Short Term Memory (LSTM) ar-
chitecture is employed to keep track of what has entered the network before and
use such information to better predict the output. The RNN-LSTM architecture is
trained validated and tested to evaluate the performance predictive performance.
Finally, the results of a Monte Carlo simulations in Moon landing scenarios are
provided to show the effectiveness of the proposed methodology.

INTRODUCTION

Autonomously landing on large and small planetary bodies in a fuel-efficient fashion and with
pinpoint accuracy is an extremely challenging problem. Guidance algorithms that can generate fuel-
efficient, closed-loop powered descent trajectories must bring the spacecraft to the desired location
on the planetary surface with zero velocity (soft landing) and very stringent precision. Here, we
define landing achieved with pinpoint accuracy, if the desired position achieved with accuracy less
than 10 meters. The spacecraft Guidance, Navigation and Control (GNC) subsystem must integrate
a set of critical functions that can drive the lander safely to the surface of the target body. Such
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functions include navigation, i.e. determining position and velocity of the lander from sensor in-
formation, and guidance, i.e. determine/compute the appropriate level of thrust and its direction as
function of the current state. The typical approach to guidance and navigation for planetary landers
relies on separate subsystems and algorithms design. Guidance algorithms usually include both a
targeting algorithm and a trajectory-following, real-time guidance algorithm. The targeting algo-
rithm computes either on-line or off-line a reference trajectory that drives the lander to the planetary
surface. Such reference trajectory are determined to be as close as possible to fuel-efficient trajecto-
ries and must satisfy thrust constraints, both in magnitude and direction, as well as path constraints
(e.g. glide slope). Once the reference trajectory is computed, it is made available to the real-time
guidance algorithm which is responsible for determining the targeting acceleration command. The
latter is implemented by the lander thrusters to track the reference trajectory for a precise and soft
landing. Examples of such algorithm include the original Apollo real-time targeting and guidance
algorithm [1]. The latter was successfully implemented by the Apollo 11s Lunar Exploration Mod-
ule (LEM) to drive the spacecraft on the designated location on the Lunar surface. The guidance
algorithm was based on an iterative process capable of generating a quartic polynomial as function
of time. Importantly, the feedback Apollo real-time guidance was derived by approximating the
nominal trajectory by a 4th-order McLaurin expansion of the reference trajectory [1],[2]. Since the
original Apollo guidance algorithm has been implemented, over the past decade, novel guidance
methodologies have been extensively researched. Examples include: 1) gravity-turn based guid-
ance [3], 2) Feedback ZEM/ZEV guidance [4], 3) robust guidance based on time-dependent sliding
[5], 4) feedback linearization [6] as well as guidance algorithms based on hybrid control theory [7].
All such methods seek to explore the latest advancement in both robust control and optimal con-
trol methodologies. Another example of propellant-optimal guidance approach can be found in [9],
where the principle of convex optimization have been employed to generate real-time optimal feed-
back guidance for planetary landing as a sequence of open-loop optimal convex problems. Over
the past few years, propelled by advancements in parallel computing technologies (e.g., Graphic
Processing Units, GPUs), availability of massive labeled data and critical breakthrough in under-
standing hot deep neural networks process information to provide high-level of abstraction, there
has been a new and renewed interest in machine learning algorithm. For example, the last gener-
ation of deep neural networks can accurately process sequence of data for both classification and
regression tasks (e.g., image and video recognition [10], natural language processing [11], speech
recognition [12], just to mention as few). In spite of such advancement and interest for machine
learning approaches, very little has been done in the real of space space exploration. Indeed, very
little can be found in the literature about autonomous guidance and navigation algorithms based on
the latest advancement in deep learning. A couple of examples include learning optimal feedback
guidance via supervised learning ([13], [15]) and reinforcement learning ([14] as well as RTN via
convolutional neural networks [19]. Deep architecture have been explored both using Convolutional
Neural Networks [21] and Reinforcement Learning for 6-DOF landing [20].

The goal of this paper is to design, test and validate a deep Recurrent Neural Network (RNN) ar-
chitecture capable of predicting the fuel-optimal thrust from sequence of states during a powered
planetary descent. RNNs are flexible neural architectures that can be efficiently trained to predict
the next state from input time sequences. Within a powered descent Moon landing scenario, a deep
RNN is designed to predict the thrust control action directly from the knowledge of the state. Here,
the principle behind imitation learning are applied. Indeed, a set of optimal, fuel efficient trajecto-
ries simulating open-loop guidance toward the Moon surface are generated using direct transcription
methods (e.g. Gauss Pseudo Spectral methods). Such sequences comprise the training set (i.e. the



teacher) employed during the learning phase. A Long-Short Term Memory (LSTM) architecture is
employed to keep track of what has entered the network before and use such information to better
predict the output. Finally, the proposed RNN learns to imitate a fuel-efficient, closed-loop guidance
for Lunar precision landing. After the problem formalization, in which the equations of motion are
formulated, the procedure to generate the dataset is described. Subsequently, the proposed network
architecture is analyzed and discussed and the results of the training and test phases are reported. A
Data Aggregation (Dagger) method where the teacher is employed to correct the network mistakes
is implemented to improve accuracy. Finally, the results of a Monte Carlo simulations in Moon
landing scenarios are provided to show the effectiveness of the proposed methodology.

PROBLEM FORMULATION

A planar 2D Lunar landing has been considered, in which the variables of state are downrange
and altitude (i.e. the motion is constrained to occur in the vertical plane). The state comprises five
components: the spacecraft dynamical state position and velocity, and mass. The control action
will have two components, one aligned with the vertical direction and one with the horizontal. The
thrust vector is described by its magnitude and a two-component unit vector describing the thrust
direction. The equations of motion are the following:
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Here, h is the altitude and d is the downrange, 7 = [d,h| and v = [vg4, vp]. The thrust T =
Tu where T is thrust magnitude and w is the thurst direction.Additionally, g is the lunar gravity
acceleration, I, is the specific impulse and gg is the reference gravity acceleration. Fig. 1 shows
a simple scheme of the involved variables. These equations have been integrated to minimize the
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Figure 1: Involved variables in the selected reference frame

following cost function:
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Here, we are minimizing the overall fuel. Importantly, the final time ¢ 7 is not fixed. It is very well
known that the solution of such problem has a optimal bang-bang burn profile, in which the thrust
is alternatively maximum or minimum, or on/off. Initial conditions are given as initial position 7
(downrange and altitude) and initial velocity ¢y (horizontal and vertical). The initial mass is set
equal to mg. Final conditions on each variable of state, except the mass, have been imposed. Since
the final time is not fixed, only a lower limit for the mass value has been considered and set equal to
the dry mass m .

TRAINING SET GENERATION

Whenever dealing with supervised learning, a training set is required to train the network. In
order to generate a suitable dataset, the problem just formalized had to be solved many times by
considering a set of different initial conditions. For this purpose, an optimizer was necessary. The
General Pseudospectral Optimal Control Software (GPOPS) has been chosen [16]. GPOPS is a
MATLAB software package specifically designed to solve general non-linear optimal control prob-
lems, where systems are described by differential or algebraic equations. GPOPS has been chosen
for its simplicity in problem implementation and for the ease in visualizing and handling states and
control actions. In the followings, the most important steps for the implementation are illustrated. In
GPOPS, the user has to define the system of equations of motion and the cost function. This equa-
tions are written in two separate scripts, while in the main code, the user defines initial conditions,
final conditions and the bound constraints. These bounds are defined in terms of maximum and
minimum values that each state and each control action can assume during the integration and opti-
mization. Their value should be properly selected to avoid being too tight. General state-constraints
can also be imposed. GPOPS needs a first guess solution to start the optimization process. Since the
problem has to be solved multiple times, the free-fall solution has been selected as the initial guess
solution for only the first set of initial conditions. Subsequently, each GPOPS solution has been
considered as the initial guess for the next set of initial conditions. The latter helped the software to
converge faster and more accurately.

As discussed above, the generation of a suitable training set requires running GPOPS with many
initial conditions. The initial mass of the spacecraft has been set equal to 1300 kg. The downrange
has been initialized between 1500 and 2000 meters, whereas the altitude is selected to be between
1000 and 1500 meters. Fig. 2 shows a schematic of the initial positions in the selected reference
frame.

The initial downrange velocity vg4, changes according to the downrange: when the downrange is
maximum, the velocity is maximum in modulus (—15 m/s). Conversely, whenever the downrange
is minimum, the velocity also is minimum in modulus (—11 m/s). The same reasoning has been
applied for the initial vertical velocity vy, that ranges from —6 to —10 m/s. Unlike the initial con-
ditions, the final ones have been kept constant for all trajectories. In particular, the final downrange
d s has been set equal to 0, the final altitude /s equal to 50 m and finally, both components of the
final velocity (vertical and horizontal) equal to —0.5 m/s. As it can be seen, the final condition
is such that the spacecraft has not touched the ground and has a very small downward velocity.
Throttlable thrusters have been considered, in which the magnitude of the control action is bounded
following the same strategy applied in [18]. The nominal thrust 7;,,,, is equal to 4000 N. The
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Figure 2: Initial positions in the selected reference frame

maximum thrust and minimum thrust have been fixed equal to 85% and 25% of the nominal thrust
respectively (i.e., 3400 N and 1000 N respectively). Since the optimal burn profile is bang-bang,
the thrust selection is binary, i.e. it can be either 7},in or T,ax. As such, the problem of syn-
thesizing the thrust magnitude as function of state can be cast as a binary classification problem.
However, learning the thrust direction as function of the spacecraft state is a regression problem.
To understand how the thrusters direction has been taken into account, it may be useful to see how
the equations of motion have been implemented in GPOPS. Indeed, one has five (5) equations of
motion:
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where 7' is the magnitude of the control action and uy and uy, are the components of the thrust
direction unit vector. To satisfy the unitary conditions of the thrust directions, we imposed that
u? + u} = 1 must be satisfied at any time. Because of such constraint, the thrust direction can be
described by a single angle as follows:

0 = arctan td 4)
up,

Designing a RNN capable of learning the thrust magnitude and thrust direction 6 requires solving
a classification problem for the magnitude of the thrust and a regression problem for the direction of
the control action. The training set has been generated by computing 2601 fuel-efficient trajectories
have within the selected four-dimensional (position and velocity) portion of space. The parameters
of the problem are shown in Tab. 1a. A summary of the initial and the final conditions is shown in



Tab. 1b and in Tab. 1c.

Table 1: Parameters and state values for the 2D problem

(a) Problems parameters (b) 2D initial conditions (c) 2D final conditions
value  unit value unit value unit
Mary 500 kg do  [1.5,20] km dy 0 m
g —1.622 m/s? ho (1.0, 1.5]  km h¢ 50 m
Isp 200 s va, |11, =15] m/s va, —0.5 m/s
Thom 40 kN vy [-6,-10]  m/s v, —05 m/s
Traz 3.4 kN my 1.3 ton

Trnin 1.0 kN

Each trajectory computed by GPOPS has 61 points, i.e. 61 states and 61 control actions. Each
state has five elements (downrange, altitude, velocities and mass); each control action has three
components (magnitude, ug and uy). Since the angle 6 is extracted for each couple of unit vector
components, 61 angles have been computed per each trajectory. The final training set has been
built by associating each spacecraft state (position and velocity) to each control action. The overall
fuel-efficient dataset has been further divided in training-set and test-set. The earlier set, which is
employed train the RNN comprises 2409 trajectories. Conversely, the test-set, which is employed
to evaluate network performances, comprises 192 optimal trajectories.

In Fig. 3 shows an example of an optimal trajectory included in the dataset. The initial downrange
is 1750m and the initial altitude is 1250m. Fig. 4 shows the bang-bang profile of the thrust magni-
tude. Fig. 5 shows the behaviour of the angle 6, that the thrust forms with the horizontal direction.
Finally, in Fig. 6 all the trajectories are plotted. All trajectories are constrained to be in a region of
space above a cone of 20°.
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Figure 3: 2D trajectory
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Figure 4: 2D thrust magnitude

PROPOSED RNN-LSTM ARCHITECTURE

The proposed RNN-LSTM network is designed to learn the relationship between sequences of
optimal (fuel-efficient) spacecraft state-thrust from numerically computed trajectories. The idea is
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Figure 6: All 2D trajectories

to synthesize the optimal closed-loop controller via imitation learning, i.e. leaning to imitate op-
timal guidance solutions. For the 2D vertical plane lunar landing problem, the label associated to



each state comprises two components, i.e. one associated to the magnitude of the thrust and the
second one to the angle representing the direction in which the thrust is applied. Since the problem
has a bang-bang control action profile, the thrust magnitude can take its maximum or minimum
value only. Accordingly, the network architecture should be designed to classify the correct thrust
level. Moreover, as shown in Section ., the thrust angle profile is smooth and continuous. Conse-
quently, the network shall be designed to learn the optimal thrust angle value as function of the
previous states. Fig. 7 shows the proposed network architecture. The input enters the LSTM block
and the output is sent to two separate branches, i.e. one for classification and the other for regression.
A set of fully connected layers link LSTM to the final output levels.

Input
!
LSTM
Fully connected Fully connected
:
Fully connected
!
Regression output Classification output
on thrust angle on thrust value

Figure 7: Proposed LSTM architecture

The network has been implemented in Python-Keras and the architecture is detailed in Fig. 8. It

Layer (type) Output Shape Param # Connected to
main_input (InputLayer) (None, 3, 4) 0 T T
lstm_1 (LSTM) (None, 100) 42000 main_input[e][e]
dense_2 (Dense) (None, 50) 5050 Tstm_1[0][0]

dense_1 (Dense) (None, 2) 202 lstm_1[0][0]

dense_3 (Dense) (None, 1) 51 dense_2[0]l[0]
clas_output (Activation) (None, 2) 0 dense_1[0][0]
regr_output (Activation) (None, 1) 0 dense_3[0][0]

Total params: 47,303
Tralnable params: 47,303
Non-trainable params: ©

Figure 8: LSTM architecture in Python-Keras

is useful to analyze how each component of the LSTM-net by going through the elements reported
in Fig 8.



e LSTM cell is composed of 100 neurons (line 1stm_1 in Fig. 8) and is directly connected to
the input layer.

e The branch of the neural network designed to perform the classification on the thrust value
(line dense_1 and clas_output in Fig. 8) is composed by a dense layer (fully connected
layer) and an output layer, both of 2 neurons because the problem has two output classes. The
fully connected layer is connected with the LSTM cell.

e For the regression on the thrust angle (line dense_2, dense_3 and regr_output in
Fig. 8) there are two fully connected layers (with 50 and 1 neurons) and the output layer.
Also here the first fully connected layer is directly linked to the LSTM cell.

The selected architecture yields a number of 47,303 trainable parameters (weights and biases).

TRAINING AND TEST PHASE
Training

Much effort has been put into selecting the proper length for the input sequence to answer the
following question: How could the LSTM learn better from the input information? After a proper
tuning, the chosen number of inputs is 3, i.e. spacecraft states and thrust at current and two previous
instants. Indeed, after several simulations, we concluded that three sequential states gave the best
results. This means that each trajectory (which is composed by 61 states) has been divided in sets
of 3 sequential states and this division has been developed by following two strategies.

The first strategy has been to fed the RNN-LSTM with sequential states and without separating
different trajectories as shown in Fig. 9. Note that in this case after one trajectory ends the new one
starts. However, another strategy has been shown to outperformed the above one. Here, we fed the
RNN-LSTM by separating the trajectories one with respect to the other. An example is reported in
Fig. 10. This second strategy has been implemented to avoid confusion between trajectories. In this
case, the training results are improved because the RNN—LSTM is able to learn the final state of
the optimal trajectory (i.e. [0, 50, —0.5, —0.5]).

As for labeling the output (thrust magnitude), in each input of 3 states (the 3 x 4 matrices reported
in Fig. 9 and Fig. 10) the associated label corresponds to the 3¢ row. During the training phase, at
time ¢, the net is fed with an input comprising the state at time ¢, at time £ — 1 and ¢ — 2 as well as
the control action at time ¢. Further, machine learning theory states that input data can be given to
the network sequentially, either individually or by small groups or "’batches”. Indeed, the batch size
is the number of samples (inputs) that are propagated through the network at each training epoch. It
has been shown [22] that a multiple input (and therefore a reasonable value of batch size) has some
advantages in the training phase even if there are no golden rules to choose it. In this work, the
chosen approach is to have a batch of 59 inputs; in this way a complete trajectory is taken.

The RNN-LSTM is usually trained by minimizing a proper loss function. In fact, weights and bi-
ases are initialized as random values and as the training phase proceeds, they are updated according
to a minimization algorithm. The standard learning algorithm for neural networks is backpropa-
gation with gradient descent (or its variant stochastic gradient descent). In this woek, we used the
Adam optimizer to minimize the loss function. The name is derived from ADAptive Moment esti-
mation. It is well suited for problems that are large in terms of data and parameters and it can be
used instead of the classical stochastic gradient descent procedure [23], which maintains a single

10
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learning rate (termed alpha) for all weight updates and the learning rate does not change during
training. Instead Adam optimizer adapts the learning rate as training unfolds thanks to the decay
parameter. Note that the learning rate is a hyper-parameter that controls how much the algorithm is
adjusting the weights of the network with respect the loss gradient. The lower the value, the slower
the travel along the downward slope. While this might be a good idea (using a low learning rate) in
terms of making sure that any local minima is missed, it implies that the time for convergence will
be longer. Furthermore, the decay has an expression given by Eq. 5

< epoch >

decaystep

Irnew = lroig - decay, g, (%)

In Tab. 2 the chosen hyper-parameters are summarized.

Table 2: Selected hyper-parameters of the RNN—LSTM

Hyper-parameters

Batch size 59
Initial learning rate 0.0001
Decay rate 0.0001
Regression loss weight 10

Classification loss weight 60

Classification predictions can be evaluated using accuracy, whereas regression predictions can
be evaluated using root mean squared error (RMSE). Concerning the accuracy evaluation, the loss
function associated to this task has been the Cross-entropy loss.

Cross-entropy loss: it measures the performance of a classification model whose output is a prob-
ability value between 0 and 1. In particular it indicates the distance between the model pre-
diction and the true value of the output. The cross entropy error is computed as:

Yeross—entropy = — Z t; log(ysoftmazj) (6)

J

Softmax function: Softmax function outputs a probability distribution suitable for probabilistic in-
terpretation in classification tasks. This function takes a vector of real numbers and transforms
it into a vector of real numbers in range [0; 1] which represents the probabilities and will be
used for determining the class for the given inputs. The softmax function computes the ratio
between the exponential of the input value and the sum of the exponentials of all the input
values. The analytic formula is:

ek
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The RMSE (Eq. 8) for regression, on the other hand, represents the sample standard deviation of
the differences between predicted values and real values:

I T )2
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Ysoftmazr =
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where y; is the real value and g; the predicted one.

The training has been run for 1500 epochs over 2409 trajectories. In order to have a feedback
during the training phase on the RNN-LSTM performances, the training set has been split such that
5% of the dataset has been used for validation. Validation datasets can be used for regularization by
early stopping: the training is stopped when the error on the validation dataset increases, as this is a
sign of overfitting to the training dataset. In Fig. 11 shows the behaviour of the loss function during
the training process. The RNN-LSTM has been trained for 1,200 epochs. Importantly, the orange
curve. corresponding to the model validation, shows that the RNN-LSTM does not overfit the data.

Test

The test phase has been executed to validate the performance of the final model after training.
As already mentioned, the test set consists of 192 trajectories. To visualize the trained RNN-LSTM
performances on the classification (accuracy), a confusion matrix has been computed. The number
of correct and incorrect predictions has been summarized by counting and breaking them by each
class: 0 is associated to minimum thrust, 1 to maximum. As shown in Fig. 12 the RNN-LSTM
trained model has an accuracy of 99, 73%. To evaluate if the classification accuracy is consistently
high, MNIST images dataset has been taken as a reference, even if no images are involved in an
RNN—-LSTM. According to the state of art, tests on MNIST (which is a trivial dataset) can at most
reach a precision of 99.79%. To obtain a good result in a more complex problem, a threshold of 99%
on the accuracy is chosen as minimum target. On the other hand to evaluate the performances on
regression the plot on the predicted regression angles has been considered. The results are reported
in Fig. 13 which shows good performance with a final RMSE is 0.2°.

ACCURACY IMPROVEMENT: DAGGER APPROACH

An approach has been investigated to obtain further improvements of the net performances. Sev-
eral algorithms have been proposed and are available in literature. The most promising is the Im-
itation Learning thanks to which the learner tries to imitate an external expert action in order to
achieve the best performance. In particular in this work a DAgger (Data Aggregation) approach has
been developed. The main advantage of this type of algorithms is that an expert teaches the learner
how to recover from past mistakes. Nowadays, a classical application of DAgger is for autonomous
vehicle and it applies, mathematically speaking, the following steps([17]):

1. Train the net (in this case a car) on a dataset D made of human observations and actions.
2. Run the net to get performances and then a new set of observations D .

3. Ask the human expert to label the new dataset with actions.

4. Aggregate all data in a new dataset Dy, = DU D,

5. Re-train the net.
Practically what happens with an autonomous car is that the driver corrects online the errors done
by the vehicle. Since it is not possible to exploit an human action/correction in space, the DAgger

approach developed for this work is slightly different and it goes throught the following steps:

1. Train the net on a dataset D generated with GPOPS.

13
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Figure 11: Classification and regression losses evolution during the RNN—LSTM training phase

2. Run the net to get performance by using the test set Dycgt.

3. Check for which trajectories the trained model error is not acceptable in terms of classification
accuracy and RMSE.

4. Pick up the wrong trajectories in Dyypong-

14
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Figure 13: Regression on angles predicted with the trained RNN—LSTM

5. Use Dyyrong to re-train the net and to improve the performances.

15



As reported in Section , the global accuracy in the test phase was 99.73% and the global RMSE
= 0.2°. The wrong trajectories have been picked up from the test dataset by applying the criteria
shown in Tab. 3 on each prediction. With the trained RNN-LSTM and the abovementioned criteria,

Table 3: Criteria used to evaluate wrong predicted trajectories

Criteria

Accuracy  ;99%
RMSE — ;03°

the wrong trajectories turned out to be 38 on the overall 192 test trajectories. Subsequently, the
DAgger method has been implemented following two strategies:

e First strategy has been designed to train only on the trajectories with wrong predictions using
the trained net model (Fig. 14).

Train on
trained RNN

Test set Wrong trajectories

Figure 14: 1° strategy for the DAgger approach

e Second strategy has been conceived to enlarge the training test with the wrong trajectories
and then re-train the net model (Fig. 15).

Train on
trained RNN

Test set Wrong trajectories  Train set + wrong trajectories

Figure 15: 2° strategy for the DAgger approach

16



In order to evaluate the performance of the RNN-LSTM trained with the DAgger methodology,
a new dataset of 100 trajectories, that had never been used by the model, has been created.The net
without DAgger achieves an accuracy of 99.23% and RMSE = 0.42° (Fig. 16). The model trained
using the first DAgger strategy reaches an accuracy of 97.89% and RMSE = 0.44° (Fig. 17). Finally
the results for the second DAgger strategy provide an accuracy of 99.25% and a RMSE = 0.40°
(Fig. 18). All the results are summarized in Tab. 4.

1 RMSE = 0,42°
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Figure 16: Accuracy and regression using the trained RNN—LSTM on 100 new trajectories
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Figure 17: Accuracy and regression using the trained RNN—LSTM according to first DAgger
strategy

In conclusion, it has been discovered that re-training the model only on wrong predicted trajec-
tories means that the weights and biases are updated focusing strictly on the wrong predictions.
Therefore, testing the new model on a new dataset shows a loss of generality. Instead, re-training
on the enlarged set allows to achieve the best performance.

17



RMSE = 0,40°

160

140 A

-
N
(=]

Predictions [deg]
g

Output class

®
(=]
L

99,25%
0,75%

0% 60 -

60 80 100 120 140 160

Target class Fargevige]

Figure 18: Accuracy and regression using trained RNN—LSTM according to second DAgger strat-
egy

Table 4: Summary of the performances of the DAgger approaches

Model Accuracy RMSE

Trained net  99,23% 0.42°
1° strategy ~ 97,89% 0.44°
2° strategy  99,25% 0.40°

PERFORMANCE ON A DYNAMICS SIMULATOR

Generally, the RNN—LSTM is able to achieve good results in terms of accuracy on the classifica-
tion and precision in the regression. Another important test that has been performed is a simulation
of the real-time RNN-LSTM performances. The goal is to verify if the spacecraft can be guided
to the target above the lunar surface by a well trained neural network. For this purpose, a suit-
able dynamics simulator has been developed and coupled with the trained RNN—LSTM. Within
the simulation environment, starting from an initial condition, the spacecraft is controlled only by
RNN-LSTM. Additionally, the state at any instant is supposed to be known. Since the network in-
put comprises three consecutive states, three initial consecutive states have to be available to initiate
the simulation. The network takes this first input to predict the first control action, with which the
dynamics are propagated throughout the duration of the time step, keeping the control constant.
The propagation is performed by integrating the equations of motion with an ordinary differential
equation solver based on a 4th order Runge-Kutta method. Once the integration step is completed,
the newly generated state is aggregated with the last two states of the previous input, in order to
prepare the new input for the network. A new prediction and a new dynamics propagation follow.
The loop is repeated until the final time is achieved or until some criteria are satisfied. The first
criterion imposes the loop to stop when an altitude of 50 meters (which is the lower limit of the
training trajectories) is reached. The second criterion is triggered when the spacecraft starts to rise
up in altitude. In fact, it has been discovered that, after the 50 m altitude is reached, the neural
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network tends to control the spacecraft in such a way that it increases its altitude, moving it away
from the ground.

A simulation has been executed by considering the initial conditions of a trajectory taken from the
testing set. Tab 5 shows a comparison between the theoretical optimal final state and the final state
of a spacecraft completely controlled by the neural network which are demonstrated to be similar.
In Fig. 19 the optimal trajectory and the predicted one are reported.

Table 5: Comparison between optimal and predicted final state using RNN—-LSTM

optimal predicted unit

downrange 0 -0.9 [m]
altitude 50 50.3 [m]
downrange velocity ~ -0.5 -0.015  [m/s]
altitude velocity -0.5 -0.6 [m/s]
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1400 1 Predicted -
Prut y
1200 A r e
r 4
&

B 1000 A .'\A\

E o

@ 800 - &

©

2 o

= -~

< 600 ¢

400 - o
200 A
0 L T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Downrange [m]

Figure 19: Comparison between optimal and predicted 2D trajectory

The simulations have shown that the network’s performances are very sensitive to the time step
extension. The time step is the only parameter that can be modified by the user. If the time step is
reduced, the network will be required to process the input and give a control action more frequently,
while if the time step is increased, a smaller number of predictions will be requested. In the first case,
the control would be more accurate, but the network may not be trained to provide high frequency
predictions. In fact, asking the network to predict the control actions more frequently than it was
designed for, may lead to big errors due to the fact that the inputs would be very similar one to each
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other. In the second case, the accuracy of the prediction may drop, which could cause the generation
of an inaccurate control. A good balance, in which the network is able to give correct predictions
and the control is quite accurate despite the approximations, must be found between these two cases.
For the example shown, the time step has been set equal to 0.95 s.

MONTE CARLO ANALYSIS

A Monte Carlo simulation has been performed to better characterize the errors of the neural
network, in terms of landing position and landing velocity. For this purpose a new set of initial
conditions has been generated, keeping fixed the initial altitude at 1250 meters and perturbing the
initial downrange according to a Gaussian distribution centred at 1750 meters. In this way, a Gaus-
sian distribution of initial conditions, centred in the middle of the region covered by the dataset
(Tab. 1b), has been considered. Fig. 20 shows the distribution of initial downrange and their prob-
ability. Note that in this case, it is assumed that the initial conditions in the middle of the dataset
are more probable than the peripheral ones. These initial conditions have been propagated using the
dynamics simulator, described in the previous section. For each initial condition, the propagation,
has been stopped once the spacecraft reached 50 meters of altitude. The output of this simulation
is a series of plots, in which the final downrange, the final vertical velocity and the final horizontal
one are shown.

As discussed above, an important issue is the selection of the time step. The first Monte Carlo
simulation has been performed keeping the time step constant for each trajectory of the set. In this
way, each initial condition has been propagated with the same number of control actions predicted
by the RNN-LSTM. As reported in Fig. 21 the final state of the propagated trajectories are far from
the optimal ones. The latter implies that this is not a good approach. In particular the final velocities
are too high (more than —10 m/s for the horizontal component and more than —8 m/s for the
vertical one).
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Figure 20: Downrange initial conditions for the Monte Carlo simulation
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Figure 21: Results of the first Monte Carlo simulations

Indeed, the time step must be tuned for each initial condition. There is not a unique value of
time step for which the RNN-LSTM provides good results, whatever the initial conditions are. For
this reason, a second Monte Carlo simulation has been completed trying to find for each initial
conditions the best value of the time step. This has been done in an automatic way using a for
loop in which many time steps are tried and the one that provides the best results (in terms of final
velocities and downrange position) is selected. The results of this second simulation are shown in
Fig. 22.

The mean of the final downrange velocity is —2.97 m/s, while the mean of the final vertical
one is —2.2 m/s. Finally, the mean of the final downrange is 6.23 m. The latter are much lower
than the results of the previous Monte Carlo simulation, but are still quite far from the optimal ones
(—0.5 m/s for both velocities and 0 meters of downrange). In Fig. 23, the final downrange are
plotted. Notably, most of the final points shows a final downrange around zero (which is the target).

This result is due to the fact that the control applied during the propagation is not very accurate,
since the control is kept constant during the integration/propagation phase. Such problem could be
in principle solved by asking the net to process the inputs more frequently, so as to have a discrete
but more accurate control during the landing. The limit of this approach is represented by the fact
that the RN-LSTM network is not trained to take inputs at high frequency. Indeed, the trajectories
within the training set do not have an adequate number of points. The considered optimal trajectories
comprise only 61 states, i.e. one every 0.9 seconds. One solution would be to train the RNN-LSTM
on trajectories with many more points.

CONCLUSIONS AND FUTURE EFFORT

This paper demonstrated how to design and test a deep recurrent architecture capable of im-
itating a fuel-efficient guidance system for pinpoint planetary landing. Generally, fuel-efficient,
closed-loop guidance algorithms are not available and numerical solutions of the propellant-optimal
problem can be found only for open-loop trajectories. The proposed RNN-LSTM aims at learn-
ing the optimal thrust from sequence of numerically-computed open loop fuel-efficient trajectories.
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Figure 22: Monte Carlo second simulation results

The results show that the system achieves high training accuracy both on the training and test set.
The recurrent nature of the proposed system efficient process information at previous time-steps
to synthesize the current optimal thrust level and thrust direction. The DAgger approach has been
implemented to improve accuracy. Monte Carlo simulations show that the system can achieve good
performances when deployed in a simulated environment. Future work will be aimed at improving
performances via increasing the number of training points and the test the system in a perturbed
environment.
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