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A B S T R A C T   

The COVID-19 pandemic had a profound impact on society, causing changes in various aspects of people’s lives, 
including their energy use habits. This has prompted a need for checking and updating standard energy use 
profiles, particularly for residential electricity use. To address this topic, a study was conducted on 24 multi
family buildings in Milan, using clustering to extract patterns from a database of quarter-hourly electricity use 
data from 2019 to 2020. This study found an increase in electricity usage during the COVID-19 lockdown period 
for residential buildings, likely associated with the imposed restrictions. The research also highlighted a shift in 
energy usage from the morning peak to the central hours of the day during the working days of the lockdown 
period, while a gradual increase in electricity usage throughout the day and no morning peak was observed 
during the Autumn (post-COVID) period. The findings can assist regulators and businesses in weighing the 
benefits and drawbacks of remote working and provide modellers with a complete set of daily load profiles for an 
Italian residential case study.   

1. Introduction 

In early 2020, the world faced a significant event that still persists, 
although, during the fifteenth meeting of the International Health 
Regulations Emergency Committee on the COVID-19 pandemic, the 
World Health Organization (WHO) Director-General determined that 
“COVID-19 is now an established and ongoing health issue which no 
longer constitutes a public health emergency of international concern” 
(World Health Organization, 2020). The COVID-19 virus, originally 
isolated in China, quickly spread across the globe, prompting the WHO 
to declare a global emergency (WHO, 2021). Italy was among the first 
countries outside China to experience a severe outbreak, putting 
immense pressure on its healthcare system (Gazzetta Ufficiale, 2020). 

To curb the virus’s spread, the Italian government imposed, in March 
2020, a national lockdown, mandating people to stay home and work 
remotely if possible. This drastic measure significantly impacted both 
individuals and communities. After two months, the government sought 
to gradually ease restrictions, designating the reopening process as 
"Phase 2″ and "Phase 3″. However, a resurgence of cases in late 
September 2020 forced authorities to reinstate some restrictions and 
implement a regional alert system based on infection rates. Throughout 

2020, the scientific community focused on developing COVID-19 vac
cines, with the European Medicines Agency approving the first vaccines 
in December (European Medicines Agency, 2020). Fig. 1 provides an 
overview of these events. The lockdown period for Lombardy, one of the 
early and most affected regions in Italy, has been highlighted in blue. 
Since, the imposed national and local restrictions brought a change in 
people’s lives and consequently in energy consumption patterns and 
uses, the data gathered during this period has been used to study the 
energy behavior in households during a full lockdown to understand the 
type and scale of changes in energy use. Four periods have been iden
tified and used in the following analysis: "Winter" (i.e., broadly January- 
February) in orange, "Lockdown" (i.e., broadly March-April) in blue, 
"Summer" (i.e., broadly May-September) in gray, and "Autumn" (i.e., 
broadly October-December) in green. 

In particular, the COVID-19 pandemic changed the daily occupancy 
of residential buildings and consequently the daily load profile. A resi
dential daily load profile represents the electricity used by all electronic 
devices in a household over 24 h. Daily load profiles analyses serve 
several purposes, among the main ones: assisting in demand-side man
agement for targeted cost-effective solutions (Kwac, Flora & Rajagopal, 
2014); predicting daily electricity demand for transmission system 
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operators (TSOs) (Terna, 2023); providing data for distribution system 
operators (DSOs) to improve their interface with transmission and dis
tribution (Bosisio, Moncecchi, Morotti & Merlo, 2021); and aiding au
thorities and municipalities in assessing the interplay between 
renewable production and self-consumption (Molin, Schneider, Rohdin 
& Moshfegh, 2016). Daily load profiles are also employed by building 
and urban scale designers (Ferrando et al., 2022). Measured daily pro
files are used to validate bottom-up modelled profiles from individual 
devices (Besagni, Premoli Vilà & Borgarello, 2020; Widén et al., 2009), 
data-driven segmentation of daily profiles often employs clustering 
(Causone, Carlucci, Ferrando, Marchenko & Erba, 2019; Ferrando, 
Marchenko, Erba, Causone & Carlucci, 2019) and/or advanced deep 
clustering techniques to classify different user groups based on their 
consumption pattern (Ferrando, Nozza, Hong, Causone & Milano, 
2021). Besides the availability of appliances, in some cases, residential 
profiles are segmented based on sociodemographic behavioural analysis 
(Hayn, Bertsch & Fichtner, 2014). The literature emphasizes the need to 
update and improve residential use profiling, incorporating the growing 
trend of remote working (Proedrou, 2021). To this end, the Lockdown 
period presents an opportunity to gain a deeper understanding of remote 
working potential effects, not only within the context of 2020 but also in 
anticipation of its continued prevalence. 

This research aims to examine the pandemic-induced changes in 
people’s lives, specifically electricity consumption in the residential 
sector (Balest & Stawinoga, 2022), in Milan. Various studies have 
explored this topic, some analysing the pandemic’s impact on green
house gas emissions (IEA, n.d.) and others using simulated data to model 
different scenarios (L. Li, Meinrenken, Modi & Culligan, 2021; Zhang 
et al., 2020). Research has also focused on the relationship between the 
pandemic and overall electricity use (Abu-Rayash & Dincer, 2020; Z. Li 
et al., 2022) and the residential sector specifically (Abdeen, Kharvari, 
O’Brien & Gunay, 2021). Some studies have investigated the correlation 
between temperature and electricity consumption during the crisis 
(Abdeen et al., 2021). The present study investigates the impact of 
COVID-19 and lockdown measures on residential energy consumption in 
Milan, by comparing smart meter readings from 2019 to 2020. This 
comparison provides insight into the behavioural changes associated 
with remote working, particularly in the context of the Mediterranean 
countries. To the best of the authors’ knowledge, no studies have yet 
examined the effects of COVID-19 on residential energy use in Italy, 
making this research a novel contribution to the field. While similar 
studies have been conducted in other parts of the world (e.g., the United 
States of America (Bednar & Reames, 2023; Dai et al., 2023), Japan 
(Kojima & Saito, 2023), South Korea (Choi & Yoon, 2023), Indonesia 
(Sari & Pinassang, 2023), Colombia (Garcia-Rendon, Rey Londoño, 
Arango Restrepo & Bohorquez Correa, 2023)), the Mediterranean region 
presents unique challenges and opportunities that warrant investigation. 
By focusing on this understudied area, the present study aims to advance 
the understanding of the impacts of COVID-19 on residential energy 
consumption and inform future policy and decision-making. Thus, in 
this research, the daily load profiles, coming from a database of 

quarter-hourly electricity use of 24 residential buildings (for a total of 
around 750 apartment’s load profiles) from 2019 to 2020, serve as the 
central element of electricity consumption analysis on an hourly basis. A 
clustering algorithm is applied to segment and classify the profiles, as 
detailed in the methodology (Section 2). The case study is described in 
Section 3, while Section 4 presents the results and discussions. Section 5 
outlines the conclusions, limitations, and future outlooks of the study. 

2. Methodology 

Electricity usage in buildings is known to vary depending on the time 
of year, increasing during periods of extreme temperatures and 
decreasing during milder seasons (Alberini, Prettico, Shen & Torriti, 
2019). However, it is also known that external factors can significantly 
impact electricity usage patterns (Fransson, Bagge & Johansson, 2019), 
and the implementation of COVID-19 restrictions could be identified as 
one of them. Therefore, to understand the effect of COVID-19 re
strictions on electricity usage, the available database for the year 2020 
has been divided into four periods, as shown in Fig. 1. By comparing 
these periods to the same periods of the previous year (2019), it is 
possible to infer changes in electricity usage that may be attributed to 
COVID-19 restrictions. The analysed periods are the Winter, the Lock
down and the Autumn, which are compared both against each other and 
also to the corresponding periods of 2019, to highlight pattern differ
ences. Due to the strong lack of data, the Summer period is included only 
and partially in the data understanding phase, and this part of the 
database has not been used for clustering applications, being unsuitable 
for that purpose. 

The methodology used in this study is divided into four main tasks, 
(Fig. 2) starting from the raw data (details regarding the characteristics 
of the data used in this study can be found in Section 3.): (1) data pre- 
processing, (2) data understanding, (3) data clustering and (4) 
distribution-based analysis. These four tasks are fundamental to gain a 
comprehensive understanding of the data and to identify any change in 
electricity usage patterns resulting from external factors, such as the 
implementation of COVID-19 restrictions. Python (Python Software 
Foundation, 2019) is used as the programming language to implement 
all tasks and analyses. Specifically, the scikit-learn library in Python is 
utilized to perform the clustering tasks and analyses. 

The data pre-processing task is fundamental to ensure that the 
dataset is accurate, complete, and consistent. This involves cleaning the 
data by removing errors, missing values, or outliers and, aggregating the 
data spatially and/or temporally if needed. Additionally, data normali
zation may be necessary to ensure a consistent scale across all variables. 
Finally, as the literature advises [11,13,28], the daily load profiles of 
each building have been converted to an alternate representation con
sisting of an hourly load pattern and a reference power value. The hourly 
load pattern is calculated as the normalized profile of the original load 
curve, whereas the power value, in this case, is defined as the Appliance 
and Lighting Density Level (ALDL), which is the average of all the 
buildings’ daily maximums. The daily maximum of each building’s daily 

Fig. 1. Timeline of the COVID-19 development and measures during the year 2020, with a focus on Italy and the Lombardy region. The colours represent the time 
ranges adopted in the study. 
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profile was used for normalization. By pre-processing the data in this 
way, it is possible to ensure that the subsequent analysis is based on 
accurate and relevant information. 

The second task involves a general investigation of the data to assess 
trends and correlations between variables and to identify any trend, 
pattern, or anomaly. The data understanding task gives insights from the 
data, and it is important to develop knowledge of the variables and their 
relationships. This can be done through visualizations, such as scatter 
plots, histograms, or box plots, which can highlight any relationship or 
correlation between variables. Additionally, statistical analysis can be 
used to identify the strength of any relationship between variables. A 
first correlation analysis against weather variables is performed because 
they (e.g., temperature and irradiance) are known to influence elec
tricity usage, and it is important to understand whether any observed 
change in usage patterns can be attributed to these variables. Pearson 
correlation, being a widely used statistical method for measuring the 
strength of the linear relationship between two variables, was employed 
for this task. The results of this analysis can help to identify whether the 
changes in electricity usage patterns can be attributed to climate vari
ables or other external factors, such as COVID-19 restrictions. 

In the third task, data are clustered into daily patterns to understand 
the different electricity usage patterns across different periods and years. 
Each cluster is characterized by a centroid (e.g., a representative daily 
pattern determined by averaging all the daily patterns grouped in the 
same cluster) and a distribution of representativeness in the original 
database that corresponds to the percentage of original days that are 
similar to one another, thus, are in the same cluster (e.g., 20% of the 
days fall in Cluster 1). The data clustering task is performed because the 
electricity usage patterns are known to exhibit recurrent daily patterns, 
such as peaks during certain hours of the day and dips during others 
(Ferrando et al., 2021). Clustering is a useful method for identifying 
these patterns and grouping similar usage patterns. Based on the nature 
of our dataset and research question, analysing the data separately for 
each year would best highlight potential differences in behaviours be
tween 2019 and 2020. The intention is to focus on identifying changes 
rather than purely describing consumption profiles, so we used the 
clustering centroids primarily as an identification tool. The 
Davies-Bouldin index (DBI) is a measure of the similarity between 
clusters and provides an estimate of the optimal number of clusters. By 
using this method, the number of recurrent patterns can be found 
allowing the comparison before, during and after the implementation of 
COVID-19 restrictions. This analysis can help identify changes in elec
tricity usage behavior resulting from the restrictions. 

In the fourth task, clusters are analysed and compared based on their 
distribution of representativeness in the database between 2019 and 
2020 to gain further insights into electricity usage patterns providing a 
detailed understanding of the recurrent trends and how they changed 
after the implementation of COVID-19 restrictions. Patterns of the 
different periods are directly compared and analysed based on their 
distribution in the dataset. The comparison between years aimed to 
investigate behavioural shifts rather than accurately quantify repre
sentation, therefore the profiles are analysed based on the raking of 
frequency for each year. 

3. Case study 

The data utilized was collected through smart meters installed in 
households of a selected demonstration area. A smart meter is a physical 
device capable of automatically detecting and transmitting information 
about the usage of a particular energy carrier, such as electricity, in a 
given perimeter, such as a flat, enabling remote monitoring (Bimenyi
mana, 2018). The database focuses on 24 buildings primarily used for 
residential purposes, divided into "zones" representing either an apart
ment or a common area. In this case study, a zone refers to a part of the 
building connected with a smart meter. Each smart meter is associated 
with a zone, labelled with a progressive number, and reads electric use 
every 15 min. Around 750 zones, and thus energy profiles, constitute the 
database. The available data ranges from 1st January 2019 to 31st 
December 2020, with localized missing data between 1st May 2020 and 
31st August 2020 due to changes in the data collection system. 
Excluding this critical period, the energy provider filled in any missing 
entries using a filling algorithm based on historical electric data series. 
The data is anonymous, providing no information or characterization of 
the tenant, while limited information on the buildings is available, such 
as the total net area and the zones in each building. While income data 
for the specific households are not available, the geographic distribution 
from the city center to the periphery implies that the residents likely 
represent a range of socioeconomic characteristics. Higher incomes tend 
to be overrepresented in central areas, while lower incomes are more 
concentrated in the suburbs. Therefore, the building locations indicate 
that the sample covers a diversity of incomes, although public housing 
units are not included. The geographical distribution improves the 
representativeness, likely capturing a range of household incomes. The 
buildings in the case study are mostly multi-family, with some com
mercial activities on the premises, built between 1920 and 2004, with an 
average value for buildings constructed in 1960. The majority of flats 
have a gas-fired centralised building heating system and an independent 
split cooling system, with domestic hot water partially produced elec
trically through electrical boilers. The building envelopes are primarily 
based on hollow clay brick construction. Some buildings have an air gap 
between two brick layers, while others have external or internal insu
lation. Only a small number of buildings have prefabricated panel en
velopes consisting of expanded clay blocks with internal insulation. 
These envelope characteristics, along with the systems and uses, are 
typical of residential buildings from the era commonly found in Milan. 
The buildings’ net conditioned area ranges from 700 m2 to 9300 m2, 
with an average value of 3300 m2, and the number of storeys varies 
between 4 and 12, with an average value of 6.5. All structures are well 
integrated into the city’s residential fabric. Fig. 3 shows the location of 
all households in the database, positioned in the South-East area of 
Milan. 

4. Results 

4.1. Data pre-processing 

The data pre-processing involves merging several databases into a 
single larger dataset and cleaning it to ensure a reliable comparison 

Fig. 2. Schematic of the applied methodology.  
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passing through data cleaning, data reduction and data transformation. 
First, the data underwent a cleaning phase to remove inconsistencies. In 
this regard, daily string values of the smart meter readings containing 
missing data were deleted to reduce errors. The period with the missing 
values from May 1st to October 31st of 2020 was completely removed 
from the dataset for the clustering phase due to the massive amount of 
missing values. For the data reduction phase, all the readings from smart 
meters installed in the same building were aggregated to analyze the 
energy usage profile at the building level. Specifically, the study added 
up all the zones’ electricity use for each building. While analysing 
electricity patterns of single flats would enable a fine-grained investi
gation, many systems rely on the entire building level. Isolating single 
flats would not capture the overall usage of shared building resources. 
By summarizing zones together, we assessed changes in behavior at the 
whole multi-family building level rather than within individual flats. 
Aggregating at the building scale allowed us to describe how total 
consumption profiles shifted between 2019 and 2020, even if behav
iours in single flats did not change uniformly. Focusing on the full 
building usage enabled valid results to characterize changes across the 
multi-family dwelling as a whole. Moreover, the data reduction is per
formed on a time-step basis. The original database is registered every 15 

min as electric power in watts. To obtain hourly values, the average 
within each hour is calculated. By Averaging the values also the po
tential eluded errors are averaged. Thus, this process reduces the impact 
of potential outliers on the overall results. Finally, the daily maximum of 
each building’s daily profile was used for normalization. Additionally, 
data transformation involved the distinction between working days 
(Monday to Friday) and weekends (Saturday and Sunday and national 
holidays) into two different datasets since the study focused on the 
work-from-home phenomenon. It also followed the traditional distinc
tion in literature between weekends and working days (Causone et al., 
2019). 

4.2. Data understanding 

An analysis was conducted to compare the total monthly electricity 
usage given by the sum of all buildings in the case study between 2019 
and 2020 and to determine whether any changes occurred during the 
months. Fig. 4 displays an increase in electricity usage during March and 
April of 2020, as compared to that of 2019. The Winter period, including 
data from 2019 to 2020 before the COVID pandemic, showed similar
ities, indicating that changes in subsequent periods may be related to 
COVID. During the Lockdown period, there was a noticeable increase in 
electricity usage, which could be attributed to the mandatory stay-at- 
home order. Regarding the Summer period, due to a severe lack of 
data, it is challenging to define a trend. Notably, a decrease in electricity 
usage is registered during the Autumn period. Specifically, in September 
and October, people had more freedom to leave their homes, and this 
may be reflected in the decrease in electricity usage compared to 2019. 
However, this trend was not followed during August and December 
when a low number of people went on holiday, resulting in a visible 
increase in electricity usage in 2020. 

Table 1 presents the ALDL (average of all the buildings’ daily max
imums) for different periods, categorized by working days and week
ends, for the years 2019 and 2020. During the Lockdown period, the 

Fig. 3. Location of the considered buildings in Milan, Italy.  

Fig. 4. Compared total monthly energy use between 2019 and 2020 of all buildings included in the study.  

Table 1 
ALDL (average of all the buildings’ daily maximums) for each period.  

Period label  2019 2020 Δ% 

Winter Working days 6.08 W/m2 6.56 W/m2 +7.9% 
Weekends 5.46 W/m2 5.96 W/m2 +9.2% 

Lockdown Working days 5.68 W/m2 5.82 W/m2 +2.5% 
Weekends 5.21 W/m2 5.75 W/m2 +10.4% 

Autumn Working days 6.83 W/m2 6.68 W/m2 − 2.2% 
Weekends 6.92 W/m2 6.89 W/m2 − 0.4%  
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energy usage value was higher, especially on weekends (+10.4%). In the 
Autumn period, a decrease effect is registered for both working days and 
weekends (− 0.4%) In the Winter period, the reference power level 
increased (i.e., +7.9% for the working days and +9.2% for the week
ends). It is important to note that these power densities are based on the 
average of the daily maximum in the reference period, representing the 
peak of the power request, rather than the average power usage of all the 
hours in the reference period. It is thus an “average daily peak” value. 

Previous studies have established a significant link between elec
tricity consumption and climatic parameters, such as temperature and 
global irradiance (Lei & Hu, 2009). To investigate whether changes in 
usage profiles could be weather-dependent, a correlation analysis was 
conducted between climate data and electricity usage data. Fig. 5 il
lustrates the results of the Pearson correlation analysis between total 

electricity usage of all buildings and external air temperature and irra
diance. Pearson correlation is a widely used statistical method for 
measuring the degree of linear relationship between two variables. It 
produces a coefficient, denoted as rho, which ranges between − 1 and 1. 
When rho is close to 1 or − 1, it indicates a strong positive or negative 
correlation between the two variables, respectively. On the other hand, 
when rho is close to 0, it indicates a weak or no linear correlation be
tween the two variables. Thus, if a strong correlation had been present, 
the data points would form a linear or curved pattern that trend up or 
down in the graphs. In this study, the plots show that the Pearson rho 
values are on average always around 0, indicating weak correlations 
between the investigated variables. Based on this, it is possible to 
exclude weather variables as the principal cause of changes in electricity 
usage patterns. Since no other relevant driving force is identified during 

Fig. 5. Pearson’s correlation between total electric use of all buildings and weather variables.  
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the analysed period, the assumption that the observed changes may be 
substantially related to the COVID-19 restrictions in 2020 is relevant. 
Further investigations into the impact of these restrictions on electricity 
usage patterns can provide valuable insights into how changes in oc
cupants’ behavior can affect energy consumption. 

4.3. Data clustering 

In this study, the classical K-Means algorithm is used coupled with 
the DBI, which allows the comparison of different cluster numbers to 
find the appropriate partition for the data. The data given to the algo
rithm is the normalized daily pattern. Normalizing data in clustering is 
crucial to ensure that each variable is equally important and to prevent 
bias towards variables with larger scales or units. This is because clus
tering algorithms use distance measures that are sensitive to the scale 
and unit of the variables. Normalizing the data by transforming it to a 
common scale or range can improve the accuracy and interpretability of 
the clustering results, as well as their generalizability to new datasets 
with similar variable scales and units. The K-Means method is imple
mented with the use of scikit-learn (``sklearn.cluster.KMeans — sciki
t-learn 1.2.2 documentation,’’, n.d.). In particular, the chosen clustering 
method is the “K-Means”, the chosen algorithm is “Full”, the chosen 
initialization method is “K-Means++”, the maximum iteration is set at 
300, the random number generation for centroid initialization is 42. For 
further details refer to the literature (“sklearn.cluster.KMeans — sciki
t-learn 1.2.2 documentation,”, n.d.). The final number of clusters was 
determined to be from 4 to 10, as also emerged in the literature on 
similar case studies (Causone et al., 2019; Chicco et al., 2005; Jang, 
Eom, Jae Park & Jeung Rho, 2016). Table 2 summarizes the final 
numbers of clusters obtained for different studied periods. 

4.3.1. Winter daily patterns 
The results of the data clustering for the Winter period are shown in 

Table 3 (i.e., clusters’ distribution), Fig. 6 (i.e., daily patterns of working 
days) and Fig. 7 (i.e., daily patterns of weekends). The clusters are 
depicted in Figs. 6 and 7, which comprise “n” graphs with the hours of 
the day plotted on the x-axis and the normalized daily pattern for single 
buildings, with values ranging from 0 to 1, on the y-axis. The black 
profile represents the hourly electricity use of the cluster centroid, while 
the gray profiles represent all the objects that belong to the cluster. 

For the Winter period, from Table 3 is it clear that Cluster 1, Cluster 8 
and Cluster 2 are the most representative for the working days of 2019 
including together almost 70% of the days. For the 2020 working days, 
there is less variability since only two clusters (i.e., Cluster 5 and Cluster 
2) include around 78% of the daily patterns. The weekend days of both 
2019 and 2020 show also low variability. The most representative 
cluster for weekends of 2019 is Cluster 1 including around 48% of the 
days and, whereas, in 2020, Cluster 3 includes 50% of them. 

In terms of patterns, the results for the working days of 2019 and 
2020 are, in general, similar. The most representative clusters for the 
working days of 2019 are Cluster 1, Cluster 8 and Cluster 2, character
ized by the morning peak around 8 am and the highest peak around 8 
pm. In the same period of 2020, the most representative clusters (i.e., 
Cluster 5 and Cluster 2) of the working days show very similar results to 
the patterns of 2019. Also, other less representative clusters of 2019 and 

2020 are alike. For example, the shapes of Cluster 5 of 2019 and Cluster 
3 of 2020 show a very high peak during the morning and a slight 
decrease during the day. Cluster 4 of 2019 and 2020 are very similar 
with a basically constant value of 0.9 from 8 am till 9 pm. 

The same is true for the weekends of the Winter periods of 2019 and 
2020. The most representative clusters of 2019 are Cluster 1 and Cluster 
4, showing a small peak during the morning hours and a high peak 
around dinner time around 8 pm. Likewise, the most representative 
clusters of 2020 (i.e., Cluster 1 and Cluster 3) show very similar shapes. 
Moreover, Cluster 2 of 2019 is similar to Cluster 2 of 2020 and the same 
is true for Cluster 5 of 2019 and Cluster 4 of 2020. One can concluded 
that in the Winter period (before the starting of the restrictions) no large 
differences in terms of daily patterns occur between the years 2019 and 
2020. The changes noted in the most representative clusters of the other 
periods are due to some external factors, that, excluding the weather 
(Section 4.2, Fig. 5) may be identified in the restrictions due to the 
COVID-19 outbreak. 

4.3.2. Lockdown daily patterns 
The results of the data clustering for the Lockdown period are shown 

in Table 4 (i.e., clusters’ distribution), Fig. 8 (i.e., working days) and 
Fig. 9 (i.e., weekends). 

Looking at Table 4 it is clear that the shapes, during Lockdown, are 
more variable than during the Winter period. No cluster represents more 
than 23.5% of the days among all groups. For the workdays of 2019, the 
most representative clusters are Cluster 7 (i.e., 20.5%) and Cluster 2 and 
Cluster 6 (both around 13%). For the workdays of 2020, the most 
representative cluster is Cluster 2 (i.e., 23.5%) and Cluster 3 and Cluster 
7 (both around 14%). The weekends show even more variability. The 
most representative cluster for Weekends of 2019 is Cluster 8 (i.e., 
18.1%) and for 2020 is Cluster 3 (i.e., 18.6%). 

The two most representative clusters for the Lockdown period of 
2019 are Cluster 7 and Cluster 2, which exhibit the typical morning peak 
observed during the Winter periods of 2019 and 2020 for working days. 
However, for the Lockdown period of 2020, Cluster 2, Cluster 3 and 
Cluster 7 are the most representative, and they show a pattern similar to 
that of weekends in the Winter period with a smooth-out morning peak. 
This is because during this Lockdown period, people are working from 
home, and as a result, they wake up at different times, creating a smooth 
increase in the morning rather than a sharp morning peak. This smooth 
increase is also observed in other clusters (i.e., Cluster 3, Cluster 4 and 
Cluster 9) in 2020. Additionally, the Lockdown of 2020 exhibits other 
representative daily patterns, such as the two round peaks of Cluster 6 
and Cluster 10, which are equally high. This pattern was not observed 
during the Winter period for working days but was typical of weekends. 
This type of pattern may be another typical feature of a restriction 
period. 

The weekends of the Lockdown period, show similar results in 2019 
and 2020 (Fig. 9). This means that the daily pattern of the weekends did 
not change drastically. However, the flatter shapes like the ones of 
Cluster 9 and Cluster 10 of 2019 weekends did not frequently occur in 
2020 (present only in Cluster 8 which is very low representative). A 
relatively flat normalized shape without peaks can correspond to an all- 

Table 2 
Final number of clusters for each period.  

Period label 2019 2020 

Winter Working days 8 5 
Weekends 5 4 

Lockdown Working days 10 10 
Weekends 10 10 

Autumn Working days 7 6 
Weekends 7 7  

Table 3 
Winter period clusters’ distribution.   

Workdays Weekend  

2019 2020 2019 2020 

Cluster 1 29.0% 8.0% 47.9% 27.1% 
Cluster 2 17.6% 29.5% 4.2% 4.2% 
Cluster 3 9.0% 3.8% 2.1% 50.0% 
Cluster 4 5.7% 10.3% 27.1% 18.8% 
Cluster 5 4.7% 48.4% 18.8% – 
Cluster 6 7.3% – – – 
Cluster 7 4.7% – – – 
Cluster 8 22.0% – – –  
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day long strong use of electricity or an all-day long very low use of 
electricity. The second case can probably exist when people stay out of 
the house for the whole day. During the Lockdown of 2020, this possi
bility was hindered by restrictions, and thus it is also a less represen
tative pattern in the results. 

4.3.3. Autumn daily patterns 
The results of the data clustering for the Autumn period are shown in 

Table 5 (i.e., clusters’ distribution), Fig. 10 (i.e., working days) and 
Fig. 11 (i.e., weekends). 

The most representative clusters of the Autumn period, for the 
working days of 2019 are Cluster 1 (i.e., 28.4%) and Cluster 7 (i.e., 
17.6%), together including 46%. The 2020 workdays show similar 
variability, as a matter of fact, the two most representative clusters (i.e., 
Cluster 2 and Cluster 3) include basically 50% of the days. Similar 
percentages are registered for the weekends. In 2019, the three most 
representative clusters are Cluster 2 (i.e., 24.6%), Cluster 4 (i.e., 21.7%) 
and Cluster 5 (i.e., 19.6%). For 2020, Cluster 5 includes 26.6% of the 
days and Cluster 2 22.7% of the days. 

During working days, the year 2019 is mostly represented by Cluster 
1 and Cluster 7, which exhibit a peak in the morning and a higher peak 
in the late afternoon, similar to the work profile of the Winter period. In 
contrast, the most frequent clusters in 2020 are Cluster 2, which displays 
a gradual increase in electricity usage throughout the day, and Cluster 3, 
with high usage throughout the day. None of the 2020 clusters exhibits a 

sharp morning peak, except Cluster 6. This observation could indicate a 
potential smooth out of the morning peak in the profile pattern that is 
still present also with no complete restrictions, as observed during the 
Lockdown period. The most significant profiles for Winter weekends in 
2019 are Cluster 2, Cluster 4, and Cluster 5, all of which display a sig
nificant concentration of electricity usage during the central hours of the 
day. The weekend profile of 2020 is similar to that of 2019 and also the 
other periods. In this case, the absolute ALDL (Section 4.2, Table 1) for 
2020 is very similar but slightly lower than 2019. 

4.4. Distribution analysis 

Since the weather dependency analysis yielded weak correlations 
(Section 4.2, Fig. 5), the analysis and comparison proceeded without 
considering weather variation as a potential source of changes in elec
tricity use. In this section, the comparison from the perspective of ab
solute electricity use values is expressed in terms of specific use [W/m2]. 
To achieve this, the profiles are no longer treated as normalized factors 
but instead multiplied by their respective ALDL. As explained in the 
Methodology (Section 2), the objective of this study step is to evaluate 
changes in residential electricity use in Milan during the Lockdown 
period. To achieve this, the 2019 and 2020 clusters are matched ac
cording to their percentage representativeness within the period, 
thereby comparing the most significant and representative patterns. For 
example, the first most common pattern of a period of 2019 for working 

Fig. 6. Winter working days clusters’ centroids.  
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days is directly compared with the one of 2020 multiplied by the ALDL, 
thus showing the pattern itself but also the absolute value of the elec
tricity use. 

4.4.1. Winter daily patterns analysis 
Fig. 12 displays the differences between the Winter period clusters of 

2020 and 2019, organized by their representativeness. In each graph, 
two clusters, one from 2019 (in blue) and one from 2020 (in violet), are 
arranged in order of their weight in the period groups, on the top part of 
the image the working days are plotted, in the bottom the weekends. The 
percentage difference with respect to 2019 is shown in gray. The shapes 
of the two most frequent clusters during the Winter period working days 
were very similar to those of 2019. With the analysis of the first repre
sentative patterns, it was determined that the difference between the 

Fig. 7. Winter weekends clusters’ centroids.  

Table 4 
Lockdown period clusters’ distribution.   

Workdays Weekend  

2019 2020 2019 2020 

Cluster 1 7.0% 2.7% 9.0% 15.7% 
Cluster 2 13.3% 23.5% 11.8% 10.5% 
Cluster 3 11.8% 14.1% 12.0% 18.6% 
Cluster 4 7.9% 8.6% 8.3% 5.4% 
Cluster 5 5.3% 4.1% 8.6% 16.9% 
Cluster 6 12.7% 6.9% 10.4% 11.3% 
Cluster 7 20.5% 14.0% 9.5% 6.6% 
Cluster 8 6.9% 10.7% 18.1% 2.5% 
Cluster 9 4.5% 7.0% 7.9% 8.6% 
Cluster 10 10.1% 8.3% 4.4% 3.9%  
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Fig. 8. Lockdown working days clusters’ centroids.  

Fig. 9. Lockdown weekends clusters’ centroids.  
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years 2019 and 2020 was relatively small. The changes ranged from 
− 1.1% to 8% during the day and slightly more during the night (i.e., 
maximum +22%). The second representative pattern shared similarities 
with the 2019 cluster, but had different steepness, resulting in differ
ences ranging from − 16% to 16%. The other clusters’ comparisons show 
higher differences both in shapes and absolute values. For the weekends 
the similarities are higher and permeate all clusters. The shapes are very 
similar for the four clusters changing mainly the absolute values, with a 
general increase in the electric use. 

4.4.2. Lockdown daily patterns analysis 
Fig. 13 provides a quantitative comparison of the profile differences 

between 2019 and 2020 for the Lockdown period. One notable feature is 

a marked change in the morning peak time, which shifted from around 7 
am in 2019 to later hours in 2020, around 1–2 pm, due to increased 
working from home. This feature is common to almost all 2020 profiles. 
Another noteworthy profile is the second profile in terms of represen
tative percentage distribution, which lacks a sharp peak throughout the 
day but rather exhibits a plateau that develops in the morning and 
continues throughout the central hours. The evening peak remains 
largely unchanged in almost all cases. While it is not feasible to describe 
and profile the users without additional data, it is possible to speculate 
on the most representative profiles in the analysis. Based on the first 
three profiles, three distinct user categories can be inferred:  

- Individuals who worked from home/stayed at home and woke up 
later have shifted their electricity use over time, increasing it. Their 
morning use is decreased to a maximum of 28%, while in the after
noon it is increased by 20%.  

- Individuals who worked from home/stayed at home without 
changing their wake-up time, producing a high and constant energy 
use; with respect to the equivalent percentage distribution cluster of 
2019, their use in the afternoon increased by 40%.  

- Individuals who stayed at home and decreased their use, by around 
17% during the night and late afternoon, and by 56% in the morning; 
but still had a peak use at lunchtime, which equals the use of the 
compared 2019 cluster. 

Table 5 
Autumn period clusters’ distribution.   

Workdays Weekend  

2019 2020 2019 2020 

Cluster 1 28.4% 14.3% 12.3% 11.8% 
Cluster 2 11.4% 29.0% 24.6% 22.7% 
Cluster 3 12.1% 20.3% 10.5% 12.2% 
Cluster 4 10.4% 15.2% 21.7% 16.8% 
Cluster 5 14.5% 10.8% 19.6% 26.6% 
Cluster 6 5.7% 10.4% 2.9% 0.3% 
Cluster 7 17.6% – 8.3% 9.5%  

Fig. 10. Autumn working days clusters’ centroids.  
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For weekends during the Lockdown periods, the characteristics 
described above persist in the 2020 period, but the differences with 
2019 are less pronounced. However, it should be noted that due to the 
forced stay at home, many habits such as the use of household appli
ances (e.g., washing machine, dishwasher) may have been diluted dur
ing the rest of the week, and others, such as receiving guests, prevented 
by the external situation. From this profile visualization, new informa
tion emerges, such as an increase in the evening peak in 2020 in more 
than one relevant case by a value ranging from 10% to 19%. 

4.4.3. Autumn daily patterns analysis 
Fig. 14 provides valuable insight into the quantitative differences 

observed during the Autumn period. The first cluster showed striking 
similarities to the 2019 cluster, with the primary difference being 16% 
decrease in electricity usage in the morning. However, the other clusters 
demonstrated significant changes in their profiles. Cluster 6 was the only 
one to match its most similar correlative, while the remaining clusters 
varied significantly between the two years, either in shape or percentage 
distribution. For instance, two similar clusters, such as Cluster 2 in 2019 
(5th in 2020) and Cluster 4 in 2020 (3rd in 2019), had different levels of 
relevance in the two years. 

Analysing the weekends, it becomes apparent that the differences 
against the 2019 clusters were more significant for the first two clusters 
than in the working days’ case, with absolute values exceeding 16% 
during the central hours. The night use for the first percentage 

distribution cluster of 2020 was significantly lower than that of 2019. 
The two most common clusters from 2019 to 2020 showed mirrored 
similarities, with the first of one year closely resembling the second of 
the other year. This suggests that the same user category’s weight may 
have changed over time. Cluster 2, the most representative cluster in 
2019, may characterize people who focused their electricity usage 
during the weekend while at home (e.g., use of the washing machine). 
However, this need has been partially decreased for people working 
from home who can do some housework during the week while working. 
The 4th and 5th percentage distribution clusters were similar, except for 
a stronger afternoon peak in 2019. One possible interpretation is that, 
due to the limited social interaction allowed during those months, most 
people did not have visitors even on weekends, specifically during lunch 
hours. 

5. Conclusions 

This research used a sample of electricity use data from residential 
buildings to compare energy use profiles before, during, and after the 
COVID-19 pandemic main lockdown. The database was divided into 
periods, and clustering was used to detect recurrent patterns. In 
particular, the methodology involves data pre-processing, data under
standing, and data clustering to gain insights into electricity usage 
patterns during different periods. The periods analysed are Winter, 
Lockdown, and Autumn, and comparisons are made between the same 

Fig. 11. Autumn weekends clusters’ centroids.  
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periods in 2019 and 2020. 
The analysis shows that during the COVID-19 Lockdown (March and 

April 2020) a significant increase in electricity usage has been registered 
in residential buildings; since correlation analysis showed weak 

correspondences between climate data and electricity usage data, the 
increase may be associated to the COVID-19 restrictions. The results of 
the clustering revealed a relevant change in the profile of working days 
during the Lockdown period, characterized mostly by a shift in use to the 

Fig. 12. Difference between 2019 and 2020 schedules for the Winter period - working days and weekends, ordered by percentage distribution.  
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central hours of the day. The lockdown period exhibited the most 
distinct differences respect to the other periods. Morning peaks shifted 
substantially from 7 am to 1–2 pm due to increased working from home. 
Weekday profiles varied considerably while weekend profiles still 
differed to a lesser extent, indicating major changes to routines and 
appliance usage. With regards to weekends during the same period, the 
difference compared to 2019 was less pronounced, which could depend 
on the fact that most residents do not work out of home during weekends 
even under normal conditions. The winter period showed the most 
similar daily electricity usage patterns between 2019 and 2020. Week
day profiles were almost identical while weekend profiles mainly 
differed in increased absolute usage. This suggests routines remained 
largely unchanged. However, the Autumn profiles also show a less 
pronounced but present shift in the pattern, with the most frequent 
clusters in 2020 exhibiting a gradual increase in electricity usage 
throughout the day and no morning peak observed. During autumn, the 
most frequent profiles closely resembled 2019 while others varied 
greatly. Weekend usage diverged more, with higher values during cen
tral hours but lower night usage in the most common 2020 profile. This 
indicates that while weekdays were resembling the pre-pandemic 
period, weekends still differed likely due to ongoing restrictions. In 
summary, winter saw the most similar usage, lockdown the most distinct 
differences, and autumn an intermediate situation especially for week
ends. The degree of change appears linked to shifts in schedules, activ
ities and social interactions imposed by circumstances during each 
period. 

In conclusion, the main findings of this research are: 

- significant increase in electricity usage during the COVID-19 lock
down period for residential buildings;  

- weak correspondence between climate data and electricity usage 
data, suggesting the increase is associated with the COVID-19 
restrictions;  

- shift in energy usage from the morning peak to central hours of the 
day during the Lockdown period for working days and smooth out of 
the morning peak;  

- a less pronounced shift in energy usage pattern for weekends during 
the Lockdown period;  

- gradual increase in electricity usage throughout the day and no sharp 
morning peak observed still during the Autumn period (after Lock
down, with far less strict restrictions). 

The results of the analysis of changes during the lockdown period in 
this study are consistent with the literature in several respects, in 
particular with regard to the increase in energy use (Abdeen et al., 2021; 
Krarti & Aldubyan, 2021; L. Li et al., 2021), the shift in profile patterns 
(Krarti & Aldubyan, 2021; Ku, Qiu, Lou, Nock & Xing, 2022; L. Li et al., 
2021; Zhang et al., 2020), and the change in peak hours (Kmetty, 2021; 
Santiago, Moreno-Munoz, Quintero-Jiménez, Garcia-Torres & 
Gonzalez-Redondo, 2021). Abdeen et al. (Abdeen et al., 2021) also 
consider the impact of weather and find that most detected changes are 
weather-independent. Kang et al. (Kang et al., 2021) state that there is a 
strong correlation between COVID-19 factors and residential building 
electricity use. Ku et al. (Ku et al., 2022) predict that winter profiles will 
shift from two peaks to one post-COVID, a prediction that is partially 

Fig. 13. Difference between 2019 and 2020 schedules for the Lockdown period - working days and weekends, ordered by percentage distribution.  
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supported by the results of this study. However, the specific patterns and 
magnitudes of change observed in the present work may be particular to 
Milan and other large northern Italian cities due to factors like typol
ogies, occupancy and climate. Milan’s high density, mixed-use 

development and sustainability focus likely contribute to distinct elec
tricity use characteristics. 

Using the Lockdown period as a reference to study the remote 
working behavioural patterns, the findings can provide modellers with a 

Fig. 14. Difference between 2019 and 2020 schedules for the Autumn period - working days and weekends, ordered by percentage distribution.  
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complete set of daily load profiles for an Italian residential case study 
and assist cities’ analysts, policy makers and businesses in evaluating the 
effects of remote working. 

Further research is required to gain a more comprehensive under
standing of the highlighted through this work. Future developments may 
include analysis of data collected during 2021, 2022 and following years 
(post-pandemic period) and correlation of businesses usage profiles 
against that of employees’ households, to determine the private costs 
and benefits of remote working. 
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