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Abstract. — This note provides a variational description of the mechanical e¤ects of flexural

sti¤ening of a 2D plate glued to an elastic-brittle or an elastic-plastic reinforcement. The reinforce-
ment is assumed to be linear elastic outside possible free plastic yield lines or free crack. Explicit
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1. Introduction

The main purpose of the present paper relies in studying the mechanisms ruling
stress transfer between material structures described by strongly di¤erent consti-
tutive properties.

We study some mechanical problems related to the behavior of two thin inter-
acting flexural structures through variational techniques. The di¤erent consti-
tutive nature of the structures makes the problem nontrivial: while one structure
remains indefinitely in the elastic range, the other one can develop singularities
like plastic yelding or craks. We refer to the first one as plate, whose displacement
field will be denoted by vp, we refer to the second one as reinforcement, whose
displacement field will be denoted by vr, and we consider several functionals of
the kind

LðK ; vr; vpÞ ¼ H1ðKBWÞ þ s

Z
K

j½Dvr�j dH1 þ
Z
WnK

ðhjD2vrj2 � frvrÞ dxð1:1Þ

þ m

Z
W

jvr � vpj2 dxþ
Z
W

ðgjD2vpj2 � fpvpÞ dx

dependent on competing triplets ðK ; vr; vpÞ. Here W � R2 is given together with
the loads fr, fp, the nonnegative constitutive parameters s, h, m, g and a suit-
able Dirichlet boundary condition, shared by both displacements vr and vp. H
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denotes the 1-dimensional Hausdor¤ measure. Concerning competing triplets
ðK ; vr; vpÞ, the set K is closed, the function vr is smooth outside K while vp is
smooth on W. Structural reinforcements are extensively employed in manu-
factured engineering systems, ranging from the traditional field of composite
structures to the more recent applications in microelectronic devices and nano-
reinforced composites ([39]). Indeed, external bonding of plates is a method
of strengthening which involves an additional adhering reinforcement to a struc-
tural element ([37]). The adhesive is needed to transfer the stresses between the
two elements. This technique is aimed to reduce deflection, hence confine crack
and plastic yielding location in order to increase load carrying capacity (see e.g.
[4, 20, 21, 26, 33, 40]), as well as predicting the behavior of paint coating layers
([38, 39]).

In a typical reinforcement system, represented by a brittle structure ([24])
bonded to a more compliant substrate, cracking and debonding instabilities (de-
lamination) of the brittle element may appear under the action of external data
that may be ruled by external loading, temperature change or even residual ther-
mal stresses. The occurrence of plastic yielding, cracking and loss of adhesion (or
delamination) constitute the main failure modes of reinforcements, so a great deal
of work has been done over past decades to apply fracture mechanics in descrip-
tion of behavior and the influence of cracks nucleated on or near an interface be-
tween two dissimilar materials and a number of papers have been published on
the problem (see, for instance, [22, 25, 26]). The crucial questions, when studying
the possible failure of bonded structures, rely in understanding crack or yielding
nucleation and crack propagation in presence of debonding or delamination of
the constituent materials. This issue, precisely the role played by bonding layer
in the formation of singularities, has not been yet investigated in spite of its in-
fluence in the mechanical behavior of such structural systems. Therefore, in our
opinion, an appropriate description of such problems should incorporate all these
strongly nonlinear e¤ects in a mathematical theory which is able to detect quali-
tative and quantitative features of the underlying physics ([31, 32]).

To this aim we propose in the present paper a variational approach in which
debonding and possible singular states arise as minimizers of suitable energy
functionals.

In the previous works [27–30], we have studied the adhesion interaction of
linear and nonlinear elastic structures by focusing on the influence of di¤erent
constitutive choices for the adhesive material, while in [30] we have investigated
the occurrence of global collapse and the interplay of cracking and debonding for
a couple of plane elastic sheets.

Here reinforcements are modelled in the framework of Kirchho¤-Love theory,
while the addition of a fracture energy term according to the Gri‰th theory
allows to capture crack formation. This program is achieved by exploiting the
techniques developed in the study of second order variational problems with free
discontinuity ([7–12, 13, 14, 34, 35]).

Precisely we aim to describe the mechanical e¤ects of bending a 2-dimensional
sti¤ substrate fixed at the boundary, shortly called clamped plate from now on,
which is glued to an elastic-plastic-brittle reinforcement. The reinforcement is as-
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sumed to be linear elastic outside possible free plastic yield lines or free 1D crack.
The adhesive interaction between the structures is modelled through an energetic
contribution whose density is the square of the modulus of di¤erence of the dis-
placement; concerning this assumption we recall that, if one assumes the q-power
of the modulus of di¤erence, with 0 < q < 1, then the only stable configurations
of the system are the completely detached or completely glued ones, even in the
case of a flat plate as it was proved in Section 2.2 of [27].

The phenomenon is modeled as a variational problem which allows free dis-
continuity and free gradient discontinuity for the reinforcement. We assume that
both configurations of the plate and its reinforcement are described as graphs re-
ferred to the coordinates in the horizontal plane, undergo vertical displacements
and are subject to Dirichlet boundary conditions. We describe the details in these
three main cases.

(1) Hard-device reinforcement: The structure consists in the gluing of a plate with
a reinforcement; the plate undergoes a prescribed configuration (described
by a given displacement) and consequently acts on the reinforcement through
the adhesive layer; the reinforcement behaves as a piece-wise Kirchho¤-Love
plate since it can develop lower-dimensional singularities of two kinds, plastic
yielding (free gradient-discontinuity) and/or crack (free discontinuity).

(2) Strengthening reinforcement: The structure consists in the gluing of two ob-
jects, which are still labeled as plate and reinforcement; the plate behaves
like a Kirchho¤-Love plate, whose unstressed flat reference configuration
is horizontal, under the action of a given transverse (vertical) load f , while
the plate displacement acts on the reinforcement through the adhesive layer;
the reinforcement behaves as a piece-wise Kirchho¤-Love plate since it can
develop lower-dimensional singularities of two kinds, plastic yielding and/or
crack. We denote the admissible vertical displacement of the reinforcement
by vr and the admissible vertical displacement of the plate by vp.

(3) Elastic-plastic reinforcement: As in case (2), but without crack and with a
refinement of the yielding energy along the a priori unknown plastic yield
lines.

As far as we know in structural mechanics literature there are few studies ([8]) of
the interplay of plastic-yielding or fracture with bending bulk energy: here we aim
to study this coupling in terms of integral functionals with free discontinuity and
free gradient discontinuity by methods introduced in calculus of variations (see
[2, 15–17, 19]).

In Section 3 we discuss the analogous one-dimensional case, say elastic-brittle
reinforcement of flexural beams (Theorems 3.1, 3.2, 3.3). In Sections 2, 4 and 5 we
examine details of the clamped plate reinforcement (hard-device and strengthen-
ing) showing the existence of energy minimizing solutions (Theorems 2.1, 2.2,
2.3). In the 1D case (beam reinforcement) we provide explicit Euler equations
(Proposition 3.9), transmission conditions at free-discontinuity set and compli-
ance identities fulfilled by minimizers (Proposition 3.10). Lack of convexity in
these functionals may lead to non uniqueness of minimizers ([1, 5, 6]). However
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we show uniqueness and hence smoothness in case of small loads: see Theorem
3.4, Remark 3.5. A more detailed analysis of non uniqueness phenomenon is
postponed in a forthcoming article.

In present paper we omit the consideration of a unilateral constraint forcing
non-interpenetration the plate and its reinforcement: such constraint leads to
technical di‰culties and substantial problems for existence of strong solutions
in the 2D case of the plate, since Euler equations are replaced by variational in-
equalities ([3]); this issue is postponed to a subsequent paper (see Remark 5.2).
Here we only start the analysis of solutions for the 1D cases of the beam rein-
forced by a hard device, obtaining a variational inequality coupled with free dis-
continuity (Propositions 3.7 and 3.12), and of the strengthening reinforced beam,
obtaining quasi-variational inequalities coupled with free discontinuity (Proposi-
tions 3.8 and 3.13).

2. Statement of the problem and main results

Assume

W �� Wp �� R2 are bounded and connected C2 open setsð2:1Þ
w a C2ðWpÞ;ð2:2Þ

where Wp represents the horizontal reference configuration of the plate and W rep-
resents the horizontal reference configuration of the reinforcement and w : Wp 7!
R prescribes the Dirichlet datum of the clamped plate.

In the case of hard-device reinforcement v : Wp 7! R denotes the generic ad-
missible vertical displacement of the reinforcement, while the vertical displace-
ment w of the plate is prescribed: since the reinforcing structure has to accomplish
a prescribed configuration w, this amounts to deal with a pre-strained state of
the material competing with other energetic terms. In the case of strengthening
reinforcement, vr : Wp 7! R denotes the generic admissible vertical displacement
of the reinforcement, while the generic admissible vertical displacement of the
plate is denoted by vp where vp : Wp 7! R, where vp is subject to a Dirichlet-type
boundary condition, prescribed on WpnW. We face the three cases mentioned in
the Introduction, by studying the minimization of suitable energy functionals:

• the energy E associated to a hard-device reinforcement, which is dependent on
pairs ðK ; vÞ where K denotes the damaged region of the reinforcement and v its
transversal displacement;

• the energy F associated to a strengthening reinforcement, which is dependent
on triplets ðK; vr; vpÞ where K still denotes the damaged region of the reinforce-
ment (free discontinuity and free gradient-discontinuity) while vr and vp denote
respectively the transversal displacements of reinforcement and plate;

• the energy G associated to an elastic-plastic reinforcement, which is depen-
dent on triplets ðK ; vr; vpÞ as above, but vr may undergo only free gradient-
discontinuity on K .
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We state some results related to minimization of these energies; their proofs are
postponed in Sections 4 and 5. All functions under exam are real-valued.

Theorem 2.1 (Hard-device reinforcement). Assume (2.1), (2.2) and

h > 0; m > 0; f a L4ðWÞ;ð2:3Þ

then there exists a pair ðZ; uÞ minimizing

EðK ; vÞ ¼ H1ðKBWÞ þ
Z
WnK

ðhjD2vj2 � fvÞ dxþ m

Z
W

jv� wj2 dxð2:4Þ

over essential admissible pairs ðK ; vÞ, say pairs s.t.

K is the smallest closed subset of R2 s:t:

v a C2ðWpnKÞ; vCw a:e: in WpnW:

�
ð2:5Þ

Moreover, ZBWp ¼ ZBW is an ðH1; 1Þ rectifiable set and EðZ; uÞ < þl:

Here and in the sequel we denote by H1 the 1-dimensional Hausdor¤
measure.

If ðZ; uÞ a argminE, say ðZ; uÞ is an optimal pair among the ones fulfilling
(2.5), then Z represents the damaged zone of the reinforcement W, say the 1D
set where either plastic yielding or fracture occur, and u is the related transverse
displacement of the reinforcement.

Theorem 2.2 (Strengthening reinforcement). Assume (2.1), (2.2), (2.3) and

fr a L4ðWÞ; fp a L2ðWÞ; g > 0:ð2:6Þ

Then there exists a triplet ðZ; ur; upÞ :¼ ðZ;UÞ minimizing

F ðK ; vr; vpÞ ¼ F ðK ;VÞ :¼ H1ðKBWÞ þ h

Z
WnK

ðjD2vrj2 � frvrÞ dxð2:7Þ

þ m

Z
W

jvr � vpj2 dxþ
Z
W

ðgjD2vpj2 � fpvpÞ dx

over essential admissible triplets ðK ; vr; vpÞ, say triplets s.t.

vp a H 2ðWpÞ; vpCw a:e: in WpnW;

K is the smallest closed subset of R2 s:t:

vr a C2ðWpnKÞ; vrCw a:e: in WpnW:

8><>:ð2:8Þ

Moreover, ZBWp ¼ ZBW is an ðH1; 1Þ rectifiable set and F ðZ; ur; upÞ < þl:

If ðZ;UÞ ¼ ðZ; ur; upÞ is an optimal triplet among the ones fulfilling (2.8),
say it is an essential admissible pair ðZ;UÞ a argminF , then Z represents the
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damaged zone of the reinforcement W, say the 1D set where either plastic yield-
ing or fracture occur, and ur, up respectively are the related displacement of the
reinforcement and the plate.

Theorem 2.3 (Elastic-plastic reinforcement of flexural plate). Assume (2.1),
(2.2), (2.3), s > 0, fr a LsðWÞ, s > 2, and fp a L2ðWÞ. Then there is a triplet
ðZ; ur; upÞ ¼ ðZ;UÞ minimizing

GðK ; vr; vpÞ ¼ GðK;VÞ :¼ H1ðKBWÞ þ s

Z
KBW

j½Dvr�j dH1ð2:9Þ

þ
Z
WnK

ðhjD2vrj2 � frvrÞ dxþ m

Z
W

jvr � vpj2 dx

þ
Z
W

ðgjD2vpj2 � fpvpÞ dx

over elastic-plastic essential admissible triplets ðK; vr; vpÞ, say triplets s.t.

K is the smallest closed subset of R2 s:t:

vr a C0ðWpÞBC2ðWpnKÞ; vr ¼ vpCw a:e: in WpnW:

�
ð2:10Þ

Moreover, ZBWp ¼ ZBW is an ðH1; 1Þ rectifiable set and GðZ; ur; upÞ < þl:

Theorem 2.3 describes a situation where crack is a priori excluded, while elas-
tic deformation is present together with possible damage due to plastic yielding
on the one-dimensional subset K : the free gradient-discontinuity set.

In the subsequent analysis we shall use the following notation for the various
contribution to the total mechanical energy:

FrðK ; vrÞ :¼ H1ðKBWÞ þ
Z
WnK

ðhjD2vrj2 � frvrÞ dx;ð2:11Þ

Mðvr � vpÞ :¼ m

Z
W

jvr � vpj2 dx;ð2:12Þ

FpðvpÞ :¼
Z
W

ðgjD2vpj2 � fpvpÞ dx:ð2:13Þ

Hence

EðK; vÞ ¼ FrðK ; vÞ þMðv� wÞ; fr ¼ f ; with domain ð2:5Þ;ð2:14Þ
F ðK; vr; vpÞ ¼ FrðK ; vrÞ þMðvr � vpÞ þ FpðvpÞ; with domain ð2:8Þ;ð2:15Þ
GðK ; vr; vpÞ ¼ FðK ; vr; vpÞ þ s

R
KBW

j½Dvr�j dH1; with domain ð2:10Þð2:16Þ

where Fr represents the potential energy of the reinforcement under the Gri‰th
assumption on the fracture energy, M represents the adhesive interaction energy
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(dependent on the slip jvr � vpj between the plate and the reinforcement) and Fp

represents the elastic energy of the Kirchho¤-Love plate under the action of a
transverse dead load f .

Remark 2.4. We emphasize that, when minimizing (2.7), the Dirichlet datum
turns out to be forced on the plate (vp ¼ w on qW) since vp � w a H 2

0 ðWÞ and
H 2ðWpÞ � C0ðWpÞ, while the Dirichlet datum is prescribed by penalization on
the reinforcement (through vr ¼ w a.e. WpnW). Hence the damage of the rein-
forcement may develop also at the boundary: if this is the case then H1ðKB qWÞ
> 0.

In any case: K � W; K is the closure of the set where either vr or ‘vr is not
continuous; w a C2 and vr ¼ w in WpnW.

Remark 2.5. The notions of essential pair or triplet in (2.5), (2.8), (2.10) select
those pairs or triplets which are cleansed of every artifact that does not a¤ect the
functional value and are good representatives in equivalence classes of admissible
displacements. These classes allow highly irregular displacement function v for vr
for the reinforcement: see Remarks 2.3–2.5 and Lemmas 2.6, 2.7 in [17] for com-
parison with Definition 2.1 in [15] of admissible triplets in the context of image
segmentation and/or image inpainting. Minimization among admissible triplets
(as defined in [14]) would be equivalent to minimization among essential admis-
sible triplets.

Remark 2.6. The more general case where jD2vpj2 is replaced by QðD2vpÞ, with
Q positive definite quadratic form, leads to claims similar to the ones we prove
here (in Theorems 2.2 and 2.3) without any change in the proofs.

Remark 2.7. The present paper deals with the Dirichlet boundary condition for
both reinforcement and plate: explicitly the reinforcement acts on the whole plate
Wp and sticks perfectly to it outside W:

Nevertheless, the study of Neumann boundary condition for the reinforce-
ment, still keeping the Dirichlet condition w on the plate (this boundary condi-
tions correspond to a structure where the reinforcement is present only on the
proper subset W of the plate Wp), can be easily recovered by the present analysis
with minor changes: by considering admissible displacements for the reinforce-
ment defined only in the smaller domain reference set W and replacing (2.5),
(2.8), (2.10) respectively by

K is the smallest closed subset of R2 s:t: v a C2ðWnKÞ;ð2:17Þ
vp � w a H 2

0 ðWpÞ; K smallest closed subset of R2 s:t: vr a C2ðWnKÞ;ð2:18Þ
vp � w a H 2

0 ðWpÞ; K smallest closed subset ofð2:19Þ
R2 : vr a C2ðWnKÞBC0ðWÞ:

All the claims in Theorem 2.1 and Theorem 2 still hold true under these di¤erent
admissible classes of pairs and triplets. The only change to be made in the proofs
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amounts to refer to [11] instead of [14], to perform the analysis of partial regular-
ity for weak minimizers.

3. One-dimensional analysis: reinforcement of flexural beams

We study the 1D case, namely the hard-device reinforcement and strengthen-
ing reinforcement of a clamped beam, in order to make explicit some properties
of minimizers like compliance identity, Euler equations, issues related to unique-
ness and possible addition of the unilateral constraint describing the non-
interpenetration of beam and reinforcement. The displacement of the clamped
beam is modeled by a function of one variable which is free in the interval
½�1;þ1� while it must coincide with a given function outside ½�1;þ1� to take
into account of boundary conditions. We consider possibly di¤erent weights for
energy dissipation when crack or crease do appear: the constants a and b intro-
duced below.

We consider real valued functions defined on bounded intervals, and set

W ¼ ð�1; 1Þ; Wp ¼ ð�2; 2Þ; w a C2ð�2;þ2Þ;ð3:1Þ

moreover, concerning the notation, _vv denotes the absolutely continuous part of
the distributional derivative v 0 of v, €vv denotes the absolutely continuous part of
ð _vvÞ0, Sv denotes the set of discontinuity points of v, S _vv denotes the set of disconti-
nuity points of _vv and v�, vþ denote respectively the left and right limit of v. Since
we will consider admissible only piece-wise H 2 functions v : ð�2; 2Þ ! R fulfill-
ing v ¼ w in ð�2;�1ÞA ð1; 2Þ, we have ðSv AS _vvÞ � ½�1; 1� for them all. Here
H 2ða; bÞ denotes the usual Sobolev space of real-valued functions v a L2ða; bÞ
s.t. v 0; v 00 a L2ða; bÞ.

We emphasize that the beam may develop singularities also at both clamped
endpointse1: namely, it may undergo crack discontinuity (if SvB fe1g is non-
empty) or plastic-yield bending (if S _vvB fe1g is nonempty).

After labeling by ] the counting measure, we denote by

JðvÞ ¼ a]ðSvÞ þ b]ðS _vvnSvÞð3:2Þ

the whole energy associated to damage of the reinforcement: in this one-
dimensional setting we allow di¤erent release energy for crack and crease, respec-
tively a and b. In the one-dimensional setting the functionals E, F and G are
replaced respectively by E1, F1 and G1 defined below: we emphasize that for
them all the strong and weak formulation of related free discontinuity problems
coincide in the one-dimensional case, since finite energy entails that only a finite
number of discontinuity points is allowed by finite energy, hence only piece-wise
regular functions have finite energy.

The total energy for hard-device reinforcement of a clamped beam is given by
functional E1:

E1ðvÞ ¼ JðvÞ þ
Z 1

�1

ðhj€vvj2 � fvÞ dxþ m

Z 1

�1

jv� wj2 dx;ð3:3Þ
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functional E1 has to be minimized among the admissible functions v such
that

v a H2ð�2; 2Þ :¼ fv : ð�2; 2Þ ! R; s:t: v is piece-wise H 2g;ð3:4Þ
v ¼ w a:e: ð�2;�1ÞA ð1; 2Þ:ð3:5Þ

The total energy for strengthening reinforcement of a clamped beam is given by
functional F1:

F1ðvr; vpÞ ¼ F1ðVÞ :¼ JðvrÞ þ
Z 1

�1

ðhj€vvrj2 � frvrÞ dxþ m

Z 1

�1

jvr � vpj2 dxð3:6Þ

þ
Z 1

�1

ðgjv 00p j
2 � fpvpÞ dx:

Functional F1 has to be minimized among the admissible pairs V such that

V ¼ ðvr; vpÞ a H2ð�2; 2Þ �H 2ð�2; 2Þ withð3:7Þ
vr ¼ vp ¼ w in ð�2;�1ÞA ð1; 2Þ:ð3:8Þ

The total energy for strengthening reinforcement of an elastic-plastic clamped
beam is given by functional G1:

G1ðvr; vpÞ ¼ G1ðVÞ :¼ b]ðS _vvrÞ þ s
X
S _vvr

j½ _vvr�j þ
Z 1

�1

ðhj€vvrj2 � frvrÞ dxð3:9Þ

þ m

Z 1

�1

jvr � vpj2 dxþ
Z 1

�1

ðgjv 00p j
2 � fpvpÞ dx:

Functional G1 has to be minimized among the admissible pairs V fulfilling

V ¼ ðvr; vpÞ a ðC0ð½�2; 2�ÞBH2ð�2; 2ÞÞ �H 2ð�2; 2Þ;ð3:10Þ
vr ¼ vp ¼ w in ð�2;�1ÞA ð1; 2Þ:ð3:11Þ

Concerning respectively (3.4), (3.7), (3.10), we recall that in all cases the finite-
ness of total energy implies respectively ]ðSuÞ < þl, ]ðSur A ðS _uurÞÞ < þl and
Sur ¼ j with ]ðS _uurÞ < þl, hence u and ur, are made by finitely many H 2

pieces.

Theorem 3.1. Assume (3.1), (3.2), (3.3), h > 0, m > 0, f a L2ð�1; 1Þ and

0 < ba aa 2b;ð3:12Þ

then the functional E1 defined by (3.3) achieves a finite minimum over functions v
fulfilling conditions (3.4), (3.5).
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Proof. After noticing thatZ 1

�1

ðmjv� wj2 � fvÞ dx ¼
Z 1

�1

mðv� ðwþ f =ð2mÞÞÞ2 dxð3:13Þ

�
Z 1

�1

ð fwþ f 2=ð4mÞÞ dx

where the last summand on right-hand side is a constant, we deduce that the
functional E1 is bounded from below since all terms are nonnegative, except
such constant. Thus the claim follows by choosing g ¼ wþ f =ð2mÞ a L2ð�1; 1Þ
in the result of [23]. r

Theorem 3.2. Assume (3.1), (3.2), (3.6), (3.12), h > 0, m > 0, g > 0, fr; fp a
L2ð�1; 1Þ. Then the functional F1 defined by (3.6) achieves a finite minimum over
functions v fulfilling conditions (3.7), (3.8).

Proof. The only novelty with respect to Theorem 3.1 consists in the addi-
tion of the functional

R 1

�1ðgjv 00p j
2 � fpvp � frvrÞ dx and adhesive interaction

m
R 1

�1 jvr � vpj2 dx coupling vr and vp.
In case of functional F1 the identity (3.13) reads as followsZ 1

�1

ðmjvr � vpj2 � frvrÞ dx ¼
Z 1

�1

mðvr � ðvp þ fr=ð2mÞÞÞ2 dxð3:14Þ

�
Z 1

�1

ð frvp þ f 2r =ð4mÞÞ dx

where the last summand is not a priori bounded from below, unless we show an
a priori bound on kvpkL2ð�1;1Þ, moreover we have to check that minimizing se-
quences are not made by pair sequences ððvrÞn; ðvpÞnÞ balancing mkðvpÞnk

2
L2ð�1;1Þ

! þl together with
R 1

�1ðgjv 00p j
2 � fvpÞ dx ! �l.

This is prevented by the subsequent estimate from below (3.16), obtained by
use of Young inequality and the fact that vp � w a H 2

0 ð�1; 1Þ, here CP denotes
the best Poincaré constant fulfilling

kvk2L2ð�1;1Þ aCPkv 00k2L2ð�1;1Þ Ev a H 2
0 ð�1; 1Þ;ð3:15Þ

and we denote shortly k � k2 in place of k � k2L2ð�1;1Þ:

F1ðvr; vpÞ ¼ JðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ mjvr � vpj2 þ gjv 00p j
2Þ dxð3:16Þ

�
Z 1

�1

ð frvr þ fpvpÞ dx
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¼ JðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ mjvr � vpj2 þ gjv 00p j
2Þ dx

�
Z 1

�1

frðvr � vpÞ dx�
Z 1

�1

ð fr þ fpÞðvp � wÞ dx

�
Z 1

�1

ð fr þ fpÞwdx

b JðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ mjvr � vpj2 þ gjv 00p j
2Þ dx

� 1

4m
k frk2 � mkvr � vpk2 �

ffiffiffiffiffiffi
CP

p
k fr þ fpk kðvp � wÞ00k

� k fr þ fpk kwk

b JðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ gjv 00p j
2Þ dx

� 1

4m
k frk2 �

ffiffiffiffiffiffi
CP

p
k fr þ fpk kðvp � wÞ00k � k fr þ fpk kwk

b JðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ gjv 00p j
2Þ dx�

ffiffiffiffiffiffi
CP

p
k fr þ fpk kv 00pk

� 1

4m
k frk2 �

ffiffiffiffiffiffi
CP

p
k fr þ fpk kw 00k � k fr þ fpk kwk

b JðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ gjv 00p j
2Þ dx� g

2
kv 00pk

2 � CP

2g
k fr þ fpk2

� 1

4m
k frk2 �

ffiffiffiffiffiffi
CP

p
k fr þ fpk kw 00k � k fr þ fpk kwk

b JðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ ðg=2Þjv 00p j
2Þ dx� Cðm; g; fr; fp;CPÞ:

Then we can fix a minimizing sequence ððvrÞh; ðvpÞhÞ for F1, and get boundedness
of kðvpÞhkH 2ð�1;1Þ, thanks to F1ðw;wÞ < þl, (3.16) and the Poincaré inequality
(3.15). There is up a L2 such that we can extract a subsequence, without relabel-
ing, fulfilling ðvpÞh ! up weakly in H 2 and strongly in L2, with kðvpÞ00hkL2 ! l a
R. By (3.14) and (3.16) also kðvrÞh � ðvpÞhkL2 and kðvrÞhkL2 are bounded: by ex-
tracting again, without relabeling, ðvrÞh ! ur weakly in L2. We write

F1ððvrÞh; upÞ ¼ F1ððvrÞh; ðvpÞhÞ þ ðF1ððvrÞh; ðvpÞkÞ � F1ððvrÞh; ðvpÞhÞÞð3:17Þ
þ ðF1ððvrÞh; upÞ � F1ððvrÞh; ðvpÞkÞÞ

¼ F ððvrÞh; ðvpÞhÞ þ Aðh; kÞ þ Bðh; kÞ:
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By lower semicontinuity of the functional v 7! m
R 1

�1 jv� vpj2 dxþ
R 1

�1ðgjv 00j
2 �

fpvÞ dx we get lim infk Bðh; kÞa 0. Moreover, Ee > 0 bhe: for every h; k > he

jAðh; kÞja hðkðvpÞ00kk
2 � kðvpÞ00hk

2Þ þ k fpkðkðvpÞk � ðvpÞhkÞ

þ m

Z 1

�1

jðvpÞk � ðvpÞhj j2ðvrÞh � ððvpÞk þ ðvpÞhÞj dx < e:

By evaluating on both sides of (3.17) first lim infk, then lim infh, we obtain that
also ððvrÞh; upÞ is a minimizing sequence for the functional F1 which is lower semi-
continuous, or equivalently ðvrÞh is a minimizing sequence for functional E1 with
datum up. Then ður; upÞ belongs to argminF1. r

Theorem 3.3. Assume (3.1), (3.2), (3.9), bb 0, s > 0, h > 0, m > 0, g > 0, and
fr, fp belong to L2ð�1; 1Þ: Then the functional G1 defined by (3.9) achieves a finite
minimum over pairs ðvr; vpÞ fulfilling Dirichlet condition (3.8) and

V ¼ ðvr; vpÞ a ðC0ð�2; 2ÞBH2ð�2; 2ÞÞ �H 2ð�2; 2Þ:ð3:18Þ

Proof. Notice that vr a C0 entails Svr ¼ j: We set IðvrÞ ¼ b]ðS _vvrÞ þ s
P

S _vvr
j½ _vvr�j.

By arguing as like as in the derivation of (3.16) (the only di¤erence consists in
replacing JðvrÞ with IðvrÞ), we get

G1ðvr; vpÞb IðvrÞ þ
Z 1

�1

ðhj€vvrj2 þ ðg=2Þjv 00p j
2Þ dx� Cðm; g; fr; fp;CPÞ:ð3:19Þ

If b > 0, we conclude by arguing as in the proof of Theorem 3.2 that a minimiz-
ing sequence has a subsequence converging to a minimum. When b ¼ 0, after
finding an optimal up again by the argument in the proof of Theorem 3.2, we ex-
ploit Theorem 2.1 of [35] to find the related optimal ur.

We emphasize that the safe load condition assumed in [35] is unnecessary here
thanks to adhesion term

R 1

�1 jvr � vpj2 dx, providing boundedness from below by
(3.19). r

Next result shows that, provided the load and Dirichlet datum are suitably
small, the strengthening reinforcement of the clamped beam ðargminF1Þ has a
unique solution ður; upÞ where vr has neither crack nor hinges, say Sur AS _uur ¼ j.

Theorem 3.4. In addition to assumptions of Theorem 3.2 we assume

1

4m
k frk2L2ð�1;1Þ þ

CW

2g
k fr þ fpk2L2ð�1;1Þ þ gkw 00k2L2ð�1;1Þ þ

Z 1

�1

ð fr þ fpÞwdxð3:20Þ

< b �M;

where �l<M ¼minfF1ðvr; vpÞ : vr �w a H 2
0 ð�1; 1Þ; vp �w a H 2

0 ð�1;1Þg< þl
and CW is the Poincaré constant in (3.15).
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Then there is a unique minimizer ður; upÞ of F1 over H2 �H 2 and such mini-

mizer fulfils Sur AS _uur ¼ j, thus ur � w a H 2
0 ð�2; 2Þ.

Proof. We denote shortly k � k2 in place of k � k2L2ð�1;1Þ. First we note that

minfF1ðvr; vpÞ : vr � w a H 2
0 ð�1; 1Þ; vp � w a H 2

0 ð�1; 1Þg

aF1ðw;wÞ ¼ ðhþ gÞkw 00k2 �
Z 1

�1

ð fr þ fpÞwdx;

moreover, thanks to (3.16), F1 is bounded from below and coercive hence its
infimum M is attained and is a finite minimum.

Assume by contradiction that a minimizer ður; upÞ of F1 on H2 �H 2 has
Sur AS _uur A j, we deduce a]ðSurÞ þ b]ðSurnS _uurÞb b, hence, exploiting Poincaré in-
equality (3.15) and assumption (3.20) we getZ 1

�1

frur þ
Z 1

�1

fpup �
Z 1

�1

ð fr þ fpÞw

¼
Z 1

�1

frður � upÞ þ
Z 1

�1

ð fr þ fpÞðup � wÞ

a
1

4m
k frk2 þ mkur � upk2 þ

CW

2g
k fr þ fpk2 þ

g

2CW
kup � wk2

a
1

4m
k frk2 þ mkur � upk2 þ

CW

2g
k fr þ fpk2 þ

g

2
ku 00

p � w 00k2

a
1

4m
k frk2 þ

CW

2g
k fr þ fpk2 þ gkw 00k2 þ hk€uurk2 þ mkur � upk2 þ gku 00

pk
2

< b �M �
Z 1

�1

ð fr þ fpÞwþ hk€uurk2 þ mkur � upk2 þ gku 00
pk

2

a a]ðSurÞ þ b]ðSurnSurÞ þ hk€uurk2 þ mkur � upk2 þ gku 00
pk

2

�M �
Z 1

�1

ð fr þ fpÞw;

say, an inequality contradicting minimality of ður; upÞ: M < F1ður; upÞ:
Uniqueness of minimizer over H2 �H 2 with Dirichlet datum w follows by

uniqueness over H 2 �H 2. r

Remark 3.5. By analogous computations to the ones in the last proof, we
obtain that the inequality

1

4m
k f k2L2ð�1;1Þ þ

Z 1

�1

fw dx < b � eMM
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entails uniqueness and H 2 regularity for minimizer of E1 in H2 with Dirichlet
boundary condition w, where

�l < eMM ¼ minfE1ðvÞ : v� w a H 2
0 ð�1; 1ÞgaE1ðwÞ < þl:

We show the analysis of E1 under the addition of the unilateral constraint

vbw on ½�1;þ1�:ð3:21Þ

Concerning notation, from now on we set vþðxÞ ¼ limt!xþ vðtÞ, v�ðxÞ ¼
limt!x� vðtÞ.

Remark 3.6. Actually, the constraint (3.21) has to be understood as a point-
wise everywhere weak inequality, since it refers to functions v a H2ð�2; 2Þ:
explicitly, vðxÞbwðxÞ at x a ½�1;þ1�nSv; vþðxÞbwðxÞ at x a Sv A f�1g;
v�ðxÞbwðxÞ at x a Sv A fþ1g.

Thus, the contact set fx a ½�2; 2� : vþðxÞ ¼ wðxÞ or v�ðxÞ ¼ wðxÞg is a closed
set for every v fulfilling (3.21); the complement in ð�1; 1Þ of the contact set is an
open set.

Actually, the inequality (3.21) prevents interpenetration and refers to a rein-
forcement placed above: this conventional choice is made here in order to have
agreement with the usual formulation of variational inequalities ([3]).

Theorem 3.7 (Hard device with unilateral constraint). Assume (3.1), (3.2), (3.3),
(3.12) h > 0, m > 0 and f a L2ð�1; 1Þ. Then the functional E1 achieves a finite
minimum over pairs ðvr; vpÞ fulfilling conditions (3.4), (3.5) together with the uni-
lateral constraint (3.21).

Proof. The proof can be achieved by exact repetition of the argument in the
proof of Theorem 3.1 for the unconstrained case: both unilateral constraint
vbw on ½�1;þ1� and Dirichlet condition v ¼ w a.e. on ð�2;�1ÞA ð1; 2Þ a¤ect
neither the compactness, nor the lower semicontinuity properties of E1; more-
over the a.e. convergence preserves the constraint in the limit of minimizing
sequences. r

Theorem 3.8 (Reinforcement with unilateral constraint). Assume (3.1), (3.2),
(3.6), (3.12), h > 0, m > 0, g > 0, fr; fp a L2ð�1; 1Þ. Then the functional F1

achieves a finite minimum over pairs ðvr; vpÞ fulfilling the conditions (3.7) and (3.8)
together with the unilateral constraint (corresponding to a reinforcement placed
above the plate)

vr b vp on ½�1;þ1�:ð3:22Þ

Also the constraint (3.22) has to be understood as a pointwise everywhere
weak inequality, in the sense of Remark 3.6, as like as (3.21) but here with vp re-
placing w: thus, the admissible pairs belong to the convex set

K :¼ fðvr; vpÞ a H2ð�2; 2Þ �H 2ð�2; 2Þ : vr b vp on ½�1; 1�;
vr ¼ vp ¼ w on ð�2;�1ÞA ð1; 2Þg:
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Proof of Theorem 3.8. The proof can be achieved by exact repetition of
the argument in the proof of Theorem 3.2 for the unconstrained case: both uni-
lateral constraint vr b vp a.e. on ð�1;þ1Þ and Dirichlet condition vr ¼ vp ¼ w
a.e. on ð�2;�1ÞA ð1; 2Þ a¤ect neither the compactness, nor the lower semiconti-
nuity properties of F1; moreover a.e. convergence preserves the constraint in the
limit of minimizing sequences. r

By performing all the admissible variations of minimizers for E1 and F1 with-
out the unilateral constraint, we can deduce the necessary conditions for minimal-
ity listed below in Propositions 3.9 and 3.10.

Proposition 3.9 (Euler equations for functional E1). Every u a argminE1

fulfils

hu 0000 þ mðu� wÞ ¼ f =2 in ð�1; 1ÞnðSu AS _uuÞ;ð3:23Þ
€uuþ ¼ €uu� ¼ €€uþ ¼ €€u� ¼ 0 in Sunfe1g;ð3:24Þ
€uuþ ¼ €uu� ¼ ½€€u � ¼ 0 on S _uunðSu A fe1gÞ;ð3:25Þ

€uu a H 2ð�1; 1Þ and hð€uuÞ00 þ mðu� wÞ ¼ f =2 on D 0ð�1; 1Þ;ð3:26Þ
€uuþð�1Þ ¼ €€uþð�1Þ ¼ 0 if �1 a SunS _uu;

€uu�ðþ1Þ ¼ €€u�ðþ1Þ ¼ 0 if þ1 a SunS _uu;

�
ð3:27Þ

€uuþð�1Þ ¼ 0 if �1 a S _uunSu;

€uu�ðþ1Þ ¼ 0 if þ1 a S _uunSu:

�
ð3:28Þ

When a ¼ b the conditions (3.24), (3.25), (3.27), (3.28) altogether are improved as
follows:

if a ¼ b then €uuþ ¼ €uu� ¼ €€uþ ¼ €€u� ¼ 0 on ðSu AS _uuÞ:ð3:29Þ

(Euler equations for functional F1) Every ður; upÞ a argminF1 fulfils

hu 0000
r þ mður � upÞ ¼ fr=2 ð�1; 1ÞnðSur AS _uurÞ;ð3:30Þ
gu 0000

p þ mðup � urÞ ¼ fp=2 in D 0ð�1; 1Þ;ð3:31Þ
hu 0000

r þ gu 0000
p ¼ ð fr þ fpÞ=2 ð�1; 1ÞnðSur AS _uurÞ;ð3:32Þ

€uuþr ¼ €uu�r ¼ €€uþ
r ¼ €€u�

r ¼ 0 Surnfe1g;ð3:33Þ
€uuþr ¼ €uu�r ¼ ½€€ur� ¼ 0 S _uurnðSur A fe1gÞ;ð3:34Þ

hence €uur a H 2ð�1; 1Þ and

hð€uurÞ00 þ mður � upÞ ¼ fr=2 in D 0ð�1; 1Þ;ð3:35Þ
hð€uurÞ00 þ gu 0000

p ¼ ð fr þ fpÞ=2 in D 0ð�1; 1Þ;ð3:36Þ
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€uuþr ð�1Þ ¼ €€uþ
r ð�1Þ ¼ 0 if �1 a SurnS _uur ;

€uu�r ðþ1Þ ¼ €€u�
r ðþ1Þ ¼ 0 if þ1 a SurnS _uur ;

�
ð3:37Þ

€uuþr ð�1Þ ¼ 0 if �1 a S _uurnSur ;

€uu�r ðþ1Þ ¼ 0 if þ1 a S _uurnSur :

�
ð3:38Þ

So, (3.35) and (3.36), together give

2hð€uurÞ00 þ mður � upÞ þ gu 0000
p ¼ fr þ ð1=2Þ fp in D 0ð�1; 1Þ:ð3:39Þ

When a ¼ b the conditions (3.33), (3.34), (3.37), (3.38) altogether are improved as
follows:

if a ¼ b then €uuþr ¼ €uu�r ¼ €€uþ
r ¼ €€u�

r ¼ 0 on ðSur AS _uurÞ:ð3:40Þ

Eventually we deduce the following compliance identities.

Proposition 3.10. Compliance identity for functional E1:
Assume wð�1Þ ¼ wð1Þ ¼ w 0ð�1Þ ¼ w 0ð1Þ ¼ 0. Then any u a argminE1 fulfils

E1ðuÞ ¼ JðuÞ þ m

Z 1

�1

ðw2 � wuÞ dx� 1

2

Z 1

�1

fu dx:ð3:41Þ

If boundary conditions are nonhomogeneous then the right-and side of compliance

(3.41) has to be added with the correction þh½€uu _uu� €€uu�þ1
�1 , where ½z�1�1 ¼ z�ð1Þ �

zþð�1Þ. Notice that (due to (3.27), (3.28), (3.29)) some of the four terms in the cor-
rection may be null if one endpoint or the other belongs to S _uu ASu.

Compliance identity for functional F1:
Assume wð�1Þ ¼ wð1Þ ¼ w 0ð�1Þ ¼ w 0ð1Þ ¼ 0, then any ður; upÞ a argminF1

fulfils

F1ður; upÞ ¼ JðurÞ � m

Z 1

�1

ður � upÞ2 dx� 1

2

Z 1

�1

frur dx� 1

2

Z 1

�1

fpup dx:ð3:42Þ

If boundary conditions are nonhomogeneous then the right-and side of compliance
(3.42) has to be added with the correction þ½gðu 00

pw
0 � u 000

p wÞ þ hð€uur _uu� €€uruÞ�þ1
�1 ,

where ½z�1�1 ¼ z�ð1Þ � zþð�1Þ.

Remark 3.11. Due to (3.3) and (3.41), any u a argminE1 fulfils

� 1

2

Z 1

�1

ð2mðu� wÞ þ f Þu dx ¼
Z 1

�1

ðhj€uuj2 � fuÞ dx:ð3:43Þ

This equality has a simple mechanical interpretation: despite the presence of the
jump term, if LðuÞ denotes the sum of the work done by the dead force f and by
the adhesion force 2mðu� wÞ and EðuÞ denotes the elastic energy on the undam-
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aged region (both evaluated on a minimizer u), then (3.43) reads as L ¼ �2E,
say the usual compliance identity which occurs in absence of discontinuities.

Proof of Proposition 3.9 (Euler equations for E1 and F1). Let u be a mini-
mizer of E1 among v a H2 :¼ H2ð�2; 2Þ fulfilling (3.4) and (3.5). For any v a H2

we set 7v8 ¼ vþ � v� where v�, vþ denote respectively the left and right values of
v on Sv.

We introduce the localized version of functional E1: given w, a, b, we set, for
any v in H2 and any Borel set A � ½�1; 1�,

E1ðv;AÞ ¼
Z
A

ðhj€vv2j þ mjv� wj2Þ dxþ a]ðSvBAÞ þ b]ððS _vvnSvÞBAÞ:ð3:44Þ

Step 1 (Green’s formula) – Assume: u a argminE1.
Since JðuÞaE1ðuÞ < þl, the set Su AS _uu is finite and contained in ½�1; 1�;

u a H 4ðIÞ for every interval I � ð�2; 2ÞnfSu AS _uug.
From now on we label t0 ¼ �1 and tTþ1 ¼ 1 and tj, for j ¼ 1; . . . ; T, the (pos-

sibly empty) finite ordered set ðSu AS _uuÞB ð�1;þ1Þ. Then, integrating by parts,
the next identity is achieved for every j a H2

XT

l¼0

Z tlþ1

tl

€uu€jj dx ¼
XT

l¼0

Z tlþ1

tl

u 00j 00 dxð3:45Þ

¼
XT

l¼0

Z tlþ1

tl

u 0000j dxþ
XT

l¼1

�
ð�€€u�ðtlþ1Þj�ðtlþ1Þ

þ €€uþðtlÞjþðtlÞÞ þ ð€uu�ðtlþ1Þ _jj�ðtlþ1Þ � €uuþðtlÞ _jjþðtlÞÞ
�

þ
�
�€€u�ðt1Þj�ðt1Þ þ €uu�ðt1Þ _jj�ðt1Þ þ €€uþðtTÞjþðtTÞ

� €uuþðtTÞ _jjþðtTÞ
�
þ
�
€€uþð�1Þjþð�1Þ � €uuþð�1Þ _jjþð�1Þ

� €€u�ð1Þj�ð1Þ þ €uu�ð1Þ _jj�ð1Þ
�
:

Step 2 – At first we show that each minimizer u solves the fourth order elliptic
equation (3.23) on the interior of ð�1; 1ÞnðSu AS _uuÞ, by performing smooth varia-
tions. For every open set A �� ð�1; 1ÞnðSu AS _uuÞ, for every e a R and for every
j a Cl

0 ðAÞ we have

0aE1ðuþ ej;AÞ � E1ðu;AÞ

¼ 2e
�
h

Z
A

u 00j 00 dxþ m

Z
A

ðu� wÞj dx�
Z
A

f

2
j dx

�
þ oðeÞ

where oðeÞ is an infinitesimal of higher order than e. Hence

h

Z
A

u 00j 00 dx ¼
Z
A

ð f =2� mðu� wÞÞj dx Ej a Cl
0 ðAÞ:

Then (3.23) follows integrating by parts with Green’s formula (3.45).
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Now we seek the Euler conditions at inner discontinuity points and at
clamped endpoints.

Step 3 – We prove necessary conditions (3.24) for extremality on Su and neces-
sary conditions (3.27) for extremality at endpoints when they do belong to SunS _uu.

Choose j a H2BC2ð½tl ; tlþ1�Þ, l ¼ 0; . . . ; T, sptðjÞ � A, where A is a Borel
subset of ½�1; 1� with ðS _uunSuÞBA ¼ j. Then for every e a R we have

ðSuþej AS _uuþe _jjÞBA � SuBA:

By (3.45) we have

0aE1ðuþ ej;AÞ � E1ðu;AÞ
¼ að]ðSuþejBAÞ � ]ðSuBAÞÞ þ b]ððS _jjnSuþejÞBAÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

�
hu 00j 00 þ mðu� wÞj� f

2
j
�
dx

�
þ oðeÞ

¼ að]ðSuþejBAÞ � ]ðSuBAÞÞ þ b]ððS _jjnSuþejÞBAÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

�
hu 0000jþ mðu� wÞj� f

2
j
�
dx

þ €€uþð�1Þjþð�1Þ � €uuþð�1Þ _jjþð�1Þ � €€u�ð1Þj�ð1Þ þ €uu�ð1Þ _jj�ð1Þ

þ h
X

ðSuBAÞnfe1g
ð7€€uj8� 7€uu _jj8Þ

�
þ oðeÞ:

Up to a finite set of possible values of e entailing cancellation of discontinuity,
we have SuþejBA ¼ SuBA. Then by discarding such values we can choose arbi-
trarily small e satisfying

]ððS _jjnSuþejÞBAÞ ¼ ]ððS _jjnSuÞBAÞ ¼ 0:

By taking into account (3.23) and the arbitrariness of the two traces of j and _jj on
the two sides of points in Su, for small e, we can choose j with je¼ 0, and
_jjþ ¼ 0 together with _jj� arbitrary, or viceversa to get €uue¼ 0 on Sunfe1g.

Similarly, we obtain €€ue¼ 0 on Sunfe1g by choosing _jje¼ 0, and jþ ¼ 0
together with j� arbitrary or vice-versa. So (3.24) is proved.

If some clamped endpoint (�1 and/or þ1) belong to Su, then (3.27) is ob-
tained as above, but taking into account that jC 0 outside ½�1; 1�.

Step 4 – We prove the necessary condition (3.25) for extremality on the set
S _uunðSu A fe1gÞ:

€uue¼ 0 in S _uunðSu A fe1gÞ;ð3:46Þ
7€€u8 ¼ 0 in S _uunðSu A fe1gÞ:ð3:47Þ
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Let j a H2BC2ð½tl ; tlþ1�Þ, l ¼ 0; . . . ; T, sptðjÞ � A, with A Borel subset of
ð�1; 1Þ and Sj ¼ j ¼ ðSunS _uuÞBA. Then, up to a finite set of possible values
of e entailing cancelation of _uu discontinuity, we can choose e arbitrarily small
such that

ðSuþejAS _uuþe _jjÞBA ¼ S _uuþe _jjBA ¼ S _uu:

Moreover, by Green’s formula (3.45):

0aE1ðuþ ej;AÞ � E1ðu;AÞ
a bð]ðS _uuþe _jjBAÞ � ]ðS _uuBAÞÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

�
hu 00j 00 þ mðu� wÞj� f

2
j
�
dx

�
þ oðeÞ

¼ 2e
�XT

l¼0

Z tlþ1

tl

�
hu 0000j dxþ mðu� wÞj� f

2
j
�
dx

þ €€uþð�1Þjþð�1Þ � €uuþð�1Þ _jjþð�1Þ � €€u�ð1Þj�ð1Þ þ €uu�ð1Þ _jj�ð1Þ

þ h
X

ðS _uuBAÞnfe1g
ð7þ€€uj8� 7€uu _jj8Þ

�
þ oðeÞ:

By taking into account (3.23), for small e and by the arbitrariness of j and of the
two traces of _jj on the two sides of S _uu, we can choose j with je¼ 0, and arbitrary
_jjþ ¼ _jj�, to get (3.46).

On the other hand, by choosing _jje¼ 0 together with arbitrary j and taking
into account that 7j8 ¼ 0, we obtain (3.47).

Then (3.25) follow from (3.46) and (3.47).

Step 5 – The analysis of minimizers at ðS _uunSuÞB fe1g can be done exactly in
the same way as in Step 5, but taking into account that u ¼ w and j ¼ 0 on
½�2;�1�A ½1; 2�, thus obtaining (3.27) and (3.28).

Step 6 – (3.26) is a straightforward consequence of (3.23)–(3.25).

Step 7 – Eventually, under the additional condition a ¼ b, we prove the refine-
ment (3.29) of (3.24), (3.25), (3.27), (3.28) on ðS _uu ASuÞ for every minimizer u.

We are left only to show that

if a ¼ b then: 1 a S _uunSu ) €€u�ð1Þ ¼ 0; �1 a S _uunSu ) €€uþð�1Þ ¼ 0:ð3:48Þ

Fix a Borel set A s.t. A �� ð�2; 2Þ, SuBA ¼ jAS _uuBA.
Let j a H2BC2ð½tl ; tlþ1�Þ, l ¼ 0; . . . ; T and

S _uuBA ¼ SjBA and SuBA ¼ S _jjBA ¼ j:
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Then, for every value of e a R we have SuþejBA ¼ SjBA and

ðSuþej ASð _uuþe _jjÞÞBA ¼ S _uuBA:

By (3.45), (3.23), (3.24) and (3.25) we have

0aE1ðuþ ej;AÞ � E1ðu;AÞ
¼ a]ðSuþejBAÞ þ bð]ððSð _uuþe _jjÞnSuþejÞBAÞ � b]ðS _uuBAÞÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

�
hu 00j 00 þ mðu� wÞj� f

2
j
�
dx

�
þ oðeÞ

¼ a]ðSjBAÞ þ b]ððS _uunSjÞBAÞ � b]ðS _uuBAÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

�
hu 0000jþ mðu� wÞj� f

2
j
�
dxþ h

X
ðS _uuBAÞnfe1g

ð7€€uj8� 7€uu _jj8Þ

þ hð€€uþð�1Þjþð�1Þ � €uuþð�1Þ _jjþð�1Þ � €€u�ð1Þj�ð1Þ þ €uu�ð1Þ _jj�ð1ÞÞ
�
þ oðeÞ

¼ a]ðSjBAÞ � b]ðS _uuBAÞ þ 2he
X

ðS _uuBAÞnfe1g
7€€uj8þ oðeÞ:

Since SjBA ¼ S _uuBA, when a > b then the inequality is fulfilled for e small
enough, hence we do not obtain further information (recall that the necessary
condition for semicontinuity ab b is always assumed). On the other hand, when
a ¼ b, we get

0aE1ðuþ ej;AÞ � E1ðu;AÞ

¼ 2he
�X
S _uuBA

7€€uj8þ €€uþð�1Þjþð�1Þ � €€u�ð1Þj�ð1Þ
�
þ oðeÞ:

So the coe‰cient of 2e must vanish, and by the arbitrariness of the two traces of j
at points in S _uuBA, of the right trace at �1 and of the left trace at þ1, taking into
account that jC 0 outside ½�1; 1� we get (3.48).

Step 8 – We make explicit all the details for E1 only, since the proof of Euler
equations for F1 is identical. In fact, F1ðvr; vpÞ � E1ðvrÞ ¼

R 1

�1ðgj€vvpj
2 � fvpÞ is a

classical integral functional: so the analysis of any minimizer U ¼ ður; upÞ of F1

can be done by performing all the admissible variations separately for ur and up.
r

Proof of Proposition 3.10 (compliance identities). Assume u a argminE1

and label t0 ¼ �1 and tTþ1 ¼ 1 and tj, for j ¼ 1; . . . ; T, the (possibly empty) finite
ordered set ðSu AS _uuÞA ð�1;þ1Þ.

Then, by (3.23)–(3.28), integrating by parts on the intervals ½tj; tjþ1� we get
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h

Z 1

�1

j€uuj2 dx ¼ h
XT
j¼0

Z tjþ1

tj

j€uuj2 dx

¼ �h

Z 1

�1

ð€uuÞ0 _uu dxþ h½€uu _uu�þ1
�1

¼ h

Z 1

�1

ð€uuÞ00u dxþ h½€uu _uu� €€uu�þ1
�1

¼ m

Z 1

�1

ðw� uÞu dxþ
Z 1

�1

ð f =2Þu dxþ h½€uu _uu� €€uu�þ1
�1 ;

here above and in the sequel, the notation ½z�þ1
�1 stands for z�ð1Þ � zþð�1Þ.

Hence

E1ðuÞ ¼ h

Z 1

�1

j€uuj2 dx�
Z 1

�1

fu dxþ m

Z 1

�1

ju� wj2 dxþ JðuÞ

¼ JðuÞ þ m

Z 1

�1

ððw� uÞuþ ðu� wÞ2Þ dxþ ð�1þ 1=2Þ
Z 1

�1

fu dx

þ hð�€uuþð�1Þ _uuð�1Þ þ €uu�ð1Þ _uuð1Þ þ €€uþð�1Þuð�1Þ � €€u�ð1Þuð1ÞÞ:

Now assume ður; upÞ a argminF1 and label tj as above.
By taking into account (3.30)–(3.38) and performing integrations by parts,

we get

h

Z 1

�1

j€uurj2 dx ¼ h

Z 1

�1

ð€uurÞ00ur dx

¼ �m

Z 1

�1

ður � upÞur dxþ
Z 1

�1

ð fr=2Þur dxþ h½€uur _uur � €€urur�þ1
�1 :

Performing two integrations by parts and taking into account (3.31), we get

g

Z 1

�1

ju 00
p j

2
dx ¼ g

Z 1

�1

u 0000
p up dxþ g½u 00

p u
0
p � u 000

p up�
1
�1

¼ m

Z 1

�1

ður � upÞup dxþ 1

2

Z 1

�1

fpup dxþ g½u 00
p u

0
p � u 000

p up�
þ1
�1 :

Then for any ður; upÞ a argminF1 we obtain

F1ður; upÞ ¼ JðurÞ þ ð�1þ 1=2Þ
�Z 1

�1

frur dxþ
Z 1

�1

fpup dx
�
� m

Z 1

�1

ður � upÞ2 dx

þ ½hð€uur _uur � €€ururÞ þ gðu 00
pw

0 � u 000
p wÞ�

1
�1: r
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Eventually we consider the additional constraint of non-interpenetration of
beam and reinforcement, assuming that the reinforcement is above the beam.

Proposition 3.12 (Variational conditions for the minimizers of E1 under uni-
lateral constraint). Every minimizer u of E1 over the closed convex set

K :¼ fv a H 2ð�2; 2Þ : vbw on ½�1; 1�; v ¼ w on ð�2;�1ÞA ð1; 2Þgð3:49Þ

(see Remark 3.6 about the pointwise everywhere meaning the unilateral constraint)
fulfils the variational inequality

u a K :Z
ð�1;1ÞnðSuAS _uuÞ

ðhu 0000 þ mðu� wÞ � f =2Þðu� vÞa 0 Ev a K ;

8<:ð3:50Þ

together with the bilateral conditions at the free discontinuity and free-gradient dis-
continuity set where the contact does not play a role:

€uuþ ¼ €uu� ¼ 0 on ðSunfe1gÞB fuþ > wgB fu� > wg;ð3:51Þ
€€uþ ¼ €€u� ¼ 0 on ðSunfe1gÞB fuþ > wgB fu� > wg;ð3:52Þ

€uuþ ¼ €uu� ¼ ½€€u � ¼ 0 on ðS _uunðSu A fe1gÞÞB fuþ > wgB fu� > wg;ð3:53Þ
€uu a H 2ðð�1; 1Þnfuþ ¼ w or u� ¼ wgÞ and

hð€uuÞ00 þ mðu� wÞ ¼ f =2 in D 0ðð�1; 1Þnfuþ ¼ w or u� ¼ wgÞ;
ð3:54Þ

€uuþð�1Þ ¼ €€uþð�1Þ ¼ 0 if �1 B S _uunSu and uþð�1Þ > wð�1Þ;
€uu�ðþ1Þ ¼ €€u�ðþ1Þ ¼ 0 if þ1 B S _uunSu and u�ðþ1Þ > wðþ1Þ;

�
ð3:55Þ

€uuþð�1Þ ¼ 0 if �1 a S _uunSu and uþð�1Þ > wð�1Þ;
€uu�ðþ1Þ ¼ 0 if þ1 a S _uunSu and u�ðþ1Þ > wðþ1Þ;

�
ð3:56Þ

jump condition ½€€uþ� ¼ 0 in (3.53) can be improved when a ¼ b, hence

if a ¼ b then

€€uþ ¼ €€u� ¼ 0 on ððSu AS _uuÞnfe1gÞB fuþ > wþg
B fu� > wg;

€€uþð�1Þ ¼ 0 if �1 a Su AS _uu and uþð�1Þ > wð�1Þ;
€€u�ðþ1Þ ¼ 0 ifþ1 a Su AS _uu and u�ðþ1Þ > wðþ1Þ;

8>>><>>>:ð3:57Þ

and in addition the unilateral conditions at the free discontinuity and free-gradient
discontinuity sets of u where the contact with the obstacle plays a role:

€uuþ b 0 on ððSu AS _uuÞnfþ1gÞB fuþ ¼ wg;ð3:58Þ
€uu� b 0 on ððSu AS _uuÞnf�1gÞB fu� ¼ wg:ð3:59Þ

No condition on €€ue is present on Su AS _uu.
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Proof. The proof repeats the first 7 steps of Proposition 3.9 proof, but achieves
less information since there is a strictly smaller set of admissible variations.

Step 1 is fully recovered thus, here we can exploit Green’s formula (3.45).
We repeat Steps 2–7, by performing all the admissible variations of u which

are of the kind uþ eðv� uÞ, with e a ½0; 1� and v a K : for comparison, here j ¼
v� u.

As in Step 3 for the case of non constrained competitors, for j ¼ v� u belong-
ing to H2BC2ð½tl ; tlþ1�Þ, l ¼ 0; . . . ; T, with sptðjÞ � A Borel subset of ½�1; 1� and
ðS _uunSuÞBA ¼ j we still get ðSuþej AS _uuþe _jjÞBA � SuBA and

0aE1ðuþ ej;AÞ � E1ðu;AÞð3:60Þ
¼ að]ðSuþejBAÞ � ]ðSuBAÞÞ þ b]ððS _jjnSuþejÞBAÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

ðhu 00j 00 þ mðu� wÞj� ð f =2ÞjÞ dx
�
þ oðeÞ

¼ að]ðSuþejBAÞ � ]ðSuBAÞÞ þ b]ððS _jjnSuþejÞBAÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

ðhu 0000jþ mðu� wÞj� ð f =2ÞjÞ dx

þ €€uþð�1Þjþð�1Þ � €uuþð�1Þ _jjþð�1Þ � €€u�ð1Þj�ð1Þ þ €uu�ð1Þ _jj�ð1Þ

þ h
X

ðSuBAÞnfe1g
ð7€€uj8� 7€uu _jj8Þ

�
þ oðeÞ:

As in Step 4, let j a H2BC2ð½tl ; tlþ1�Þ, l ¼ 0; . . . ; T, sptðjÞ � A, with A Borel
subset of ð�1; 1Þ and Sj ¼ j ¼ ðSunS _uuÞBA. Then, up to a finite set of possible
values of e entailing cancelation of _uu discontinuity, we can choose e arbitrarily
small such that ðSuþej AS _uuþe _jjÞBA ¼ S _uuþe _jjBA ¼ S _uu; thus, by Green’s formula
(3.45)

0aE1ðuþ ej;AÞ � E1ðu;AÞð3:61Þ
a bð]ðS _uuþe _jjBAÞ � ]ðS _uuBAÞÞ

þ 2e
�XT

l¼0

Z tlþ1

tl

ðhu 00j 00 þ mðu� wÞj� ð f =2ÞjÞ dx
�
þ oðeÞ

¼ 2e
�XT

l¼0

Z tlþ1

tl

ðhu 0000 þ mðu� wÞ � ð f =2ÞÞj dx

þ €€uþð�1Þjþð�1Þ � €uuþð�1Þ _jjþð�1Þ � €€u�ð1Þj�ð1Þ þ €uu�ð1Þ _jj�ð1Þ

þ h
X

ðS _uuBAÞnfe1g
ð7þ€€uj8� 7€uu _jj8Þ

�
þ oðeÞ:

In all cases now j ¼ v� u with v a K .
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By all choices of open sets A and v a K fulfilling sptðv� uÞ � A �� ð�1; 1Þn
ðSu AS _uuÞ we get,Z

ð�1;1ÞnðSuAS _uuÞ
ðhu 0000 þ mðu� wÞ � f =2Þðv� uÞ dx

¼
Z
ð�1;1ÞnðSuAS _uuÞ

ðhu 00ðv� uÞ00 þ mðu� wÞ � f =2Þðv� uÞ dxb 0

say (3.50). Then, by inserting (3.50) in (3.60), (3.61), we single out the conditions
at every point of singular set.

Outside the contact set fuþ ¼ wgA fu� ¼ wg we can repeat the discussion
made in the proof of Proposition 3.9, since je¼ ðv� uÞe and _jje¼ ð _vv� _uuÞe
are allowed to achieve both positive and negative values outside the contact
set.

Up to a finite set of possible values of e entailing cancellation of discontinuity,
we have SuþejBA ¼ SuBA. Then by discarding such values we can choose arbi-
trarily small e satisfying

]ððS _jjnSuþejÞBAÞ ¼ ]ððS _jjnSuÞBAÞ ¼ 0:

By taking into account (3.23) and the arbitrariness of the two traces of j and _jj
on the two sides of points in Su, for small e, we can choose j with je¼ 0, and
_jjþ ¼ 0 together with _jj� arbitrary, or viceversa to get €uue¼ 0 on Sunfe1g.

Similarly, we obtain €€ue¼ 0 on Sunfe1g by choosing _jje¼ 0, and jþ ¼ 0 to-
gether with j� arbitrary or vice-versa. So (3.51) is proved.

If some clamped endpoint (�1 and/or þ1) belong to Su, then (3.55) is ob-
tained as above, but taking into account that jC 0 outside ½�1; 1�.

Summarizing, we obtain (3.52), (3.54), (3.55), (3.56), hence (3.53) and (3.57),
by the same argument of Steps 3–7.

On the contact set fu ¼ wg we can repeat again the discussion made in the proof
of Proposition 3.9, but here the coe‰cient of 2e in (3.61) must be only nonnega-
tive, thus we get inequalities in place of equalities. Moreover, since _jjþ ¼ ð _vv� _uuÞþ
is allowed to achieve only positive values and _jj� ¼ ð _vv� _uuÞ� is allowed to achieve
only negative values, whereas left and right values have always opposite sign,
we deduce (3.58), (3.59). On the other hand, on the contact set je¼ ðv� uÞe is
always null; therefore, we get no condition on every term whose multiplier is jþ

or j�. r

Proposition 3.13 (Variational conditions for the minimizers of F1 under uni-
lateral constraint). Every minimizing pair ður; upÞ of F1 over the convex set

K :¼ fðvr; vpÞ a H2ð�2; 2Þ �H 2ð�2; 2Þ : vr b vp on ½�1; 1�;
vr ¼ vp ¼ w on ð�2;�1ÞA ð1; 2Þg
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fulfils the quasi-variational inequalities

ur a H2ð�2; 2Þ : vr b vp on ½�1; 1�;
vr ¼ vp ¼ w on ð�2;�1ÞA ð1; 2Þ andZ

ð�1;1ÞnðSurAS _uur Þ
ðhu 0000

r þ mður � upÞ � fr=2Þður � vÞa 0 Ev : ður; vÞ a K;

8>>><>>>:ð3:62Þ

up a H 2ð�2; 2Þ : vp a vr on ½�1; 1�;
vr ¼ vp ¼ w on ð�2;�1ÞA ð1; 2Þ andZ

ð�1;1ÞnðSurAS _uur Þ
ðgu 0000

p þ mðup � urÞ � fp=2Þðup � zÞa 0 Ez : ðz; upÞ a K;

8>>><>>>:ð3:63Þ

together with the standard bilateral conditions (say (3.51)–(3.56) with ur, up replac-
ing respectively u, w) at the free discontinuity and free-gradient discontinuity set
where the contact does not play a role, and the unilateral conditions at the free dis-
continuity and free-gradient discontinuity set where the contact with the obstacle
plays a role:

€uuþr b 0 on ððSur AS _uurÞnfþ1gÞB fuþr ¼ upg;ð3:64Þ
€uu�r b 0 on ððSur AS _uurÞnf�1gÞB fu�r ¼ upg:ð3:65Þ

No condition on €€uer is present on Sur AS _uur .

Proof. Repetition of the steps of the last proof provides the proof the claims
about minimizers ður; upÞ of F1 with unilateral implicit constraint, by perform-
ing all the admissible variations of ur which are of the kind ur þ eðv� urÞ, with
e a ½0; 1� and ðv; upÞ a K and vr þ eðz� vrÞ, with e a ½0; 1� and ður; zÞ a K. r

Remark 3.14. Euler equations for free minimizers of functional G1, and
quasi-variational inequalities for minimizers of functional G1 under the non-
interpenetration constraint vr b vp, can be deduced in pefect analogy to Propo-
sitions 3.9 and 3.13, by exploiting the Weierstrass-Erdmann corner conditions
proved in [36].

4. Hard-device reinforcement of flexural plate

In this section we deduce the existence statement in the case of hard-device re-
inforcement: minimization of functional E defined by (2.4).

Proof of Theorem 2.1. After noticing that by

Eðj;wÞ ¼ hkD2wk2L2ðWÞ �
Z
W

fw dx < þl;

the domain of E is not empty, and by
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Z
W

ðmjv� wj2 � fvÞ dx ¼
Z
W

mðv� ðwþ f =ð2mÞÞÞ2 dxð4:1Þ

�
Z
W

ð fwþ f 2=ð4mÞÞ dx

where the last summand on the right-hand side is a constant, we have that the
functional E is bounded from below since beside such constant all other terms
are nonnegative.

The notion of essential admissible pairs, set by (2.5), selects ([18]) those pairs
ðK ; vÞ which are cleansed of every spurious artifact that does not a¤ect the func-
tional value and are good representatives in equivalence classes of admissible
pairs. This definition of admissible pair prevents di¤used damage but allows to
prove partial regularity of displacements v: free discontinuity (crack) and free
gradient discontinuity (folds) are allowed in competing configurations of the
structure.

Thus, the claims of present Theorem 2.1 follow from Theorem 2.3 in [11] and
[14] about functional (2.2) defined therein, by setting g ¼ wþ f =ð2mÞ, a datum
which belongs to L4ðWÞ due to present assumptions. Precisely we can choose
~WW ¼ Wp, a ¼ b ¼ 1; hence (2.3), (2.4), (2.5) and (2.20) of [14] are fulfilled thanks
to the conditions (2.1), (2.3) assumed here. Moreover, D2w a LlðAÞ for any
open set s.t. W �� A �� Wp and we have that the sets M, T0, T1 (as denoted in
[14]) are empty, hence (2.6)–(2.11) of [14] hold true thanks to the assumption
(2.2) made here. r

5. Strengthening reinforcement of flexural plate

In this section we deduce the existence statement in the case of strengthening re-
inforcement: minimization of functional F defined by (2.7).

To deal with the case of strengthening reinforcement we need a relaxed formu-
lation of functional (2.7), as it is usual in the analysis of free discontinuity prob-
lems. We list standard notations (see [2, 11, 13, 17]): B%ðxÞ denotes the open
ball fy a R2 : jy� xj < %g; H1ðAÞ and jAj denote respectively, the 1-dimensional
Hausdor¤ measure and the outer Lebesgue measure of a subset A � R2; for
every Borel function v : W ! R and x a W, z a R :¼ RA f�l;þlg, we set
z ¼ ap lim

y!x
vðyÞ (notation for the approximate limit of v at x) if, for every

g a C0ðRÞ;

gðzÞ ¼ lim
%!0

jB%ð0Þj�1

Z
B%ð0Þ

gðvðxþ xÞÞ dx;

the function ~vvðxÞ ¼ ap lim
y!x

vðyÞ is called representative of v;

Sv ¼ x a W : 6 bz such that ap lim
y!x

vðyÞ ¼ z

( )
is the singular set of v:
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A Borel function v : W ! R is approximately continuous at x a W i¤ vðxÞ ¼
ap lim
y!x

vðyÞ.

As usual, Dv denotes the distributional gradient of v and ‘vðxÞ denotes the
approximate gradient of v, say v is approximately di¤erentiable at x if there exists
a vector ‘vðxÞ a R2 (the approximate gradient of v at x) such that

ap lim
y!x

jvðyÞ � ~vvðxÞ � ‘vðxÞ � ðy� xÞj
jy� xj ¼ 0:

A function u a BVðWÞ is approximately di¤erentiable a.e., moreover for H1

almost every x a Su there exist nðxÞ a qB1, vþðxÞ a R, v�ðxÞ a R with vþðxÞ >
v�ðxÞ such that

lim
%!0

%�n

Z
fy AB%;y�nðxÞ>0g

jvðxþ yÞ � vþðxÞj dy ¼ 0;

lim
%!0

%�n

Z
fy AB%;y�nðxÞ<0g

jvðxþ yÞ � v�ðxÞj dy ¼ 0:

SBVðWÞ denotes the De Giorgi class of functions v a BVðWÞ such thatZ
W

jDvj ¼
Z
W

j‘vj dxþ
Z
Sv

jvþ � v�j dH1:

We introduce:

SBVlocðWÞ :¼ fv a SBVðW 0Þ; EW 0 �� Wg;
GSBVðWÞ :¼ fv : W ! R Borel function;ð5:1Þ

�k _ v ^ k a SBVlocðWÞ Ek a Ng;
GSBV 2ðWÞ :¼ fv a GSBVðWÞ; ‘v a ðGSBVðWÞÞ2g:ð5:2Þ

If v a GSBVðWÞ then ‘v exists a.e., and for v a GSBV 2ðWÞ we set ‘2v ¼ ‘ð‘vÞ.
Eventually, we introduce the weak formulation F of functional F defined by

(2.7):

Fðvr; vpÞ ¼ FðVÞ :¼ H1ðSvrÞ þ h

Z
W

j‘2vrj2 dxþ m

Z
W

jvr � vpj2 dx

þ
Z
W

ðgjD2vpj2 � fvpÞ dx;

EV ¼ ðvr; vpÞ a X :¼ ðGSBV 2ðWpÞBL2ðWpÞÞ �H 2ðWpÞ
s:t: vr ¼ vp ¼ w a:e: WpnW:

8>>>>>>><>>>>>>>:
ð5:3Þ

We emphasize that, since vp ¼ w in WpnW and w a C2ðWpnWÞ, we get Svp AS‘vp

¼ j and

Fðvr; vpÞ ¼ FrðvrÞ þMðvr � vpÞ þ FpðvpÞð5:4Þ
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where M, Fp and Fr are defined by (2.12), (2.13) and

FrðvrÞ :¼ H1ðSvr AS‘vrÞ þ
Z
W

ðhj‘2vrj2 � frvrÞ dx:ð5:5Þ

Theorem 5.1. Assume (2.1), (2.2), (2.3) and (2.6). Then the functional F
achieves a finite minimum over X:

Proof. First we notice that F has non empty domain: in fact (2.2) entails Sw ¼
S‘w ¼ j and

Fðw;wÞ < ðhþ gÞkD2wk2L2ðWÞ �
Z
W

ð fr þ fpÞwdx < þl:ð5:6Þ

We have the identityZ
W

ðmjvr � vpj2 � frvÞ dx ¼
Z
W

mðvr � ðvp þ fr=ð2mÞÞÞ2 dxð5:7Þ

�
Z
W

ð frvp þ f 2r =ð4mÞÞ dx:

If KW denotes the best Poincaré inequality constant in H 2
0 ðWÞ, namely

kvk2L2ðWÞ aKWkD2vk2L2ðWÞ Ev a H 2
0 ðWÞ;ð5:8Þ

and, arguing as like as in (3.16) we get, for every V ¼ ðvr; vpÞ a X

Fðvr; vpÞb JðvrÞ þ
Z
W

ðhj‘2vrj2 þ ðg=2ÞjD2vpj2Þ dx� Cðm; g; fr; fp;KWÞ:ð5:9Þ

Then the functional F is bounded from below on its domain. Hence we can select
a minimizing sequence Vh ¼ ððvrÞh; ðvpÞhÞ for F : limh FðVhÞ ¼ inf F a R.

Thanks to (5.6), we may suppose that

caFðVhÞaC :¼ Fðw;wÞ < þl:ð5:10Þ

Summarizing FpððvpÞhÞaC, FrððvrÞhÞaC and ðvpÞh is bounded in H 2ðWÞ. More-

over, there is up a H 2ðWpÞ such that, up to subsequences and without relabel-
ling, ðvpÞh is converging to up weakly in H 2ðWÞ and strongly in L2ðWÞ, and
D2ðvpÞh ! D2up weakly in L2. Hence FðupÞa lim infh F ððvpÞhÞ andMððvrÞh � vpÞ
a lim infh MððvrÞh � ðvpÞhÞ.

By using any fixed ðvpÞh chosen from the sequence (which is bounded in H 2)
as datum we find a minimizer, denoted by zh, in GSBV 2ðWpÞBL2ðWpÞ of

v 7! FrðvÞ þMðv� ðvpÞhÞ

since this problem is equivalent to the minimization of Blake & Zisserman func-
tional for image segmentation with gray-level datum g ¼ ðvpÞh þ fr=ð2mÞ and
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Dirichlet boundary condition w, referring to notation of Theorem 3.1 in [14].
Then

FrðzhÞ þMðzh � ðvpÞhÞaFrððvrÞhÞ þMððvrÞh � ðvpÞhÞ Eh:ð5:11Þ

Hence, by (5.4) and standard lower semicontinuity of Fp, the sequence of pairs
ðzh; ðvpÞhÞ is a minimizing sequence for F too. Moreover, by (5.10), (5.11) we get

FrðzhÞ þMðzh � ðupÞhÞaC:

By compactness property of Theorem 8 in [10], there are ur a GSBV 2ðWpÞB
L2ðWpÞ and a subsequence zh s.t., again by extracting without relabeling, zh ! ur
a.e., zh * ur L

2 and strongly in Ls, 1a s < 2, ‘zh ! ‘ur a.e., ‘
2zh ! ‘2ur a.e.,

‘2zh ! ‘2z weakly in L2 and by lower semicontinuity property of Theorem 10 in
[10], we get

FrðurÞ þMður � upÞa lim inf
h

FrðzhÞ þMðzh � ðvpÞhÞaC:

Thus the pair ður; upÞ is a minimizer of relaxed functional F. r

Proof of Theorem 2.2. Let V ¼ ður; upÞ a argminF (the existence of at least
one such V is warranted by Theorem 5.1). Then up minimizes z 7! FpðzÞ þ
Mðvr � zÞ among z a H 2ðWpÞ s.t. z ¼ w a.e. WpnW. So, due to (2.2) and (2.1),
up a C2BLlðWÞ.

Moreover, if V ¼ ður; upÞ a argminF, then up a H 4ðWÞ and, referring to
(2.12) and (2.13), ur minimizes v 7! FrðvÞ þMðv� upÞ among v a GSBV 2ðWpÞB
L2ðWpÞ s.t. v ¼ up ¼ w a.e. WpnW. Thus, exploiting the identity (5.7), by Theorem
2.2 of [14] with the choices a ¼ b ¼ 1, g ¼ up þ fr=ð2mÞ a L4ðWpÞ and M ¼
T0 ¼ T1 ¼ j, and setting Z ¼ Sur AS‘ur , we obtain that the triplet ðZ; eurur; upÞ is
an essential admissible triplet that minimizes F .

By applying the regularization argument detailed in [11, 14, 17] we obtain thateurur a C2ðWpnZÞ, where Z is the smallest closed subset of Wp containing the region
where C2 regularity of eurur is missing, and H1ðZnðSur AS‘urÞ ¼ 0. Eventually

Frð eururÞ þ Gð eurur � upÞ þ FpðupÞaFrðurÞ þ Gður � upÞ þ FpðupÞ
a lim inf

h
ðFrðzhÞ þ Gðzh � uhÞ þ FpðuhÞÞ ¼ infX F

hence Fð eurur; upÞ ¼ minXF:
Summarizing FðZ; eurur; upÞ ¼ minfF ðK ; vr; vpÞ : ðK ; vr; vpÞ admissible tripletg:

r

Remark 5.2. We emphasize that also the non-interpenetration between plate
and reinforcement could be taken into account: e.g., adding the constraint vbw
a.e. Wp to the essential admissible pairs for hard-device reinforcement and adding
the constraint vr b vp a.e. Wp to the essential admissible triplets for strengthening
reinforcement. Notice that here Remark 3.6 does not apply: competing functions
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are functions defined only almost everywhere, therefore the unilateral constraints
act in the almost everywhere sense only. These unilateral constraints do not intro-
duce any additional di‰culty in the study of the weak formulations of both F and
E, since inequalities are preserved by compactness properties of minimizing se-
quences. Therefore Theorem 5.1 holds true also under the additional constraint
vr b vp.

But the subsequent step required to show Theorem 2.2, say the proof of par-
tial regularity for weak minimizers, would be not straightforward.

For this reason in this short note we skip this substantial di‰culty, postponing
the analysis of the 2 dimensional problems with unilateral constraints to a forth-
coming paper.

However, in 1 dimension the strong and weak formulation do coincide,
so the analogous of Theorems 2.1 and 2.2 hold true with or without the non-
interpenetration constraint for beams: we have taken into account these con-
straints in the one-dimensional case by Theorems 3.7, 3.8 and Propositions 3.12,
3.13.

6. Elastic-plastic reinforcement of flexural plate

In this section we deduce the existence statement in the case of strengthening re-
inforcement: minimization of functional G defined by (2.9).

Proof of Theorem 2.3. By Gðj;w;wÞ ¼ ðhþ gÞkD2wk2L2ðWÞ �
R
Wð fr þ fpÞwdx

< þl, we know that the functional G has nonempty domain. Moreover, (5.9)
warrants that the functional G is bounded from below.

The existence of a minimizer of G over essential admissible triplets ðK ; vr; vpÞ,
namely triplets fulfilling (2.10), can be achieved by repetition of the direct method
approach with the techniques of [9].

Actually here, about minimization with respect to vr, we have these di¤erences
with respect to [9]: presence of the additional coupling term m

R
W jvr � vpj2 dx;

there are neither vanishing moments nor a safe load condition for the load fr;
last, there is a Dirichlet datum w at the boundary.

However vanishing moments and load f were exploited in [9] only to achieve
the boundedness from below of the functional, whereas here such boundedness
is already warranted by (5.9). Moreover, the additional term is a lower order per-
turbation, not a¤ecting the existence of weak minimizers (thanks to the identity
(5.7), still valid in present case), but requiring a technical correction in the proof
of strong solutions by regularization of weak solutions.

Precisely, first step (existence of weak solutions) requires no change: we intro-
duce the space SBH of Special Bounded hessian functions

SBHð~WWÞ :¼ fv a H 1;1ð~WWÞ : Dv a SBVðWÞ; v ¼ w on ~WWnWg;

here SBV is the space of bounded variation functions whose derivative has no
Cantor part ([2]); then we set the weak formulation of functional G defined in
(2.9), defined on v a SBHðWÞ:
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Gðvr; vpÞ :¼ H1ðSDvrÞ þ s

Z
SDvr

j½Dvr�j dH1 þ
Z
W

ðhj‘2vrj2 � frvrÞ dxð6:1Þ

þ m

Z
W

jvr � vpj2 dxþ
Z
W

ðgjD2vpj2 � fpvpÞ dx

where ½z� denotes the jump of z and ‘z denotes the approximate gradient of z, say
the absolutely continuous part of Dz.

The existence of a minimizing pair ður; upÞ for G follows by the same argument
of present Theorem 5.1, taking into account of Theorem 2.9 in [9].

The proof of partial regularity in W for weak minimizers is achieved by ex-
ploiting blow-up and quasi-minimizers as in Theorem 4.15 in [9]: only Lemma
4.3 of [9] must be adapted as detailed below, to take into account of the addi-
tional gluing term.

Still by identity (5.7), the load and glue terms together are represented (up to
the addition of a constant irrelevant in minimization) by m

R
Wðv� hÞ2 dx where

h :¼ up þ fr=ð2mÞ and h a Ls, s > 2: this contribution replaces here the term
�
R
W gv of [9], however this does not a¤ect regularization of weak solutions, since,

setting EðvÞ ¼ GðvÞ � m
R
Wðv� hÞ2, every local minimizer of G is a local quasi

minimizer of E, due to the excess estimate (consequence of u; v a SBHðWÞ �
LlðWÞ, h a LsðWÞ, s > 2 and Hölder inequality):Z

B%ðxÞ
ððv� hÞ2 � ðu� hÞ2Þ dx ¼

Z
B%ðxÞ

ðu2 � v2 � hðv� uÞÞaC%2�2=s

valid for B%ðxÞ � W, 0 < % < 1 and u; v a SBHðWÞ s.t. v ¼ u on WnB%ðxÞ.
Partial regularity at the boundary under Dirichlet condition, can be achieved

by the same argument of [14], taking into account of the simplifications due to the
fact that here the competing functions are not only in GSBV 2ðWÞ, but they be-
long to SBHðWÞ, hence they are globally continuous.

Summarizing a minimizing pair ður; upÞ of G leads to an essential minimizing
triplet ðSfDur

; ur; upÞ of G. r
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