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Robust Monocular Pose Initialization via Visual and Thermal Image Fusion
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Monocular-based relative guidance navigation and control chain plays a crucial role in the new missions for
proximity operations in orbit. To provide high-quality images in the widest range of scenarios as possible
without overconstraining the mission analysis or the mission planning, it is here proposed to use as input for
the image processing and pose estimation algorithm, multispectral images obtained by fusing at pixel level two
images from two different monocular cameras operating in the visible and the infrared rage of the spectrum
respectively. Since fused multispectral images have never been used for this purpose, the main objective
of the work is to verify if the content of information that can be retrieved is enough to assess the relative
pose between a chaser and an uncooperative known target and if they can be safely used as the primary
input. The tool used to synthetically generate the images is here described as well as the pose estimation
algorithm applied. During the reimplementation of the baseline algorithm, modifications and improvements
have been introduced to make the edge detection less sensitive to variations in images and to better estimate
a priori the size of the match matrix needed for the pose estimation in a more general framework with
the proposed mathematical formulation. The tests performed with the pose estimation algorithm on the
multispectral images revealed that they can be adopted as the primary source of measurement since their
content of information is higher than the single visible or infrared images used alone, avoiding the problems
that characterize both these spectral bands. This result is also confirmed by the outcomes of the relative
pose estimation algorithm which shows impressive results in terms of accuracy for a feature-based algorithm.
keywords: Relative Navigation, Thermal Infrared Images, Monocular Images, Multispectral Images, Image
Fusion, Pose Estimation

1. Introduction

New missions for proximity operations in orbit be-
tween artificial objects gained increasing attention
during the last years with the aim of performing reg-
ular in-orbit services [1]. A particular interest is put
on the relative state estimation of a chaser with re-
spect to uncooperative targets (i.e. target spacecraft
is not equipped with light-emitting markers nor is
capable of communicating with the chaser). The rel-
ative pose (position and attitude) between spacecraft
could be estimated in principle by using ground-based
tracking approaches, but the main drawback is that
the estimate is strongly affected by high uncertainty
and would depend on the visibility of the spacecraft
from the ground stations [2]. As a consequence, a
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ground-based approach is not well suited for scenarios
like formation flying missions (FF) with fractionated
scientific payloads, on-orbit servicing demonstrators
(OOS), and active debris removal. Despite significant
technology developments are still needed to make
these missions feasible, the high level of reactivity
of the chaser with respect to the target required for
close proximity operations and maneuvering imposes
the estimation of the relative pose directly onboard,
relying only on the chaser capabilities. Hence, deal-
ing with artificial uncooperative targets represents
the most challenging scenario, requiring robustness
in both nominal and off-nominal operations. Notice
that the onboard pose estimation is only the first step
towards a guidance, navigation, and control (GNC)
chain solved autonomously directly on board ensuring
timeliness, reactivity, effectiveness, and robustness.

Among the possible sensor suites, the ones that
include monocular cameras for imaging are the most
attractive solutions to collect meaningful measure-
ments for the onboard GNC chain due to low power
consumption, cost, and mass [2, 3]. More in detail,
monocular cameras operating in the visible spectrum
(VIS) have been widely studied and already applied
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to both cooperative [4] and uncooperative [5] ren-
dezvous missions. Despite the high-quality images
that could be obtained by using VIS cameras, it must
be noticed that the VIS images are strongly affected
by the illumination conditions. In case of low illumi-
nation the target spacecraft can be partially visible
or almost not visible (see Fig. 1), and in low contrast
with respect to the background (being both a celes-
tial body or the deep space) [6, 7], while in case of
high direct illumination, depending on the camera,
target, and Sun relative positions, saturations, flares,
and stray lights noises may occur [8] (see Fig. 2).
Both these conditions are highly challenging and can
strongly affect the image quality and hence the out-
put of an image processing chain tuned on nominal
conditions, especially for LEO missions where the il-
lumination conditions change abruptly [9]. To over-

Fig. 1: Example of rendered VIS image in low illumi-
nation conditions.

Fig. 2: Example of mockup VIS image in high illumi-
nation conditions [8].

come this, the operation planning of a mission could
be constrained to take into account these side effects
and perform proximity operations only in optimal
conditions but this can strongly limit OOS missions
leading to limited opportunity to properly detect and
track the target itself with unacceptable either mis-
sion length or risk increase. A valid alternative that
can be adopted is to use another camera sensor op-
erating in the thermal infrared (TIR) region of the
spectrum, as highlighted in [6]. TIR cameras only
rely on the radiance emitted by the target and col-
lected by the sensor array of the camera itself hence,

they are insensitive to the illumination conditions (as
a consequence they do not suffer the issues shown in
Figs. 1 - 2). However, despite the benefits of being
insensitive to the illumination conditions, TIR cam-
eras are characterized by smaller sensor sizes than
VIS cameras hence TIR images have lower resolu-
tion, poorer textures, and higher noise levels. These
drawbacks negatively affect the image processing al-
gorithms [10]. The strategy of keeping the advantages
of both VIS and TIR images has been explored in [6]
by fusing at pixel level both the images into a single
frame which retains more information than the sin-
gle images. The fused of [6] are supposed to be fed to
the image processing pipeline and to be adopted in a
GNC chain.

The main contribution of this paper is the evalua-
tion of the performances in the relative pose estima-
tion that can be achieved by applying state-of-the-
art algorithms for pose initialization already tested
on VIS images on VIS-TIR fused images. In do-
ing so, a new mathematical formulation to forecast
the size of the match matrix in the modified version
of the Sharma-Ventura-D’Amico (SVD) algorithm is
proposed together with a new constrained way of or-
ganizing the features belonging to each perceptual
group that allows the reduction of the generic search
space for the pose estimation problem. By applying
the SVD to fused VIS-TIR images, it has been veri-
fied that thanks to the high-quality information that
can be extracted from fused images also in low light
conditions, it is possible to retrieve the relative pose
with low estimation errors. On the other side, it has
been qualitatively proven that the Hough transform
is not well suited for application in the wide range
of scenarios that can be faced during a real mission
hence, other feature detection methods should be pre-
ferred.

The remainder of this paper is organized as follows:
the available literature on the topics related to this
article is reviewed in Sec. 2.3, while in Sec. 3.3 the
tool for VIS and TIR images generation used in this
work is briefly described. The SVD implementation
details as well as the modifications and improvements
introduced are reported in Sec. 4.2, while the results
of the modified SVD applied to the fused VIS-TIR
image are shown in Sec. 5. The main conclusions and
some hints for possible future developments are listed
in Sec. 6.2.

IAC–22–A6.IP.11.x74248 Page 2 of 15



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022. Copyright © 2022 by International
Astronautical Federation (IAF). All rights reserved.

2. Literature Review

2.1 Thermal Rendering

Thermal rendering for space objects is still an
emerging topic and therefore, there are few ap-
proaches available in the literature. One approach
is to convert the visible image into an infrared one
by simply scaling the digital number of the pixels,
as done in [11]. Unfortunately, avoiding the compu-
tation of the temperature field means that there are
shadows in the resulting image, which do not exist in
real infrared images as everything emits radiations.
Furthermore, the thermal inertia of the object is not
modelled, thus to simulate transient effects multiple
varying light sources must be introduced. A step for-
ward in the workflow is to have a simplified ther-
mal model of the object and the model of the ther-
mal camera such as proposed in [12]. The method
adopted in this article increase the accuracy of the
latter method by the computation of a high fidelity fi-
nite volume thermal model of the object [13]. Having
such a high fidelity model enables the computation
of the view factors between each mesh face of the ob-
ject and the camera, allowing the computation of the
radiant flux received by the camera thus producing
high-quality infrared images.

2.2 Image Fusion

To overcome the inherent limitations of the dis-
tinguished spectral bands, pixel-level image fusion is
proposed in this work. Image fusion is a technique
whose aim is to exploit the strengths of sensors op-
erating in different spectra to generate a robust and
informative image that can ease the subsequent pro-
cessing phase. Fusion algorithms have been used in
a wide range of application fields, such as object
recognition [14], detection for surveillance [15] and
remote sensing [16], yet they have never been ap-
plied in the context of spaceborne navigation. Sev-
eral pixel-level image fusion algorithms exist and they
can be grouped according to their baseline theory,
as described in [17]. The main categories are multi-
scale transform, sparse representation, neural net-
works, subspace and saliency-based methods, hybrid
models, and other methods. Building on the outcome
of the image fusion techniques comparison presented
in [6], only multi-scale algorithms have been consid-
ered for this work. These methods are characterized
by three common steps: the two source images are
first decomposed into components at different scales
using techniques such as pyramid transformation of
edge-preserving filters. Then, the multi-scale repre-
sentations of the VIS and TIR images are fused ac-

cording to a given fusion rule. Lastly, the fused image
is obtained through the inverse multi-scale transfor-
mation. The two fusion methods considered in our
research are here briefly outlined.

2.2.1Anisotropic diffusion-based fusion (ADF)

The implementation is based on the one described
in [18]. Anisotropic diffusion is used to decompose
images due to its capability of preserving edge infor-
mation. Two layers are obtained, namely approxima-
tion and detail layer. The fused based layers are ob-
tained as a weighted superposition of the source im-
ages base layers, while detail layers are fused with the
help of the Karhunen–Loeve (KL) transform, which is
capable of transforming the correlated image compo-
nents into uncorrelated ones. Lastly, the fused image
is reconstructed through a simple linear combination
of fused approximation and detail layer.

2.2.2Image fusion using two scale decomposition
and saliency detection (TSFISD)

The algorithm employed in this study is inspired
by the one presented in [19] with the main difference
being the technique employed to compute the visual
saliency maps. While in the original work median and
mean image filters are employed, our version uses im-
age convolution with a Scharr filter. The Scharr gra-
dient reflects the significant structural features of an
image, such as edges, outlines, and region boundaries
and it is resilient to image noises. Base layer fusion
is achieved as a weighted summation.

2.3 Pose Initialization

Fused VIS-TIR images have never been used be-
fore as direct input for the image processing step
to retrieve the relative pose between two spacecraft.
Despite that, the problem of estimating the relative
pose of a known uncooperative target with respect to
a monocular camera has been widely studied in the
last few years. There are three main approaches for
pose estimation that are: pure feature-based estima-
tion, pure deep learning-based estimation, and hybrid
methods. Feature-based methods are the most ”clas-
sical” ones and the first that have been proposed to
deal with relative pose estimation in space. These
methods are based on the extraction of hand-crafted
features (like corner [20] or edges [21]) of the tar-
get from a single image that are used, together with
the features information retrieved from the a priori
knowledge of a 3D CAD model of the target, to solve
the Perspective-n-Points (PnP) problem and get an
estimate of the relative pose between the camera and
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the target reference frames. In 2014, the first al-
gorithm to enable proximity operations among un-
cooperative spacecraft was proposed [22] and subse-
quently tested on true spaceborne images from the
Prototype Research Instruments and Space Mission
technology Advancement (PRISMA) mission [23]. In
2018, the Sharma-Ventura-D’Amico (SVD) algorithm
[24] was proposed as an advancement of the algo-
rithm in [22]. The SVD achieved state-of-the-art
(SOTA) performances improving both the robust-
ness and the efficiency achieved in [22]. A further
improvement upon the SVD was proposed in 2019
in [25], where a three-streams image processing was
adopted. The three parallel streams independently
extract corners or edges, but only the features com-
mon to all the streams are used to solve the PnP,
compensating for possible false detections in one of
the streams. Despite the slight improvements in the
robustness achieved, the computational cost of the
algorithm in [25] is strongly increased with respect
to the SVD due to the three parallel streams, hence
it could not be applied in a real case scenario. Con-
cerning the pure deep learning-based methods, the
relative pose is directly regressed by using convolu-
tional neural networks (CNNs) trained on this specific
task. Depending on the formulation used, the rela-
tive pose can be estimated through CNNs by solv-
ing a direct regression problem [26, 27], or a pure
classification problem (even if a refinement of the re-
gressed pose is usually required) [28], or as a hybrid
regression-classification problem [29]. The last ap-
proach is a hybrid between pure feature-based and
deep learning-based methods where the CNN is used
to regress landmarks or feature points that are then
coupled with the features extracted from an avail-
able 3D CAD model and used to solve the PnP prob-
lem and obtain the relative pose [2, 30]. From the
results of the 2019 ESA’s Kelvins Pose Estimation
Challenge [31] it can be concluded that the most ef-
fective approach to deal with relative pose estimation
via monocular images is using hybrid methods, hence
CNNs aided PnP solvers.

It must be noticed that the impressive robustness
and effectiveness of CNN-aided methods are due to
the training phase which is highly time-demanding.
To learn proper weights and achieve high perfor-
mances, the training phase must be carried out by
using properly labeled image datasets. Despite that,
nowadays only few spaceborne datasets are publicly
available: URSO [26], SPEED [32], SPEED+ [33],
and the Multi-Purpose Labeled Spacecraft Dataset [7]
(which comprises also relative pose labeled images

[34]). Due to this lack of datasets and also because
all the images of the available datasets are VIS im-
ages, it is not possible to train CNNs to handle TIR
or fused VIS-TIR images. Hence, in this work, only
feature-based algorithms have been considered. In
particular, the SVD has been selected as the baseline
algorithm due to its robustness and, mostly, due to its
high efficiency with respect to all the other feature-
based pose initialization algorithms proposed.

3. VIS-TIR Fused Images Generation

The following subsections briefly describe the steps
needed to obtain the VIS-TIR fused images starting
from the rendered VIS and TIR source images. Both
image types are obtained using Blender [35] as the
rendering engine inside the image generation tool de-
scribed in [6]. For a more detailed description of the
tool and all the design choices adopted for the tool
itself, please refer to [6].

3.1 VIS Image Generation

Currently, photorealistic VIS images can be ren-
dered by using several tools, most of which are based
on OpenGL (which allows the quick generation of
scenes via rasterization) or on ray-tracing (slower but
more accurate and physically based). By considering
only open-source software, POV-Ray [36] has been
already successfully adopted to generate photorealis-
tic spaceborne validated VIS images in [7], while it
has never been adopted to generate TIR images. In
this paper, Blender has been preferred as the main
software for image rendering since both VIS and TIR
images can be generated [6] by using ”Cycles” as the
rendering engine. Cycles is a rendering engine that
uses backward path tracing, a process similar to back-
ward ray tracing, where paths are scattered from each
pixel of the camera through the scene and propagated
until they hit a light source. An example of a VIS im-
age obtained by using Blender’s Cycles is reported in
Fig. 3. The image reported shows the render obtained
by using as target a simplified Tango model as in [7].
The simplified Tango model is always employed for all
the images in this work. Also, the camera parameters
given in Tab. 1 will be left unchanged throughout the
paper.

Table 1: VIS Camera characteristics.

array size 1024 × 1024 px
FoV 35.45◦ × 35.45◦

Focal Length 17.6 mm
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Fig. 3: Example of rendered VIS image.

VIS images are mostly affected by electronic noise
and blurring due to the fixed depth of field of real
cameras. To replicate real spaceborne images, the
noiseless VIS images obtained by the rendering chain
(as the one reported in Fig. 3) are postprocessed by
adding a white Gaussian noise with σ2= 0.0022 and
blurred with a Gaussian blurring characterized by σ2

= 1 and zero mean. The noise levels have been se-
lected equal to [6, 7, 31]. An example of the VIS im-
age reported in Fig. 3 after the noise postprocessing
is shown in Fig. 4.

Fig. 4: Example of rendered VIS image noised.

3.2 TIR Image Generation

The synthetic generation of infrared images con-
sists in computing the temperature field of the object
and, given the position of the camera, computing the
view factors between each face of the object mesh and
the camera itself. Using the view factors it is possible
to compute the radiance emitted by each face in the
direction of the camera. The radiance field is then
applied as a texture on top of a Lambertian emit-
ter and then, using the same ray tracing technique

used for the VIS image generation, it is possible to
convert the radiance field received by each pixel into
the respective digital number (DN). In this way, the
principle of a thermal camera is emulated. For the
sake of clarity, it is here reported a picture of the
temperature field under exam Fig. 5 and a picture of
the respective radiance field Fig. 6. For more details
on the actual computation and the temperature field
and the radiance field, please refer to [6]. It is im-

Fig. 5: Tango temperature field rendering.

Fig. 6: Tango radiance field rendering.

portant to point out the effect of the view factors on
the radiance field. As it is highlighted by the red ar-
rows in Fig. 6, as the view factors approach zero value
in the directions tangent to the curved surfaces, the
radiance field goes to zero as well. This is a qualita-
tive effect that is well caught by the TIR rendering
tool and it is fundamental for future validations. To
generate the actual noiseless TIR image, the radiance
field is mapped on top of a Lambertian emitter and
the rendering of the scene is performed through Cy-
cles directly in Blender. The camera settings for the
TIR image are reported in Tab. 2 and an example of
the final TIR picture is reported in Fig. 7.

To increase the photorealism of TIR images, char-
acteristic noises are applied in a postprocessing
phase, as done for VIS images. With regards to ther-
mal imaging sensors, microbolometers are mostly af-
fected by two sources of noise: the thermal noise and
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Table 2: TIR Camera characteristics.

Array Size 512 × 512 px
FoV 35.45◦ × 35.45◦

Focal Length 17.6 mm

Fig. 7: Example of rendered noiseless TIR image.

the 1/f (or flicker) noise. The former is a charac-
teristic of all electronic devices and it is modeled
as a white noise, assuming the same characteristics
adopted for VIS images [6]. The flicker noise is ob-
tained by applying a suitably shaped low-pass filter
to an additive white gaussian noise characterized by
σ2 = 0.0022 and zero mean. An example of the TIR
image reported in Fig. 7 after the noise postprocess-
ing is reported in Fig. 8.

Fig. 8: Example of rendered TIR image noised.

3.3 VIS-TIR Image Fusion

All the fusion techniques previously described,
share the assumption that the two source images
must have the same resolution. To handle the res-
olution mismatch between the source VIS and TIR
images in real case scenario, the latter are upscaled

using the bicubic interpolation method, since in [6] it
has been pointed out to be the best-suited method.
An example of the fused VIS-TIR image obtained by
applying the ADF method to Fig. 4 and the upscaled
Fig. 8 is shown in Fig. 9. It can be noticed that the
fused image retains the pixel brightness of the source
image while preserving most of the details and tex-
ture information of the VIS source image.

Fig. 9: Example of fused image obtained with ADF.

4. Modified SVD Algorithm

To better assess the possibility of using the VIS-
TIR fused images previously described, they have
been labeled with the relative pose during the ren-
dering process and fed as input to a pose initializa-
tion algorithm. As said before, since there are no
datasets of TIR or VIS-TIR fused images and since
the computational time to generate a TIR image is
not compatible with the generation of a dataset of
proper size, it has been decided to use a feature-based
algorithm. The SVD algorithm has been selected due
to its high accuracy and relatively low computational
cost with respect to other algorithms. The original
SVD algorithm proposed by Sharma [24] was fully re-
implemented on Python 3.10 by applying some modi-
fications (see Sec. 4.1) and by proposing a mathemat-
ical formulation as well as a more detailed description
of the constraint adopted to reduce the search space
during the definition of the match matrix between 3D
and 2D perceptual groups (see Sec. 4.2) that was not
given in the original paper. The interested reader is
referred to the original paper [24] for a more detailed
description.

4.1 SVD Feature Detection

The feature detection subsystem of the SVD is the
image processing (IP) step of the algorithm. This
block receives as input the 2D image and gives as
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output the detected features collected in perceptual
groups that are then fed to the subsequent block,
which is the pose determination subsystem, described
in Sec. 4.2. The image fed to the IP step is prepro-
cessed with a Gaussian filter with standard deviation
σ = 1.15 to reduce the magnitude of the noise. Dur-
ing some tests performed it has been highlighted that
the SVD is highly sensitive to the selection of this hy-
perparameter and that a bad selection can completely
jeopardize the feature detection step, hence the entire
algorithm [37]. The IP of the SVD is then split into
two branches, the weak gradient elimination (WGE)
and the Sobel branches, which are then merged again
after the feature detection.

The first task that is accomplished in the WGE
branch is the computation of the image gradient of
the blurred input image. This is performed by using
the intermediate gradient algorithm (instead of the
Prewitt filter originally proposed) since it resulted
to be less sensitive to background and noises. The
WGE is then applied to the image, performing also
the detection of the spacecraft in the image. The
WGE is particularly useful in locating the spacecraft
in the image also in presence of the background, by
canceling out the weak image gradients that belong
to the background itself. The WGE is performed by
normalizing, sorting in 100 uniform bins, and fitting
the distribution by an exponential probability distri-
bution function. All the pixels that correspond to
a cumulative distribution lower than a threshold are
classified as ”weak” and set to zero. For the case an-
alyzed here, the threshold value for the cumulative
distribution is selected as equal to 0.998. After the
WGE, the Region of Interest (ROI) can be defined
by computing the Cumulative Distribution Function
(CDF) of the gradients along the x and y axis in the
image reference frame. Assuming a normal distribu-
tion for the gradients, by limiting the CDF to the
values between 0.05 and 0.95, only the central 90% is
retained, which corresponds to the ROI. The ROI de-
tected in this process is here enlarged by 10% to avoid
cutting out the ROI portions of the target spacecraft.

Concerning the Sobel branch, the original image is
processed by using the Sobel operator to identify the
edges in the image. In the implementation here pre-
sented the intensity image is thresholded by setting to
zero all the pixels with an intensity magnitude below
0.9. Then, to improve the performances of the Hough
transform, the image is processed by performing an
orientated non-maximal suppression and by remov-
ing all the pixel chunks that are formed by less than
a threshold amount of pixels [37] and that may act

as a noise for the line detector. The pixel threshold
value is selected as equal to 1% the diagonal size of
the ROI.

The final part of both the WGE and the So-
bel branches is the features extraction and merging.
The original SVD implementation adopted the Hough
transform [38] as a feature extractor, applied to the
full-scale gradient image previously computed. To
apply the Hough transform, the following hyperpa-
rameters must be defined: the definition of the res-
olution of the evaluated line distances ρres and an-
gles θres, the number of peaks to be identified in
the Hough transform matrix, the expected minimum
length of the line segments Lmin, and the maximum
gap between two points to be considered in the same
line segment λmax. The effectiveness of the Hough
transform is strongly linked to these hyperparameters
and, depending on the position and orientation of the
target in the image, they should be tuned by hand per
each image. To avoid this, in [24] it is suggested to
scale both Lmin and λmax linearly with the diagonal
size in pixel of the ROI through the constants k1 and
k2 respectively. Some of the test performed during
this study highlighted that the linear scaling is not
sufficient and that the Hough transform still perform
badly for most of the VIS images from the SPEED
dataset that we used as the initial benchmark for the
SVD. As a consequence, our implementation of the
SVD performs the Hough transform only on the im-
age cropped to the ROI detected. This results in
a reduction of the sensitivity of the hyperparameters
with respect to the position of the target in the image.
Once the line segments have been detected, they are
merged to avoid duplicates and/or truncated or seg-
mented edges that can jeopardize the identification of
the perceptual groups. After that, the line segments
of the two separated branches are merged all together
to create the final set of features. Again, the merging
process is tuned to avoid duplicated and/or truncated
line segments. For more details on both the merging
needed, the interested reader is referred to [24,37].

4.2 Match Matrix Definition and Pose Estimation

The main innovation introduced by the SVD is
the feature synthesis, which refers to the organiza-
tion of the simple line segments into high-level geo-
metrical groups named ”perceptual groups” to reduce
the search space of the correspondence problem to be
solved with the Efficient PnP (EPnP) algorithm. No-
tice that a minimum of six correspondences from the
n 2D features to the m 3D points of the available 3D
CAD model are needed to solve the EPnP, leading to
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a number of correspondences equal to [24]:(
m
6

)(
n
6

)
6! [1]

The intuition presented in [22] and better devel-
oped in [24] was that it was possible to build more
complex high-level feature groups that reduce the di-
mensionality of the correspondence problem by intro-
ducing some geometrical constraints between the fea-
ture points. The perceptual groups used also in this
paper are the parallel pairs, proximity pairs, parallel
triads, proximity triads (or open tetrads), and closed
tetrads. The antennas are treated as a separate per-
ceptual group. Increasing the level of complexity of
the perceptual group reduces the probability of false
detection. The original paper proposes some geo-
metrical constraints that must be verified to prop-
erly identify the perceptual groups. These constraints
can be tailored to the examined case by tuning some
threshold values and, among them, one of the most
important is the parameter τ that is multiplied by the
diagonal size of the ROI to get the threshold length
below which each line segment is categorized as an-
tennas. The same geometrical constraints are applied
to the line segments detected both in the 2D image
and in the 3D CAD model. From the 3D CAD model
used in this work [24], it is possible to extract 18 par-
allel pairs, 16 proximity pairs, 12 parallel triads, 12
proximity triads, 2 closed tetrads, and 5 antennas.
For more details on the geometrical constraints to
identify the perceptual groups, refer to [24,37].

Once both the 2D and 3D perceptual groups are
available, the original paper proposed to just com-
bine the endpoints of corresponding feature groups
through simple combinations to build a ”match ma-
trix”. Because at least 6 correspondences are needed
for the EPnP, all the perceptual groups except the
parallel triads must be combined with other feature
groups. The antennas are used as an additional fea-
ture to reach the six correspondences needed and, for
this reason, the correct classification is of paramount
importance. How the feature groups are combined
and a general mathematical formulation for the size
of the match matrix is not reported in the original
paper. Hence, in this paper, we present a novel way
of constraining the feature groups by including rules
on how the vectors for each line segment are stored
during the execution of the algorithm. By using these
additional constraints, it is possible to derive mathe-
matical expressions to evaluate the number of rows in
the match matrix needed for each combination of per-
ceptual groups proposed in [24] and hence, to know

the dimensionality of the problem a priori.

Concerning the antennas, the possible correspon-
dences between 3D and 2D antennas can be halved
by knowing which endpoint is the tip and which is
the root. The tip in 3D and 2D can be identi-
fied as the further endpoint from the origin of the
body reference frame and the center of the ROI re-
spectively. The antenna information are saved in
an ordered list as: Antenna = [Proot; Ptip]. In
the same way, the list containing the information
of a 2D or 3D closed tetrad can be ordered as:
Tetrad = [PTL,PTR,PBR,PBL], where the terms
are respectively the location of the top-left, top-
right, bottom-right, and bottom-left endpoints of the
closed tetrad. By maintaining for each 2D and 3D
tetrad this ”clockwise” ordering of the points, it
is possible to reduce the correspondences between
2D and 3D tetrad to 8 without violating the ge-
ometry of the tetrad itself. Regarding the prox-
imity triads (or the open tetrads), it is possible to
give an ordering by writing the list starting from an
end (one of the two ”free” endpoints) and then by
writing the endpoints up to the other end, hence:
ProxTriad = [P1,1,P1,2,P2,1,P2,2] where P1,1 is
the starting point (a free end of the open triad),
P1,2 is the other endpoint belonging to the same
line segment of P1,1, P2,1 is the endpoint linked to
P1,1 by another line segment, and P2,2 is the other
free-end of the open tetrad. By using the aforemen-
tioned ordering it is possible to constraint the num-
ber of admissible combinations to 2. In the same
way, it is possible to provide an ordering also for
the proximity pairs, by starting from one of the two
free ends. In particular, the list can be written as:
ProxPair = [P1,Pcommon,P2] where P1 and P2

are the two free ends, while Pcommon is the common
point that is shared by the two line segments that
form the proximity pair. As for the case of prox-
imity triads, by using the ordering here proposed,
there are only 2 admissible combinations of 2D and
3D proximity pairs. Moving to the parallel triads,
it must be noticed that in the perspective geometry
the positional order of the three line segments that
are involved can be changed by simply changing the
observation point, hence it can not be constrained.
As a consequence, the ordering can only be given by
writing one segment per time (hence two endpoints)
ordered such that the unit vectors written from one
endpoint to the other of each line segment are in
agreement (i.e. the cosine of the angle comprised be-
tween each pair of unit vectors is higher than zero).
Thus, the list can be written in an ordered way as:
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ParTriad = [P1,1,P1,2,P2,1,P2,2,P3,1,P3,2], where
Pi,j with i = 1, ..., 3 and j = 1, 2 are the endpoints of
the line segments, written such that the unit vectors
from Pi,1 to Pi,2 are in agreement. In this case, since
in the projective geometry it is not possible to flip the
pointing direction of one of the unit vectors without
changing the pointing direction of all of them, the or-
dering introduced limits the possible combinations of
2D and 3D parallel triads to 12. The same ordering
can be adopted also for the parallel pairs hence, by
using the same notation used above, it is possible to
write the list as: ParPair = [P1,1,P1,2,P2,1,P2,2].
For the parallel pairs, by using the same properties
of the projective geometry used before, it is possible
to constrain the feasible combinations to 4.

The constraints firstly introduced here above and
resumed in the scheme in Fig. 10 strongly reduce the
dimensionality of the problem with respect to the
generic solution reported in Eq. 1. To build the match
matrix, it must be noticed that the parallel triads al-
ready have 6 features and can be used alone, while all
the other perceptual groups must be combined with
the antennas. In particular, it should be noticed that
the tip of a visible detected antenna is always in view,
this does not happen for the root. Hence, here only
the tip of the antennas are used to reach the 6 fea-
tures required by the EPnP, increasing the accuracy
of the algorithm. Due to this, 3 2D antennas are re-
quired for the proximity pairs, while for all the other
perceptual groups considered here 2 2D antennas are
needed. By defining as φa,2D the number of 2D anten-
nas detected in the image, and as φa,3D the number
of 3D antennas in the 3D CAD model, it is possible
to evaluate the number of combinations needed to
build the match matrix as a function of k, the num-
ber of antennas needed to obtain a complete set of 6
features per each perceptual group, as:

1

k!

φa,2D!

(φa,2D − k)!

φa,3D!

(φa,3D − k)!
=

1

k!
Da2D,kDa3D,k [2]

By using the possible combinations of 2D-3D per-
ceptual groups reported above with Eq. 2, the gen-
eral formulation to forecast the rows occupied by the
combinations of each feature group (see Tab. 3) in
the match matrix can be derived mathematically. It
must be noticed that the equations reported in Tab. 3
are general and are valid for each case since they are
not tailored to a well-defined scenario as the ones re-
ported in [24]. Notice that it is extremely important
to properly tune the parameter τ to correctly classify
the antennas due to their importance in the disam-
biguation of the EPnP solutions, but also since the

dimensions of the match matrix explode if there is a
high number of line segments classified as antennas.

After the definition of the match matrix as re-
ported above, all the combinations of 2D-3D features
identified are fed to the EPnP solver to define a pose
for each of them. Then the five best poses in terms
of reprojection error are further optimized by using
a Newton-Raphson optimization. After this process,
the reprojection error is evaluated once again and the
best final pose is selected [24].

5. Fused VIS-TIR Pose Initialization

The SVD with all the modifications described
above has been applied to retrieve the relative pose of
a simplified Tango spacecraft model (as the one de-
scribed in [7]) by using only fused VIS-TIR images.
The objective was to assess if the information that
can be retrieved from a fused VIS-TIR image are such
that the pose can be estimated correctly, as for VIS
images in nominal illumination conditions. The SVD
is based on the evaluation of image gradients (i.e. the
contrast between different objects) hence, by apply-
ing it, it is possible to assess also if the fusion can
correctly keep an acceptable contrast level by aver-
aging between the VIS (high contrast) and TIR (low
contrast) images. To better verify the improvement
offered by using fused images during the pose esti-
mation, the benchmark case has been selected such
that the VIS image is taken in low light conditions
(see Fig. 11a), when almost no information can be
retrieved from the VIS image. The TIR image as-
sociated with the VIS image is reported in Fig. 11b
where it can be noticed that the contrast of the tar-
get with the background is high, but the contrast
between the surface of the target is almost null. The
fused VIS-TIR image used as a benchmark is given in
Fig. 11c and it has been obtained by using the ADF
algorithm.

The hyperparameters discussed in Sec. 4.2 have
been tuned to perform correctly on the benchmark
image and to retrieve significant edges. The values of
the hyperparameters used are reported in Tab. 4. No-
tice that the same values have been used for the pa-
rameters of the Hough transform for both the streams
allowing to have some redundancies in the features
detected. This is in contrast to what has been done
in the reference paper [24], where the Hough parame-
ters are different to detect distinct features in the two
streams. The error in the estimation of the relative
pose (r̂, q̂) with respect to the ground truth (r,q)
have been evaluated in terms of the error in the es-
timation of the relative translational position along
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Fig. 10: Schematic of the constrained ordering of the perceptual groups.

Table 3: Rows of each perceptual group in the match matrix.

Feature Group
Points per

feature group
Number of 2D
feature groups

Number of 3D
feature groups

Number of rows
in match matrix

Antenna 1 (tip only) φa φ
′

a – –

Closed Tetrad 4 φb φ
′

b 8φbφ
′

b · 12Da2D,2Da3D,2

Proximity Triad 4 φc φ
′

c 2φcφ
′

c · 12Da2D,2Da3D,2

Parallel Triad 6 φd φ
′

d 12φdφ
′

d

Parallel Pair 4 φe φ
′

e 4φeφ
′

e · 12Da2D,2Da3D,2

Proximity Pair 3 φf φ
′

f 2φfφ
′

f · 1
3!Da2D,3Da3D,3

(a) Noised VIS image. (b) Noised TIR image. (c) Fused VIS-TIR image.

Fig. 11: Benchmark image used to apply the modified SVD algorithm.

each axis of the camera reference frame Et = |r− r̂|,
the error in the relative attitude ER expressed as ro-
tational error with respect to each axis of the camera
reference frame, and as the ”SLAB Score” [31], that

is evaluated as:

eSLAB =
||r− r̂||
||r||

+ 2 · arccos|q · q̂| [3]

In Fig. 12 are reported the ROI detected, the line
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(a) ROI detected in VIS-TIR fused
test image.

(b) Merged line segments detected
in VIS-TIR fused test image.

(c) Reprojected wireframe model
with estimated pose.

Fig. 12: Modified SVD performances on benchmark VIS-TIR fused image.

segments detected after merging the two streams of
the SVD, and the wireframe model of Tango repro-
jected on the image by using the estimated pose. The
results showed in Fig. 12 and reported in terms of er-
rors in Tab. 5 are achieved by using the values given
in Tab. 4.

Table 4: Modified SVD hyperparameters values.

k1 (WGE & Sobel) 0.07
k2 (WGE & Sobel) 0.0235
ρres (WGE & Sobel) 1 [pix]
θres (WGE & Sobel) 0.1 [deg]
τ (antenna threshold) 0.3

Table 5: Relative pose estimation errors.

Et [m] [0.004; 0.001; 0.047]
ER [deg] [0.72; 2.05; -0.36]
eSLAB [-] 0.04401

From the results reported in Tab. 5 it is confirmed
that fused VIS-TIR images can be exploited during
proximity operations to provide high-quality images
to be used for relative pose estimation. In particular,
the errors in the estimation are extremely low, with a
relative translational error well below 1% of the true
relative distance between target and chaser, angular
error ≤2 deg on all axes, and a SLAB score that, if
confirmed on the entire SPEED dataset, could be in
the top-3 scores ever.

To expand the results shown above, the same
method has been applied to a small dataset of 20
fused VIS-TIR images. The SVD algorithm per-
formed poorly on the dataset, giving an accurate pose

estimation only for a single image. The merged line
segments and the error in the pose estimation for that
case are reported in Fig. 13 and Tab. 6 respectively,
confirming the good edge detection performances of
the SVD in nominal conditions in fused VIS-TIR im-
ages and the high accuracy of the pose estimation
results.

Fig. 13: Merged line segments successfully detected
in VIS-TIR fused image from 20 images dataset.

Table 6: Successful relative pose estimation errors on
20 images dataset.

Et [m] [ 0.001; 0.003; 0.038]
ER [deg] [2.01; 0.15; -0.20]
eSLAB [-] 0.04200

Concerning the poor results on the dataset, it has
been noticed that in most of the cases the impossibil-
ity of estimating a pose with high accuracy or even
solving the EPnP problem is caused by a poor detec-
tion of line segments during the Hough transform. In
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particular, concerning the antennas, even if they are
clearly visible in the gradient-intensity image com-
puted (as it can be noticed in Fig. 14) and even if
the pose is quite close to the one in Fig.12, where the
SVD converged to a high fidelity solution, they have
not been detected.

Fig. 14: Wrong edge detection in fused VIS-TIR im-
age.

Despite the success rate of 5% for all the images in
the small dataset considered here agrees with the suc-
cess rate measured on average on the SPEED dataset
in [39] and although also in the original paper the
SVD algorithm provides accurate solutions only for
few VIS images [24], other tests have been performed
to exclude the possibility that the failure of the SVD
in most of the cases is due to the fact that the inputs
are fused VIS-TIR images. Hence, the SVD has been
applied to the same image in Fig. 12 but obtained by
considering a VIS image acquired in high illumination
conditions (Fig. 15a), in low illumination conditions
and fused by using the TSIFSD algorithm (Fig. 15b),
and directly to a TIR image (Fig. 15c). The relative
pose and the hyperparameters have been kept con-
stant for all the tests and equal to the ones reported
in Tab. 4.

Despite the line detection works well for the case of
VIS-TIR fused images with ADF in low light condi-
tions, by maintaining the same hyperparameters also
for the other cases shown in Fig. 15, the line detec-
tion is completely jeopardized leading to antennas not
detected and most of the edges not or partially de-
tected. A bad tuning of the hyperparameters can be
excluded because the intensity images on which the
lines detected are signed are close to each other, but
the performances are strongly different. Moreover, it
can also be excluded the fact that fused images do
not contain enough information to retrieve the rela-
tive pose because by looking at the images in Fig. 15

it can be noticed once again that the antennas and
most of the edges are clearly detectable, but they
have not been identified by the Hough transform.

As a consequence, from all the tests reported
above, it can be concluded that despite the accu-
racy that can be achieved in nominal conditions, due
to the sensitivity of the Hough transform to the in-
put image but also the hyperparameters, the Hough
transform is not suited to be adopted in a wide range
of scenarios as the ones that can be faced during in-
orbit relative navigation, since most of them will fall
in the off-nominal conditions for the Hough trans-
form, where the SVD algorithm fails due to wrong or
poor edge detection, even if the hyperparameters are
linearly scaled with the ROI diagonal length, hence
with respect to the relative distance between the tar-
get and the chaser. Despite that, it is still remarked
that, by looking also at the images in Fig.15, both
ADF and TSIFSD methods lead to VIS-TIR fused
images of high quality that can be safely adopted as
the primary input for relative navigation algorithms.

6. Conclusions and Future Works

6.1 Conclusions

The paper here presented aims to provide evidence
that fused VIS-TIR images can be safely adopted as
the primary source of measurements in relative GNC
algorithms. VIS and TIR images have been gener-
ated by using a dedicated tool and then have been
fused at pixel level by using both ADF and TSIFSD
methods. The fused images obtained have been fed
to a pose initialization algorithm. For this purpose
the SVD algorithm has been adopted since it is a
feature-based method, hence it does not require huge
image datasets to be trained as the deep learning-
based methods.

The first outcome of the work presented is achieved
in the re-implementation of the SVD algorithm.
Some minor modifications have been introduced, such
as the usage of cropped images fed to the line seg-
ment detection in the two parallel streams to im-
prove the detection performances. Moreover, the
most substantial improvement to the baseline is given
by the clear definition of geometrical constraints ap-
plied when each perceptual group is detected and
stored. These newly introduced constraints allow
storing each feature group as a list in an ordered way,
reducing the possible combinations between 2D and
3D corresponding perceptual groups. From this, it
has been possible to derive a mathematical formula-
tion that can be applied in a general case to forecast
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(a) Lines detected in ADF VIS-
TIR image in high light conditions.

(b) Lines detected in TSIFSD VIS-
TIR image in low light conditions.

(c) Lines detected in TIR noised
upscaled image.

Fig. 15: Results of line segment detection on the same image obtained with different methods.

a priori the dimensions of the match matrix.

By performing the pose estimation via SVD on a
small dataset it has been assessed that fused VIS-TIR
images can be safely adopted as the primary source
of measurement since their content of information is
higher than the single VIS or TIR images, avoid-
ing the problems that characterize both the spectral
bands. Concerning the pose estimation results, if the
SVD converges, the estimation errors are extremely
low, meaning that also a high degree of accuracy is
preserved by using images fused at the pixel level.
Notice that the best results have been achieved in
low illumination conditions, where the target is al-
most not visible in the VIS image and hence where
the vast majority of the pose initialization algorithms
that leverage on VIS images would have failed in re-
trieving the correct relative pose. Despite that, it is
worth highlighting that it has been confirmed also by
the tests performed that the Hough transform does
not guarantee high accuracy in line detection for a
wide range of scenarios without re-tuning the hyper-
parameters, hence other methods should be identified
to correctly detect complex features in a real case sce-
nario.

6.2 Future works

The outcomes of the presented work resumed
above paved the way for new developments in the
relative navigation and image generation fields. Con-
cerning the relative navigation, new algorithms with
improved performances and more robustness than the
SVD should be tested with fused VIS-TIR images to
properly assess the possibilities and the limits of us-
ing multispectral images as the primary input in real
case scenarios, leading also to the necessity of gener-
ating a wide dataset of fused images to test also deep

learning-based algorithms.
Concerning image generation, in this work, it has

been assumed that the VIS and TIR cameras are
aligned on the same axis, with equal focal lengths
but different resolutions. In a real case scenario, this
assumption does not hold and the images must be
also registered before being fused. This process can
introduce artifacts in the image that could eventually
affect both the feature detection and the pose estima-
tion performances, hence this aspect should be taken
into account for further analysis. For what concerns
the TIR images generation, the most important fu-
ture work is to validate the tool. Unfortunately, there
are no datasets of spaceborne thermal images of ar-
tificial objects thus one way to validate the tool is
to use the telemetry data. Nonetheless, the TIR im-
age rendering tool used in the article is highly flexible
and can be used for celestial objects such as asteroids
for which the validation should be possible thanks to
images from past missions such as Hayabusa.
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