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Abstract: Methods of multi-criteria decision making (MCDM) from operations research have been
applied to provide information for making long-term decisions in the energy sector, and energy
policy. For example, in sustainability evaluations, multiple conflicting criteria can be considered.
While most MCDM approaches have been applied to evaluate energy systems in a single period, the
multi-criteria evaluation of energy system evolution over time has received less attention. To evaluate
such transition paths, multi-period MCDM approaches can be used. Because of long-term planning
horizons, deep uncertainties need to be considered. Based on prior multi-period MCDM approaches,
this paper provides an extension of the outranking approach preference ranking and organization
method for enrichment evaluations (PROMETHEE) for multi-period evaluations in deep uncertainty
settings. In order to adequately address the consideration of uncertainties and to obtain an additional
level of information, a multi-period PROMETHEE approach and scenario planning are combined.
In an illustrative example, this method is applied to a case study from the German energy sector
regarding a renewable energy transition. This highlights the potential interactions of a multi-period
perspective and the consideration of external scenarios in the decision-making process.

Keywords: multi-period evaluation; PROMETHEE; deep uncertainty; scenario planning; energy
transition

1. Introduction

Energy scenarios describe possible future states or developments of energy systems,
and are often applied to provide orientation regarding decisions in energy policy and
the energy sector, for example in planning the energy transition towards renewable re-
sources [1–4]. In most cases, the major objective of an energy transition is to achieve a more
sustainable energy system [5–7]. Multi-criteria decision analyses, especially approaches
from multi-attribute decision making (MADM), which evaluate a finite and discrete num-
ber of alternatives, have been applied in combination with energy scenarios; this achieves
more transparent decision support processes, helps to structure complex decision problems,
and provides the basis for making informed decisions [8–12]. MADM approaches can
provide decision support for and have long been applied in complex decision problems,
such as the evaluation of sustainability, which are characterized by conflicting criteria
measured in incommensurable units (see [6,13–18]). By aggregating decision-relevant in-
formation, MADM approaches provide the basis for an analysis, comparison, and ranking
of alternatives, and eventual selection of the best option. To compare different alternatives
for future energy systems regarding their sustainability, the sustainability objective is
often operationalized with technical, economic, environmental, and social criteria [6]. For
example, carbon dioxide or greenhouse gas emissions are measured as a major political
reduction challenge for global climate protection [19–23]. With the help of energy system
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models, the performance of the alternatives is measured against these criteria, yielding
performance scores for each alternative and each criterion. MADM methods, such as
MAUT [24], PROMETHEE [25], AHP [26], or ELECTRE [27] provide structured procedures
for evaluating these performance scores, while decision makers’ preferences can be con-
sidered. They can help to structure and clarify political debates, as they can be useful in
pointing out the most essential issues and aiding in eliciting decision makers’ preferences
and values [28,29].

Evaluations of energy scenarios usually regard a specific time or period, e.g., the
year 2050, which we refer to as a single-period (SP) analysis. However, such studies do
not investigate potential paths for making the transition to the desired future state, e.g., a
sustainable energy system, as a dynamic decision problem. In contrast, solving dynamic
multi-criteria decision problems necessitates an explicit modelling of dynamic aspects in a
decision problem, i.e., changes over different periods [30]. In contrast to the single-period
analyses, we call these multi-period (MP) analyses. For decision makers in energy policy, it
would be interesting to investigate the question, how to reach desirable future states and
consequently evaluate transition paths spanning several periods in order to set suitable
year-specific energy policy targets, e.g., emission reductions or capacity extensions of
renewable energy technologies [31]. In the context of energy systems planning, multi-
period (MP) energy system models have long been used to investigate a system’s behavior
over multiple periods [32] and thus can provide input for MP MADM approaches. In
this case, using an SP evaluation may lead to loss of information, because data need to be
aggregated and intermediate periods cannot be considered. Some MP MADM approaches
have already been proposed in the research literature (see next section). For strategic
decisions with long planning horizons, investigating the effect of uncertainties is often
integrated in decision support [33–35]. The uncertainty associated with decision problems
regarding the energy transition is usually categorized as deep uncertainty, meaning that
“decision makers, analysts, and experts do not know or cannot agree on the system model(s),
the probability distributions for inputs to the system model(s) and their interdependencies,
and/or the value systems used to rank alternatives” [36]. Decision problems with deep
uncertainties include internal uncertainties, relating to the process of problem structuring
and analysis, and external uncertainties, regarding the nature of the environment and
thereby the consequences of a particular course of action which may be outside of the
control of the decision maker [37]. Approaches for modelling internal uncertainties include
fuzzy sets [38] (see [39] for a review regarding applications in energy policy planning)
and rough sets [40]. However, internal uncertainties should ideally be resolved at the
problem-structuring phase or, where not resolvable, with suitable sensitivity analyses [37],
which is why we focus on external uncertainties in this paper. The combination of scenario
planning and MADM approaches is considered to be particularly useful for considering
external uncertainties [10,37].

So far, the proposed MP MADM approaches are not adequate in a deep uncertainty
setting, because they are based on probability distributions for uncertain aspects, or they do
not consider uncertainties at all. One solution may be to combine the MP MADM approach
with scenario planning techniques, which do not necessarily require the definition of
scenario probabilities [41–43]. Some approaches combining multi-criteria decision analysis
with scenario planning already exist (see [35] for a review). However, to our knowledge, the
combination of MP MADM approaches and scenario planning—without the specification
of probabilities—has not been investigated yet. Specifically, we use the scenario concept
described by [44], so that scenarios are a comparatively different and systemized set of
future-oriented, plausibly possible, narrative descriptions about the external context of a
decision problem. Hence, the objective of this paper is to describe a MP MADM approach
based on the outranking method PROMETHEE for making strategic decisions in the
energy sector, in combination with scenario planning. The contribution of this paper can
be described as: (a) proposing the new method for evaluating alternatives under deep
uncertainty in a MP MADM setting (MP-PROMETHEE-S) and (b) presenting results for the
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case study of the transition of a local energy system in Germany. The new method advances
previous MP MADM methods, as uncertain developments of preference scores over time
can be evaluated with the help of scenarios. The results for the decision problem in the case
study also enrich the results of previous studies with the consideration of uncertainties and
an evaluation of robustness.

The paper is structured as follows: In the following Section 2, the literature on MP
MADM approaches is summarized. In Section 3, notation, assumptions, and procedure
of MP-PROMETHEE-S is described, based on the standard PROMETHEE approach. Fur-
thermore, MP-PROMETHEE-S is applied in Section 4, in a re-evaluation of planning the
green transition of the power generation system in a German town from 2000 to 2020 in
five different scenarios. Section 5 provides a detailed discussion of the developed method
and its application in the case study. Concluding remarks and possible further research
questions are placed in the final Section 6.

2. Literature Review: MP MADM Approaches

In energy system analysis, MP energy system models have long been used and are
well-established [45,46]. However, suitable approaches for MP MADM approaches have
emerged mostly in the recent decade, and applications in the energy sector are limited,
even though there are many applications that combine energy system analysis and SP
MADM approaches (for a review, see [6]). In the following, we provide an overview of
seven MP MADM approaches, summarized in Table 1.

Table 1. Overview of MP MADM approaches.

References MADM Algorithm MP Aggregation Uncertainty
Consideration

Criteria
Weights

Path
Dependency Specific Features

[47] Generic Not specified No uncertainties Dynamic Not considered Group
decision-making

[48] Generic Decision tree Probabilities
of scenarios Static Modeled

explicitly

[49–52] Single synthesizing
criteria approach

Confidence levels
of periods

Probabilities
of scenarios Static Not considered

[53] Generic Not specified Not specified Static Modeled
explicitly

[54] PROMETHEE II Confidence levels
of periods No uncertainties Static Not considered

Varying thresholds
in preference

functions

[55] PROMETHEE I Confidence levels
of periods

Monte Carlo
simulations of

performance scores
Static Not considered

[56] PROMETHEE II

Arithmetic mean,
weighted average

(confidence levels of
periods), mean of

discounted net flows

No uncertainties Static or
dynamic

Modeled
explicitly

Varying thresholds
in preference
functions are
aggregated

[57] PROMETHEE II Arithmetic mean or
weighted average No uncertainties Static or

dynamic Not considered
Weighting factor for
MP aggregation can
include a discount

This paper PROMETHEE II
Arithmetic mean,

mean of discounted
net flows

Scenarios (without
probabilities)

Static of
dynamic

Modeled
explicitly

Sensitivity analysis
of discount factors

For the review, we followed processes described by [58,59]: (1) a literature search
combining multi-period and multi-criteria in the databases ScienceDirect and Business Source
Complete via EBSCOhost; (2) filtering out approaches that do not fit the MADM paradigm;
and (3) successive forward and reverse searches. We discarded MP MADM approaches
that model the multi-period nature of the decision problem with feedback between periods,
which means that the decision table of one specific period is calculated based on some
information of the previous periods, e.g., [60,61]. In these approaches, the multi-period
nature of the decision problem is broken down into multiple successive single-period
problems, which do not require a MP MADM approach. In [47], a model is developed that



Sustainability 2021, 13, 6300 4 of 20

allow for the investigation of the convergence of criteria weights in MP group decision-
making settings. Although temporal aggregation of performance scores and uncertainties
are not addressed in this model, it allows for the definition of criteria weights that vary over
time and converge in a group decision-making process. In [48], a general decomposition
approach is developed for multi-criteria decision trees that can be used for decision making
under uncertainty and explicitly considers path dependencies. We adopt the definition
used in [51], where path dependency refers to the concept that choosing an alternative in
one period may restrict the choice of alternatives in future periods. Because a decision tree
is a technique that requires the definition of probabilities for scenarios, decision trees cannot
be applied in the case of deep uncertainty, which is associated with decision problems
from long-term energy systems planning. In consecutive publications building upon one
another, [49–52] describe an MP MADM approach based on single synthesizing criterion
approaches, such as MAUT, SMART, TOPSIS, MACBETH, or AHP, and apply it to case
studies from sustainable forest management. Their MP MADM approach consists of
five steps: (1) problem structuring; (2) uncertainty scenario definition; (3) (multiple SP)
multi-criteria aggregations, based on criteria weights; (4) temporal aggregation, based on
confidence levels of periods; (5) uncertainty aggregation, based on probabilities of scenarios.
While criteria weights are assumed to be constant over time, confidence levels associated
with periods need to be elicited from decision makers and can change in the future. In [53],
a generic MP multi-criteria approach is developed, which acknowledges multiple periods
and uncertainties. However, the specific methods for MP aggregation and uncertainty
consideration are not described. In [54], an MP approach based on PROMETHEE II [25]
is developed, which also includes multiple SP aggregations and a MP aggregation, and it
is applied to the evaluations of the Human Development Index for emerging economies
and the assessment of football players. Their MP approach features constant criteria
weights, and allows confidence levels to be assigned to periods, which are assumed to
be decreasing over time, and allows the preference thresholds of PROMETHEE-specific
preference functions to be varied over time. However, this approach neither considers
scenarios nor uncertainties in general. In [55], an MP PROMETHEE approach is developed,
based on PROMETHEE I [25], where parameter uncertainties related to the performance
scores are modeled with Monte Carlo simulations, so that a greater number of scenarios
can be investigated. The internal consistency [62] of said scenarios, however, cannot be
guaranteed. The MP aggregation is based on confidence levels assigned to the periods.
This method is also applied to a case study in sustainable forest management. Both [56]
and [57] describe similar MP PROMETHEE approaches, based on PROMETHEE II. The
process is similar to the first four steps described in [51], and consists of: (1) MP problem
formulation; (2) assessment of alternatives in each period; and (3) MP aggregation of
assessments and sensitivity analysis. In the problem-structuring phase, path dependencies
can be considered. Criteria weights can vary over time. PROMETHEE-specific thresholds
for each period can be elicited from decision makers or calculated based on the performance
scores. Afterwards, a single threshold is chosen for the whole planning horizon. Different
variants for MP aggregations (with or without specifying confidence levels) are proposed,
combining (weighted or arithmetic) averages with the net present value [63]. Scenarios for
external uncertainties are not considered, but are pointed out as necessary extension.

In this paper, we mainly base the developed methodology upon [56], which is flexible
regarding the specification of preference parameters, and allows for explicit consideration
of path dependencies. The PROMETHEE approach is suitable for evaluating (future) energy
systems regarding their sustainability, as it is easy to use and performance scores are only
partially compensated [64,65], which is desired in sustainability evaluations [66]. For
example, it has already been applied to the evaluation of bioenergy pathways [56,65–68]
and energy systems in general [8,10,69–71]. We extend the approach described in [56]
in such a way that the approach is suitable for MP evaluations in the context of deep
uncertainty, by allowing the definition and evaluation of alternatives in different scenarios
(MP-PROMETHEE-S).
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3. MP MADM Approach under Deep Uncertainty

Generally, MADM methods provide decision support to one or more decision makers
in choosing an alternative (e.g., options for energy supply systems), based on the explicit
consideration of multiple, conflicting criteria (e.g., investment or emissions) [29]. MADM
can be structured into three phases: (1) problem structuring; (2) evaluation of options;
and (3) reviewing the decision structure [29,72]. We first describe the standard notation
of PROMETHEE. After that, we describe the extension to the MP case with scenarios
(MP-PROMETHEE-S), based on [56].

3.1. Description of PROMETHEE

The preference ranking organization method for enrichment evaluations (PROMETHEE)
is an outranking method that was largely developed by J.-P. Brans and is described in [25,73].
The pairwise comparison between a finite set of alternatives aj ∈ A = {a1, a2, . . . , am} is
conducted based on the performance scores ci

(
aj
)

:= xij for multiple criteria ci ∈ C =
{c1, c2, . . . , cn}. In the first step, differences di

(
aj, ak

)
= xij − xik between the performance

scores of each criterion are calculated. Regarding these differences, decision makers can
express their intra-criteria preferences through six different generic preference functions Pi.
In these preference functions, preference parameters can be set:

• The indifference threshold qi defines the largest di
(
aj, ak

)
that is considered negligible

for the decision maker.
• The preference threshold pi defines the minimal di

(
aj, ak

)
that is required for a strict

preference on a criterion.
• The reversal point σi represents the inflection point of the preference function (Type

VI) and is derived from the normal distribution.

Based on the preference functions, outranking relations between two alternatives on
each criterion are defined as πi

(
aj, ak

)
= Pi

[
di
(
aj, ak

)]
. Decision makers can express

their inter-criteria preferences with criteria weights wi ∈ W = {w1, w2, . . . , wn}, with
∑n

i=1 wi = 1, which represents the relative importance of criteria in relation to others. By
using these weights to aggregate the outranking relations, a preference matrix is calculated:

π
(
aj, ak

)
=

n

∑
i=1

wi · πi
(
aj, ak

)
(1)

The preference matrix has the following properties:
0 ≤ π

(
aj, ak

)
≤ 1 ∀ j, k ∈ {1, . . . , n}

0 ≤ π
(
aj, ak

)
+ π

(
ak, aj

)
≤ 1 ∀ j, k ∈ {1, . . . , n}

π
(
aj, aj

)
= 0 ∀ j ∈ {1, . . . , n}

(2)

Finally, aggregated preference indices are calculated. Each alternative aj is facing
(m− 1) other alternatives in A. Based on this, two outranking flows are defined. They rep-
resent the degrees to which aj is preferred over all other alternatives a ∈ A\aj Equation (3),
and all other alternatives a ∈ A\aj are preferred over aj Equation (4).

Positive outranking flow : φ+
(
aj
)
=

1
m− 1 ∑

a∈A
π
(
aj, a

)
(3)

Negative outranking flow : φ−
(
aj
)
=

1
m− 1 ∑

a∈A
π
(
a, aj

)
(4)

PROMETHEE I provides a partial ranking of alternatives, which is obtained from
the positive and negative outranking flows. By aggregating these to the net outranking
flow with φ−net(aj

)
= φ+

(
aj
)
− φ−

(
aj
)

in PROMETHEE II, a total ranking of alternatives
is possible.
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3.2. Extension of PROMETHEE to the MP Case with Scenarios (MP-PROMETHEE-S)

For the MP extension of PROMETHEE under different scenarios (MP-PROMETHEE-
S), a set of periods t ∈ {1, . . . , T}, in which the alternatives are quantitatively modeled and
evaluated, and a set of scenarios s ∈ {1, . . . , S} are introduced. Accordingly, there is a set
of alternatives aj,t ∈ At, with j the number of alternatives in a period t. Alternative a1,0
represents the status quo, which does not need to be evaluated. The number of alternatives
can vary across periods, i.e., the number of alternatives in the first period could be smaller
than the number of alternatives in the second period. We assume that in practice, the
set of evaluation criteria ci remains constant across periods. However, criteria weights
wi,t,s ∈Wt,s may vary across periods t and scenarios s ([37,74–76] agree that criteria weights
should also depend on scenarios), which implies that a criterion could be neglected in
a period or scenario by setting its weight wi,t,s = 0. We assume that the assignment
of preference functions to criteria remains constant across periods and scenarios. The
performance of alternatives in different periods and scenarios regarding the criteria is
denoted with performance scores xij,t,s. Across multiple periods, alternatives are combined
into transition paths Ψ =

(
aj,1, aj,2, . . . , aj,T

)
, encompassing sequences of alternatives over

all periods t. Having introduced the extended notation, we now describe the process of
MP-PROMETHEE-S, which is structured into three steps. The first step corresponds to the
problem-structuring phase of a generic MADM process, while the second and third steps
correspond to the evaluation of options phase.

Step 1: MP problem formulation with scenarios
The decision problem is formulated and structured with multiple periods. In contrast

to an SP evaluation, different alternatives aj,t are defined for each period t. After that,
possible paths Ψ are defined, according to an analysis of path dependencies (for example,
from energy systems planning, see, e.g., [77,78]). In addition to alternatives and paths,
scenarios are defined, with corresponding quantitative assumptions for each period t. A
suitable approach for the definition of scenarios that also fits to MADM approaches in the
context of energy systems planning is described in [10]. Finally, performance scores xij,t,s
can be calculated with the help of one or multiple system model(s), so that decision tables
can be compiled for each scenario s.

Step 2: SP evaluations of alternatives in each period and scenario
The alternatives are evaluated separately for each period with PROMETHEE II, result-

ing in φnet(aj,t,s
)

for each period t and scenario s. In this step, criteria weights can be elicited
according to stakeholders’ preferences, or set equal and analyzed with a sensitivity analysis
afterwards. The preference thresholds are dependent on the analyzed alternatives. In SP
evaluations, following [70], preference thresholds pi and indifference thresholds qi for each
scenario s can be estimated as percentages of max

(
xij,t,s

)
−min

(
xij,t,s

)
for each criterion i,

in each period t. For example, the indifference thresholds qi can be estimated as 5–15% and
the preference thresholds pi as 10–30% of this difference. In MP evaluations, to account for
possible outliers or large deviations of the performance scores in-between different periods,
thresholds can be calculated as max

[
max

(
xij,t,s

)
−min

(
xij,t,s

)]
. Preference thresholds are

not aggregated over scenarios.
Step 3: MP aggregation of evaluations, sensitivity analysis, and evaluation of scenarios
The φnet of all alternatives a ∈ Ψ for a given path Ψ are aggregated. In [56], four

different variants for MP aggregation are proposed. Of those four variants, we select two
because of their ease of use. Note that both variants lead to normalized path evaluations
φnet(Ψ) ∈ [−1, 1], which can be interpreted in the same way as the net flows related to
alternatives φnet(aj,t,s

)
: higher φnet(Ψ) represent better evaluations for path Ψ.

Variant 1 is the arithmetic mean, which implies that all alternatives included in a
transition path Ψ contribute equally to its evaluation.

φnet
average(Ψ) =

1
T
· ∑

a∈Ψ
φnet(a) (5)
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Variant 2 is the average of discounted φnet flows, where r is a discount factor. This
may be used in decision problems with long planning horizons.

φnet
averageDis(Ψ, r) =

1
T
· ∑

a∈Ψ

φnet(a)
(1 + r)t (6)

In finance, the net present value incorporates the time value of money, which basically
states that present cash flows are preferred to future cash flows. The method has also
been applied to non-financial values [79–81]. We assume a similar reasoning regarding
PROMETHEE net flows: Assuming a fixed planning horizon, positive evaluations (i.e.,
higher φnet values) occurring in earlier periods will prevail for a longer time. Additionally,
this considers that performance scores calculated for alternatives of later periods—and
their evaluations—are more uncertain than those of earlier periods. An open question,
however, is what discount factors are suitable. In [82], it is argued that the lowest possible,
nonnegative interest rates should be chosen for the evaluation of inter-generational deci-
sions with long-term consequences. However, for exceedingly small discount rates, both
variants basically lead to the same path evaluations:

lim
r→0

(
1
T
· ∑

a∈Ψ

φnet(a)
(1 + r)t

)
=

1
T
· ∑

a∈Ψ
φnet(a) (7)

A sensitivity analysis can be applied to gain further insights into the decision problem.
Regarding SP evaluations (Step 2), criteria weights and indifference/preference thresholds
can be varied. Regarding MP aggregation with variant 2, r can be varied to analyze the im-
pact of different degrees of uncertainty and confidence associated with future evaluations.

One issue in integrating the use of scenarios with MADM approaches is how (or even
whether) to compare and aggregate results from different scenarios [33,34,83]. For exam-
ple, [42,76] argue that aggregation should not use scenario probabilities (because the set of
scenarios does not constitute a complete probability space), nor likelihoods (because sce-
narios are incomplete descriptions, and they cannot in general be expected to represent the
same dimensions in probability space), contrary to some MP MADM approaches described
in Section 2. We therefore choose to assess the stability of evaluations across scenarios by
directly presenting information about the range of performances across scenarios.

4. Case Study: Planning the Local Energy Transition in Jühnde

In this case study, we revisit the case of planning the transition of the power genera-
tion system in Jühnde, Germany, over multiple periods, as described in [56] (for further
information on the bioenergy town Jühnde, see [68,84,85]). In addition to the MP multi-
criteria evaluation described in the original case, we also develop a set of scenarios for
modelling varying assumptions for external conditions, and apply MP-PROMETHEE-S
to this decision problem. The objective of the case study is to investigate the value added
through the investigation of several scenarios.

Step 1: MP problem formulation with scenarios
Analogous to the original case study, the decision problem is to identify a sustain-

able investment portfolio specified by capacity expansions of different renewable energy
technologies (drawing on biogas, wind, and solar energy) in the bioenergy town Jühnde
in the periods 2005, 2010, 2015, and 2020. Power that cannot be provided in the town but
is needed to satisfy the demand is provided externally (in each year, the power supply
totals 8021 MWh, corresponding to the demand before the renewable capacity expansion).
The stakeholders of the decision problem are the inhabitants of the town. However, to
simplify the decision-making process and because we focus on the consideration of multi-
ple periods and uncertainties, generic [18,47,64,86] or PROMETHEE-specific [87,88] group
decision-making frameworks are not employed. We also adopt the same transition paths
Ψ, which are described in detail in Table 2.
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Table 2. Power supply of renewable energy technologies in different expansion paths in MWh.
Added capacity is depicted in italics.

Power Supply 2005 2010 2015 2020

Ψ1

Biogas power plant 4816.68
(+4816.68)

6811.31
(+1994.63) 6811.31 6811.31

PV systems 95.83
(+95.83)

388.70
(+292.87)

706.31
(+317.61) 706.31

Wind power plant - - - -

Ψ2

Biogas power plant 4816.68
(+4816.68) 4816.68 4816.68 4816.68

PV systems - - 2700.94
(+2700.94) 2700.94

Wind power plant - - - -

Ψ3

Biogas power plant 4816.68
(+4816.68) 4816.68 4816.68 4816.68

PV systems - - - -

Wind power plant - - 2700.94
(+2700.94) 2700.94

Ψ4

Biogas power plant - - - -

PV systems 95.83
(+95.83) 95.83 1541.66

(+1445.83)
2700.94

(+1159.28)

Wind power plant 4816.68
(+4816.68) 4816.68 4816.68 4816.68

Ψ1 Baseline represents the real-world development of renewable energy expansion in
Jühnde, with two investments in a biogas power plant and PV systems. Ψ2 Biomass and
Photovoltaic represents the original investment in a bioenergy power plant in 2005 and
further extension with rooftop PV systems in 2015. Ψ3 Biomass and Wind also represents
the original investment in a bioenergy power plant, but is complemented with wind energy
in 2015. In Ψ4 Wind and PV, the bioenergy plant is substituted by wind energy plants and
complemented with rooftop PV systems in 2015 and 2020.

To facilitate comparability between the original approach described in [56] and our
advanced MP MADM approach, the transition paths are evaluated regarding four criteria:
levelized costs of electricity (LCOE), land use, CO2 emissions, and the degree of self-
sufficiency of the town. For calculating the transition paths’ performance scores in terms of
these criteria, the same assumptions and energy system model were used as in the original
case study described in [56]. In particular, we used [89–92] to quantify the levelized costs
of electricity, [93] to quantify the land use, [94] to quantify CO2 emissions, and [95,96] to
quantify the self-sufficiency of the town.

For modelling external uncertainties, we developed a set of scenarios for the power
system of Jühnde, which was methodologically aided by a cross-impact balance (CIB)
analysis and supported by its corresponding software tool [97–99]. Three descriptors with
major influence on the development of Jühnde’s power system were identified:

1. Technical progress (power supply): This key factor represents the technical progress
in terms of efficiency gains of already readily available power generation technologies.

2. Governmental support: This represents the governmental support of power genera-
tion technologies, e.g., in terms of subsidies or R&D, as well as fostering awareness
for energy efficiency in the public.

3. Public contribution: This represents the behavior of the public in terms of acceptance
of energy-efficient electrical appliances.
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For each key factor, three variants (historic, increased, and decreased) were developed,
resulting in a total of nine variants. In the cross-impact matrix depicted in Table 3, the
authors evaluated the pair-wise consistency of projections on a seven-point scale (−3:
strongly restricting influence, . . . , +3: strongly promoting influence). A subsequent cluster
analysis of this matrix yielded four consistent scenarios (S1, S2, S3, S4). For investigating
potential effects of the current COVID-19 pandemic [100,101], we also included S5 with
20% lower energy demand in 2020. In Table 4, the qualitative scenarios are shown.

Table 3. Cross-impact matrix for the case study. A: technical progress; B: political support; C: public
contribution; hist: historical development; +: increased; −: decreased.

A1: Hist A2: + A3: − B1: Hist B2: + B3: − C1: Hist C2: + C3: −
A1: hist 2 1 1 2 1 1

A2: + −1 1 −1 1 1 1

A3: − 1 0 1 1 1 1

B1: hist 3 2 −2 3 1 1

B2: + −1 3 −3 −1 3 −2

B3: − 1 −1 3 −1 −2 3

C1: hist 0 0 0 1 0 0

C2: + 0 0 0 0 −1 0

C3: − 0 0 0 0 0 −1

Table 4. Qualitative scenarios regarding the power generation system in Jühnde.

Key Factor

Scenario S1:
Reference

S2: Best
Case

S3: Worst
Case

S4: Efficient
Power

Generation

S5: Lower
Energy

Demand
A: Technical progress Historic Increased Decreased Increased Historic

B: Political support Historic Increased Decreased Historic Historic

C: Public contribution Historic Increased Decreased Historic Increased

To transform the qualitative scenarios into quantitative assumptions for the energy
system model [3,102], we adopt the same assumptions used by [56] for S1 and alter the
assumptions for S2–S5. The scenarios’ assumptions are described in Table 5. Note that
potential rebound effects due to the availability of more efficient electrical appliances [103]
are neglected in quantifying the energy demand over time. With the help of the energy
system model, performance scores xij,t,s are computed and compiled in a decision table,
which is depicted in Table 6. In scenarios with decreasing energy demand, negative CO2
emissions occur, because the power production exceeds the demand in Jühnde and power
is fed into the grid. Up to t = 2010, Ψ2 and Ψ3 have the same performance scores for all
criteria in all scenarios, because the renewable capacity expansion in these paths is the
same up to this point.
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Table 5. Quantitative scenario assumptions.

Emission
Factor in

CO2·(kWh)−1

Agricultural Land Use in
Jühnde in m2·(MWh)−1y−1 Levelized Cost of Electricity in €·(kWh)−1

Electricity
Demand in
MWh·y−1

Scenarios Power from
grid Bioenergy

Ground-
mounted

PV
Wind

energy
Power

from grid Bioenergy
Rooftop/ground-

mounted
PV

Wind
energy -

S1: Reference
Scenario

2005 586 980 30 60 0.11 0.10 0.54 0.09 8021

2010 567 980 30 60 0.14 0.11 0.35 0.08 8021

2015 511 980 30 60 0.13 0.11 0.21 0.08 8021

2020 471 980 30 60 0.14 0.10 0.14 0.07 8021

S2: Best case

2005 527.76 882.00 27.00 54.00 0.10 0.09 0.48 0.08 7860.58

2010 474.98 793.80 24.30 48.60 0.09 0.08 0.32 0.07 7703.37

2015 427.49 741.42 21.87 43.74 0.08 0.07 0.19 0.06 7549.30

2020 384.74 642.98 19.68 39.37 0.07 0.07 0.12 0.06 7398.32

S3: Worst
case

2005 645.04 1078.00 33.00 66.00 0.12 0.11 0.59 0.10 8181.42

2010 709.54 1185.80 36.30 72.60 0.14 0.12 0.39 0.11 8345.05

2015 780.50 1304.38 39.93 79.86 0.15 0.13 0.23 0.12 8511.95

2020 858.55 1434.82 43.92 87.85 0.17 0.15 0.15 0.13 8682.19

S4: Efficient
power

generation

2005 547.67 960.4 29.4 58.8 0.11 0.10 0.54 0.09 8021

2010 555.46 941.19 28.81 57.62 0.14 0.11 0.35 0.08 8021

2015 500.49 922.37 28.24 56.47 0.13 0.11 0.21 0.08 8021

2020 462.01 903.92 27.67 55.34 0.14 0.10 0.14 0.07 8021

S5: Low
energy

demand in
2020

2005 586 980 30 60 0.11 0.10 0.54 0.09 8021

2010 567 980 30 60 0.14 0.11 0.35 0.08 8021

2015 511 980 30 60 0.13 0.11 0.21 0.08 8021

2020 471 980 30 60 0.14 0.10 0.14 0.07 6416.8

Table 6. Decision table. LCOE in cent/kWh; land use in ha/a; CO2: CO2 emissions in t/a; SS: self-sufficiency in %.

Year

Ψ1 Ψ2 Ψ3 Ψ4

LCOE Land
Use CO2 SS LCOE Land

Use CO2 SS LCOE Land
Use CO2 SS LCOE Land

Use CO2 SS

S1

2005 11.01 472.03 1823 61.25 10.51 472.03 1879 60.05 10.51 472.03 1879 60.05 10.29 28.90 1823 47.63

2010 12.01 667.57 465 89.77 11.61 472.03 1816 60.05 11.61 472.03 1816 60.05 11.36 28.90 1762 47.63

2015 12.24 667.57 257 93.38 13.97 472.03 257 83.95 9.42 488.24 257 87.83 12.47 28.90 849 60.75

2020 12.28 667.57 237 93.38 14.01 472.03 237 83.95 9.47 488.24 237 87.83 12.59 28.90 237 65.41

S2

2005 9.91 424.83 1556 62.50 9.44 424.83 1606 61.28 9.44 424.83 1606 61.28 9.24 26.01 1556 48.20

2010 10.13 583.22 239 93.47 9.05 424.83 1371 62.53 9.05 424.83 1,371 62.53 8.86 26.01 1326 48.77

2015 10.57 583.22 14 95.06 12.60 424.83 14 86.08 8.07 436.64 14 90.18 10.61 26.01 509 62.62

2020 10.63 583.22 −46 95.54 12.71 424.83 −46 86.78 8.08 436.64 −46 90.92 11.32 26.01 −46 67.60

S3

2005 12.12 519.24 2109 60.04 11.58 519.24 2170 58.87 11.58 519.24 2170 58.87 11.34 31.79 2109 47.07

2010 13.16 755.84 812 86.27 12.12 519.24 2504 57.72 12.12 519.24 2504 57.72 11.87 31.79 2436 46.51

2015 13.69 755.84 776 88.31 15.38 519.24 776 81.80 11.69 540.81 776 85.32 13.90 31.79 1681 58.87

2020 13.91 755.84 1000 86.58 15.57 519.24 1000 81.07 11.96 540.81 1000 84.45 14.13 31.79 1000 63.18

S4

2005 11.01 462.59 1786 61.25 10.51 462.59 1841 60.05 10.51 462.59 1841 60.05 10.29 28.32 1786 47.63

2010 12.01 650.39 456 89.77 11.61 462.59 1780 60.05 11.61 462.59 1780 60.05 11.36 28.32 1727 47.63

2015 12.24 650.39 252 93.38 13.97 462.59 252 83.95 9.42 477.85 252 87.83 12.47 28.32 832 60.75

2020 12.28 650.39 233 93.38 14.01 462.59 233 83.95 9.47 477.85 233 87.83 12.59 28.32 233 65.41

S5

2005 11.01 472.03 1823 61.25 10.51 472.03 1879 60.05 10.51 472.03 1879 60.05 10.29 28.90 1823 47.63

2010 12.01 667.57 465 89.77 11.61 472.03 1816 60.05 11.61 472.03 1816 60.05 11.36 28.90 1762 47.63

2015 12.24 667.57 257 93.38 13.97 472.03 257 83.95 9.42 488.24 257 87.83 12.47 28.90 849 60.75

2020 11.89 667.57 −519 97.96 14.06 472.03 −519 91.46 8.38 488.24 −519 95.25 12.28 28.90 −519 71.21
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Step 2: SP evaluations of alternatives in each period and scenario
For the SP evaluation of alternatives with PROMETHEE II, we selected the V-shape

criterion (preference function type III) [25]. We estimated preference thresholds pi,s for
each criterion i and scenario s as max

[
0.2 ·max

(
xij,t,s

)
−min

(
xij,t,s

)]
. Table 7 summarizes

inter- and intra-criteria preferences. Due the re-visiting the case, and to reduce complexity,
we assume that criteria weights remain constant across all periods and scenarios. Later, the
effects of changes in criteria weights are analyzed in a sensitivity analysis.

Table 7. Overview on criteria and PROMETHEE thresholds.

Criterion Unit Type Weight pi,1 pi,2 pi,3 pi,4 pi,5

LCOE cent/kWh Min 0.25 0.91 2.19 4.02 0.91 1.14

Land use ha/a Min 0.25 127.73 111.44 144.81 124.41 127.73

CO2 emissions t/a Min 0.25 270.20 226.40 338.20 264.80 270.20

Self-sufficiency % Max 0.25 8.43 8.94 7.95 8.43 8.43

Table 8 shows the results of the SP evaluations for all scenarios with PROMETHEE
II. Additionally, the ranks of alternatives according to φnet are provided from 1 to 4. If
multiple alternatives have the same φnet, their ranks are determined with the arithmetic
mean. It can be observed that, in general, the alternatives’ φnet and ranks vary depending
on the periods and scenarios. For example, in the periods t = 2010 and t = 2015, the
alternatives’ ranks vary, depending on the scenario. However, in t = 2005 and t = 2020,
all the alternatives’ ranks remain the same, regardless of scenario. Up to t = 2010, Ψ2 and
Ψ3 have the same evaluations and ranks (because of their similar capacity expansions and
performance scores, as described above).

Table 8. Evaluation of alternatives in periods and scenarios.

t = 2005 t = 2010 t = 2015 t = 2020

φnet(aj,2005,s) Rank (aj,2010,s) Rank (aj,2015,s) Rank (aj,2020,s) Rank

S1

Ψ1 −0.099 4 0.117 1 0.076 2 0.000 2

Ψ2 −0.021 2.5 −0.086 3.5 −0.194 3 −0.278 4

Ψ3 −0.021 2.5 −0.086 3.5 0.390 1 0.306 1

Ψ4 0.141 1 0.055 2 −0.271 4 −0.028 3

S2

Ψ1 −0.085 4 0.000 2 0.049 2 0.020 2

Ψ2 −0.024 2.5 −0.034 3.5 −0.196 3 −0.278 4

Ψ3 −0.024 2.5 −0.034 3.5 0.401 1 0.320 1

Ψ4 0.133 1 0.067 1 −0.254 4 −0.062 3

S3

Ψ1 −0.151 4 0.000 2 0.040 2 −0.062 3

Ψ2 −0.008 2.5 −0.045 3.5 −0.176 3 −0.247 4

Ψ3 −0.008 2.5 −0.045 3.5 0.410 1 0.334 1

Ψ4 0.168 1 0.090 1 −0.274 4 −0.025 2

S4

Ψ1 −0.099 4 0.117 1 0.076 2 0.000 2

Ψ2 −0.021 2.5 −0.086 3.5 −0.195 3 −0.278 4

Ψ3 −0.021 2.5 −0.086 3.5 0.390 1 0.307 1

Ψ4 0.141 1 0.055 2 −0.271 4 −0.028 3

S5

Ψ1 −0.068 4 0.144 1 0.072 2 −0.047 3

Ψ2 −0.026 2.5 −0.089 3.5 −0.194 3 −0.258 4

Ψ3 −0.026 2.5 −0.089 3.5 0.390 1 0.333 1

Ψ4 0.120 1 0.034 2 −0.267 4 −0.029 2
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Step 3: MP aggregation of evaluations, sensitivity analysis, and evaluation of scenarios
Figure 1 shows the MP evaluations φnet(Ψ) in variants 1 and 2 (r = 1%, 5%, and 10%)

across all scenarios in a box plot. The ranges depicted by the boxes correspond to the ranges
of the paths’ evaluations across different scenarios. Regardless of the chosen scenario, MP
aggregation variant, and discount factor, Ψ3 comes off best and Ψ2 comes off worst. Higher
discount factors improve the evaluation of Ψ4 compared to Ψ1. In a sensitivity analysis of
the discount factor r, we investigated its effect on rank reversals within r = [0%; 10%]: In
S1 and S4, Ψ4 overtakes Ψ1 at r = 3% ; in S2, their ranks switch at r = 6.6%; in S3, and S5,
there is no rank reversal.
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Figure 1. Results of the MP aggregation φnet(Ψ), with variants 1 and 2 (r = 1%, 5%, and 10%).

In further sensitivity analysis, we investigated the effects of criteria weights on the
optimality of paths, based on a MP aggregation with variant 1. To that end, the criteria
weight of any single criterion is varied relative to all other criteria weights, i.e., if any weight
wi is increased (or decreased), the weights of all other criteria w ∈ W\wi are decreased
(or increased) accordingly. To avoid setting weights arbitrarily, criteria weights are varied
between 0% and 40%, potentially neglecting a criterion or doubling the weight of any other
single criterion. Table 9 shows the optimal paths, if the weight of any criterion is increased
or decreased from 25%, with the corresponding thresholds for the rank reversals. Except
for Ψ2, all paths are potentially optimal for some set of weights. In the given boundaries,
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varying the weight of CO2 emissions does not have an impact on the ranks of the paths.
The smallest deviation from equal weights (25%), which would be necessary for a rank
reversal, is a 10.16% increase in the criteria weight of land use in S1. For the given decision
problem, the scenarios broaden the range in which rank reversals occur, but the next-best
path is always the same, regardless of scenario (provided that the optimal path does change
at all). For example, if the weight of LCOE is decreased, Ψ1 becomes the optimal path in
each scenario.

Table 9. Sensitivity analysis: optimal paths with weight thresholds (in %), based on the MP aggrega-
tion with variant 1.

S1 S2 S3 S4 S5

wi↑ wi↓ wi↑ wi↓ wi↑ wi↓ wi↑ wi↓ wi↑ wi↓

LCOE Ψ3
-

Ψ1
10.85

Ψ3
-

Ψ1
8.02

Ψ3
-

Ψ1
4.25

Ψ3
-

Ψ1
10.84

Ψ3
-

Ψ1
8.91

Land use Ψ4
35.16

Ψ1
9.66

Ψ4
36.27

Ψ1
2.36

Ψ4
35.63

Ψ3
-

Ψ4
35.18

Ψ1
9.66

Ψ4
35.89

Ψ1
9.18

CO2 emissions Ψ3
-

Ψ3
-

Ψ3
-

Ψ3
-

Ψ3
-

Ψ3
-

Ψ3
-

Ψ3
-

Ψ3
-

Ψ3
-

Self-sufficiency Ψ1
37.92

Ψ4
12.42

Ψ3
-

Ψ4
10.86

Ψ3
-

Ψ4
12.22

Ψ1
37.93

Ψ4
12.41

Ψ1
39.7

Ψ4
11.54

5. Discussion and Future Research Opportunities

The proposed MP MADM approach for decision making under uncertainty can be
transferred to other single-synthesizing MADM approaches, such as MAUT. The provided
descriptions of Steps 2 and 3 are, however, based on the PROMETHEE-specific preference
functions. One open question is whether preference thresholds should be aggregated
across scenarios. In a real-world setting, thresholds are usually elicited from decision
makers. If preference thresholds are to be elicited for each scenario, this can increase the
complexity perceived by decision makers, reduce traceability of the evaluation, and thus
impede the application of the proposed method in practice [104], depending on the number
of scenarios, the number of criteria and the selection of preference functions (requiring
up to two preference parameters) for a specific decision problem. One solution would
be to calculate the preference thresholds from the decision table as a baseline and ask
decision makers if they are comfortable with these settings. Likewise, dynamic preference
thresholds, as proposed by [54], can be used.

We have adopted two MP aggregation variants proposed by [56]. Variant 2 is based
on a discount factor. In [35], it is argued that uncertainty regarding future developments
and their evaluations cannot be resolved by more sophisticated modeling per se, so that
the valuation of advantages and disadvantages over time, even with a widely used method
such as discounting, is problematic, because the choice of the discount factor r cannot be
validated [81]. In the sensitivity analysis regarding the discount factor r in the case study,
we found that the choice of r did not have an impact on the rankings. However, depending
on the distribution of net flows over time in a specific decision problem, rank reversals
are possible [56]. Therefore, critical steps for the adequate consideration of uncertainties
in our approach are: (1) defining the quantitative energy system model assumptions for
different scenarios; (2) setting the parameters for multi-period aggregation methods; and
(3) interpreting the results of the multi-period aggregation. More empirical research is
needed to evaluate different MP aggregation variants based on confidence levels, discount
factors, or other assumptions in terms of feasibility and value added for decision makers.

Related to the discussion of different single-period MADM approaches regarding
their compensation of preference scores, any variant for the MP aggregation can also be
compensatory, non-compensatory, or partially compensatory [67]. For example, the MP
aggregation could also be realized with a MADM approach, as suggested by [51]. The
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choice should be dependent on the requirements of a specific decision problem regarding
temporal compensation in path evaluations.

The proposed method allows external uncertainties in a deep uncertainty context
to be considered, by enriching the problem-structuring and evaluation phases with a
scenario planning technique. In this regard, MP-PROMETHEE-S can be clearly delineated
from other proposed MP MADM methods under uncertainty, which either do not address
uncertainties explicitly, consider them with scenario probabilities, or use Monte Carlo
sampling. By specifying ranges for the path evaluations, MP-PROMETHEE-S allows the
stability of evaluations of alternatives to be investigated, and thus evaluating the robustness
of the ranking without requiring the specification of scenario probabilities.

It has been shown that more extensive problem structuring can lead to better un-
derstanding of decision problems, and supposedly, better decisions, in addition to the
quantitative decision support provided by MADM methods [10,104,105]. In the proposed
MP problem-structuring phase of MP-PROMETHEE-S, path dependencies of alternatives
can be considered explicitly. It could be evaluated whether alternatives and path depen-
dencies should be defined in accordance with the external scenarios, so that different
transition paths are modeled in different scenarios, as proposed by [106]. Similarly, criteria
weights could be defined depending on scenarios [74,76]. In this case, [83] has shown that
presenting scenarios to decision makers can make the elicitation process of criteria weights
more efficient. However, the increased efforts required for developing scenarios and the
sensitivity analysis of a higher number of criteria weights may also deter decision makers
and analysts from applying the method in practice [107].

Regarding limitations of the proposed method, the following restrictions can be men-
tioned: Decision support based on scenarios can be misleading because the possible future
state-space cannot fully be explored, due to computational and epistemic limitations. Sec-
ondly, integrating social and political factors in energy scenarios is a challenge that is yet to
be fully tackled [32,108]. The energy markets in particular have been influenced by many
crises and tipping point situations such as the oil price shocks in the 1970s or political
influences steering towards renewable energies in the 2000s. Therefore, these developments
may be not covered adequately in an analysis, which is not a weakness of the method pro-
posed, but a risk of the specific scenario description and design. Promising approaches for
identifying relevant social and political developments are integrated approaches for energy
scenario development and evaluation [2], socio-technical energy transition models [109],
and the story-and-simulation approach [110].

Regarding the case of the bioenergy town Jühnde, the investigation into different
scenarios can enrich the understanding, with an evaluation of the robustness of the rank-
ing. Compared to the reference scenario described by [56], the alternatives’ performance
scores and ranks change under different scenario assumptions. However, in this case,
the evaluation results are rather robust. For example, the best and worst transition paths’
ranks as well as the next-best paths’ ranks in the sensitivity analysis of criteria weights
remain unchanged, regardless of scenario. The extensive modeling allows more facets of
the problem to be captured, thus providing more extensive decision support.

In general, the integration of different decision support methodologies tends to in-
crease the complexity and efforts for analysts. To adequately model decision problems
under uncertainty, the analyst needs increased method knowledge for specialized problem-
structuring methods under uncertainty [104]. In our case study with the limited local
context of a town, the scenario analysis is simplified. Scenario analyses regarding the
energy transition of whole states or communities of states are usually far more complex,
including significantly more criteria [6] and technical options. Based on this single case
study, it is challenging to evaluate the potential value added and increased effort of a more
extensive decision support process—including scenario planning, energy system analysis,
and MP MADM—without substantiating the evaluation with more empirical evidence. In
general, applications of MP MADM approaches are limited so far.
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Future research extensions might include, for example, the connection to fuzzy set
approaches, as is outlined in [39]. This could further enhance the method basis.

6. Conclusions

This paper presents an extension of an MP MADM method for evaluating transition
paths under deep uncertainty (MP-PROMETHEE-S) and presents results for the case study
of an energy transition in the German bioenergy town Jühnde. The application of the
developed method in the case study exemplifies that it can help decision makers gain a
better understanding of a decision problem by means of improved problem structuring
and a more comprehensive evaluation regarding the robustness of the decision support
provided. Due to the increased complexity and efforts in the decision support process,
it should be carefully evaluated for any decision problem whether the potential benefits
for decision makers can offset the increased effort of the decision support process. In
the case study, the application of the new method leads to a robust evaluation of the
best and worst transition paths, thus helping to reach energy policy goals with a more
sustainable energy system. The specific contribution of this paper in outlining an external
scenario extension for MP MADM approaches can be transferred to other contexts such as
health care, tourism or education services, because flexible reaction of service design and
management towards external changes and influences is likewise required in these contexts.
Within the health care sector, for example, digitalization trends are leading to specific deep
uncertainty settings, as outlined in [111], and scenario planning is already used today
to deal with this. In addition, global disruptions such as COVID-19 lead to additional
frictions and uncertainties [112]. Similar global events are expected to be relevant for the
health care sector in the future too, even after COVID-19 [113]. Therefore, solving decision
problems in complex service sectors such as health care is a possible application of the
presented method innovation for deep uncertainty. In future research, other suitable MP
MADM approaches, e.g., [49–52], could be extended to a setting with deep uncertainty, so
that different MP MADM approaches can be compared, not only qualitatively, but also
quantitatively, based on a common multi-period decision problem. Further research is
required on the theory of multi-period decision problems with uncertainty, so that new
approaches could be compared to existing ones, based on a common theory framework. For
example, it would be interesting to compare MP MADM approaches that aggregate data
from different periods before applying a MADM algorithm, e.g., [60,61], with approaches
that aggregate data from different periods within the MADM algorithm, e.g., as is proposed
in this paper. Another research avenue is to integrate a group decision framework in the
new MP MADM approach, because for important strategic decisions, both the problem
structuring (including, e.g., the modelling of future energy systems and the construction of
relevant scenarios) and the evaluation of options are usually carried out in group settings.
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