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Towards Domain Gap Bridging via Synthetic VIS Sensor Model

Michele Bechini∗, Lucia Bianchi†, Michèle Lavagna‡

Autonomous spacecraft relative navigation has gained significant attention in recent years due to its potential
for future space missions. A key component of this technology is relative state estimation, often performed
using monocular images captured by cameras operating in the visible light spectrum. The ESA’s Satellite
Pose Estimation Challenge (SPEC) of 2019 highlighted that the highest accuracy in pose estimation is
achieved using CNN-based feature regression combined with PnP solvers. However, SPEC2021 demonstrated
accuracy drops when pose estimation models trained on synthetic images are tested on real-world images, due
to inherent differences between synthetic and actual image data. To address this issue, this paper proposes a
novel synthetic VIS (Visible Spectrum) sensor model. This model enhances the realism of synthetic images
by accurately simulating the image formation process, from the reception of photons by the detector to the
output image, including noise characteristics typically present in real sensors but not in standard rendering
pipelines. The developed model relies on sensor datasheet parameters to approximate photon reception and
applies disturbances characteristics of CMOS and CCD detectors, including fixed pattern noise, resulting
in synthetic images that closely resemble real-world conditions. The developed model has been compared
with frames acquired by a real camera, demonstrating its high-level fidelity and superior representativeness
compared to commonly used additive white Gaussian noise. Furthermore, the VIS sensor noise has been
applied as an image augmentation technique in the training phase of a pose estimation CNN, leading to
significantly improved performance metrics on both synthetic and mockup frames, despite the model being
trained only on synthetic images, effectively bridging the domain gap.
keywords: Domain Gap, Monocular Images, Sensor Noise, Relative Navigation, Pose Estimation,

1. Introduction

Autonomous spacecraft relative Guidance, Navi-
gation, and Control (GNC) systems are critical tech-
nologies for future space missions that require high
autonomy [1] to perform time-sensitive tasks across
various scenarios such as spacecraft rendezvous and
docking, active debris removal, and on-orbit servic-
ing, where precise relative navigation is essential
to ensure mission success [2–6]. One of the most
challenging applications of autonomous relative nav-
igation involves target-chaser systems [7], especially
when the target is non-cooperative, meaning no com-
munication link or light-emitting markers exist on the
target. Onboard relative state estimation must be
autonomous, due to the lack of accuracy and timeli-
ness of ground-based solutions, relying solely on sen-
sors and computing resources available on the chaser.
Among the available sensors, monocular cameras op-
erating in the Visible Spectrum (VIS) are commonly
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preferred for capturing relevant measurements for the
GNC system, due to their heritage, reliability, and
the ability to provide detailed images of the target,
which can be processed to estimate the relative pose
between the chaser and the target spacecraft [7, 8].

The advent of publicly available datasets like the
Spacecraft Pose Estimation Dataset (SPEED) [9] and
international competitions such as the ESA’s Satel-
lite Pose Estimation Competitions (SPEC2019 [10]
and SPEC2021 [11]) has fueled the development of
VIS camera-based navigation solutions. These re-
sources provide synthetic images to train algorithms,
pushing forward the state of the art in spacecraft
relative navigation. SPEC2019, the first Satellite
Pose Estimation Competition, played a pivotal role
in benchmarking the performance of various pose
estimation algorithms. Namely, the dataset devel-
oped for this competition, SPEED, features a syn-
thetic training set, while the test set was split into
two parts, a synthetic one and a mock-up-based one.
The outcomes of SPEC2019 proved that the best
option to deal with autonomous relative pose esti-
mation is to use CNN-based feature regression cou-
pled with classic PnP solvers [10]. However, the out-
comes also highlighted a critical issue, i.e., most top-

IAC-24-B2.2.10.x91024 1



performing architectures showed a significant drop
in accuracy when applied to mock-up images, which
are more representative of real-world conditions than
synthetic datasets. This degradation was primarily
due to the substantial domain gap between synthetic
training images and the real images seen only during
testing [11]. Many algorithms excelled on synthetic
frames but failed to generalize well to mock-up im-
ages, indicating that these models were overfitting to
the synthetic data characteristics rather than learn-
ing robust features transferable to real-world sce-
narios. The SPEC2021 competition and its related
dataset, SPEED+ [12], further underscored the do-
main gap problem. Namely, the dataset was devel-
oped to stress further the gap between training and
testing images, featuring a synthetic-only huge train-
ing set and two mock-up-only testing splits acquired
under different (and severe) lighting conditions [11].
Despite advancements in pose estimation architec-
tures, the competition revealed that most algorithms
continued to perform poorly on mock-up images un-
less using huge models or domain-discriminator and
adaptation modules, both impractical for space ap-
plications. This gap was attributed to the differences
in lighting, noise, and textures between the two types
of images, which most architectures failed to account
for during training [11].

The SPEC2021 results confirmed that the degra-
dation in pose estimation accuracy seen in SPEC2019
was not an isolated issue but a systemic problem af-
fecting most current architectures. The competition
highlighted the need for improved training method-
ologies and dataset validation to bridge the gap be-
tween synthetic and real-world images toward reliable
autonomous navigation systems deployable in actual
space missions [11]. A valuable approach to bridge
the domain gap was presented in [13], where the au-
thors leveraged multitask learning and dedicated im-
age augmentations. Namely, the augmentations add
to the synthetic frames during training optical ar-
tifacts (e.g., sun flares and random erase) and tex-
ture randomization via AI-based neural style transfer
methods. These techniques allowed a higher level of
abstraction on the learned features, leading to an ef-
fective boost of the performance on mock-up images.
Similarly, the work presented here focuses on image
augmentations. Namely, by noticing that one of the
main differences between a synthetic and an actual
frame is the presence of the detector in the latter
one, the work presented was dedicated to the devel-
opment of a high-fidelity model for the detector and
the sensor to obtain the noised version of the input

noiseless images, achieving a higher degree of real-
ism than the standard additive white Gaussian noise
that is commonly applied to synthetic images (e.g., in
SPEED and SPEED+ synthetic frames), constituting
the main contribution of this paper. The noise level
obtained from the model has been successfully com-
pared with actual frames acquired with a CMOS sen-
sor and with frames noised by using an additive white
Gaussian noise, demonstrating the high fidelity of the
proposed model and the enhancement of the photore-
alism with respect to the Gaussian noise. Further, to
establish the efficacy in generalizing CNN trained on
synthetic images also to mock-up ones, the pipeline to
apply the high-fidelity noise from the introduced sen-
sor model has been adopted as an augmentation dur-
ing the training of a YOLOv8s-pose model trained on
synthetic SPEED images, proving the enhancement
of the performance in both target and keypoint de-
tection in synthetic images and mock-up frames from
SPEED+.

The paper provides a brief overview of already
available detector and image noise models in Sec. 2,
while the detailed description of the proposed model
is reported in Sec. 3. Sec. 4 provides the compar-
ison of the developed model with respect to an ac-
tual sensor, while the outcomes of the training of the
YOLOv8 model using the proposed approach as im-
age augmentation are discussed in Sec.5. Lastly, the
main outcomes and possible future developement are
summarized in Sec. 6.

2. Literature Review

VIS sensors (i.e., photon detectors operating in
the visible spectrum of light) convert the incoming
photons that hit the sensor into a digital represen-
tation as Analog-to-Digital Units (ADUs) or Digi-
tal Numbers (DNs) in grayscale images. The sen-
sitive part of VIS sensors typically consists of pho-
tosensitive semiconductor materials, such as silicon.
When incident photons strike this material, they in-
teract with its atoms, transferring their energy to
electrons within the semiconductor. This process
moves electrons from the valence band to the conduc-
tion band, leaving positively charged holes and gen-
erating electron-hole pairs. These electron-hole pairs
constitute electric charge carriers, with the number of
pairs generated proportional to the incident photon’s
energy. The charge carriers are then collected and
stored, initiating the conversion of photons into elec-
trical charge within the sensor. Quantum Efficiency
(QE) is a critical factor in this process, as it quanti-
fies the efficiency of the photon-to-charge conversion.
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QE is wavelength-dependent and varies with the ma-
terial’s properties, impacting the number of charge
carriers produced per absorbed photon. Notably, the
overall efficiency of the photon-to-charge conversion
is also affected by sensor design factors (e.g., fill fac-
tor and optical throughput efficiency) [14] but, as per
EMVA1288 standards [15,16], the QE value reported
in datasheets refers to total QE, i.e., already includ-
ing these sensor-dependent factors (when not differ-
ently specified). The charges collected are then con-
verted into voltages by dedicated capacitors. The
voltages are then amplified, digitalized, and quan-
tized into discrete levels by a dedicated Analog Dig-
ital Converter (ADC) with characteristic ADC Gain
(measured in [e−/ADU ]). This last step enables the
sensor to represent the captured light intensity in
ADU or DN.

Notably, the two most widely adopted sensors are
CCD (Charge-Coupled Device) and CMOS (Com-
plementary Metal-Oxide-Semiconductor) sensors [14]
that differ in the quantification of the stored charge.
CCD sensors follow a systematic charge transfer pro-
cess across the chip with a centralized reading, where
the analog-to-digital converter transforms the charge
from each photosite (i.e., pixels) into a digital value.
In contrast, CMOS sensors employ multiple transis-
tors at each photosite to amplify and guide the charge
through conventional wires, i.e., adopting an individ-
ual reading of each photosite. These differences in
the charge reading modes lead to the following main
differences between CCD and CMOS [17]:

• Image Quality: CCD sensors excel in producing
high-quality, low-noise images, while CMOS sen-
sors are more susceptible to noise.

• Light Sensitivity: CMOS sensors have lower light
sensitivity due to transistor interference.

• Power Consumption: CCD sensors consume con-
siderably more power than CMOS counterparts.

• Cost: CMOS sensors are cost-effective due to
standard manufacturing processes.

CCD and CMOS can be described through the
same mathematical model [15]. Hence, given the in-
put photons per pixel µp received by the sensor, it is
possible to compute the pixel response in DN µDN

as:
µDN = QE

µp

GADC
[1]

where GADC is the ADC Gain in [e−/ADU ]. The
mean charge generated can be retrieved as µe− =

QE µp. Notably, the input photons can be retrieved
from a calibrated source during hardware calibration
phases as per EMVA1288 standards, or the value for
µp can be approximated as in [15,18] by knowing the
irradiance on the sensor surface.

2.1 VIS Sensor Noise

The pixel response computed in Eq. 1 refers to
the mean value since the true value given as output
will be affected by noises that arise during the image
generation phase. In a first approximation, the main
noises affecting VIS images are the photon shot noise,
the dark current shot noise, and the readout noise
[14, 18, 19]. Photon shot noise arises from random
fluctuations of photons hitting the sensor thus it can
be modeled as a Poisson process as a function of the
mean value of photons collected during the exposure
time [19]:

Nph shot, p ∼ P(µp) [2]

The dark current shot noise is due to the random gen-
eration of charges within the sensor, even in the ab-
sence of incoming light [19], arising by temperature-
dependent stochastic random processes. Hence, they
can be modeled as a Poisson distribution. The mean
value for the dark current shot noise is a function of
the exposure time texp and the average dark current
DR (which is a function of the sensor temperature
and is expressed as [e−/px/s]). Hence, the dark cur-
rent shot noise is modeled as [19]:

Ndc shot, e− ∼ P(texpDR) [3]

The readout noise is not signal-dependent. It oc-
curs during the reading of the electrical signal and
is commonly associated with the electronic compo-
nents and circuitry used to amplify and digitize the
analog signal generated by the sensor [20]. In first ap-
proximation, it can be modeled as an additive white
Gaussian noise with zero mean and prescribed stan-
dard deviation that is a characteristic of each camera,
i.e., N (0, σ2

read). This approximation is well estab-
lished [15,16], but recent studies [20] proved that, in
low-light conditions, a Tuckey-Lambda (TL) distri-
bution [21] can better approximate the readout noise
of real camera assemblies due to the higher weight as-
sociated to the distribution tails. Hence, by adopting
the TL distribution, the readout noise can be mod-
eled as [20]:

Nreadout, e− ∼ T L(λ, 0, σread) [4]

where the shape parameter, λ, shall be estimated
during the camera noise characterization. Namely, if
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λ = 0.14, the TL distribution approximates a Gaus-
sian distribution while, if λ < 0, it corresponds to
heavy-tail distributions, making it suitable for mod-
eling data with outliers and extreme values.

Notice that the photon shot noise in Eq. 2 shall be
multiplied by QE /GADC to retrieve it in DN, while
both the dark current shot noise in Eq. 3 and the
readout noise in Eq. 4 shall be divided by GADC to
retrieve their values in DN since they are already in
electrons. The final noise value in DN can be re-
trieved by computing the root mean square of the
noise sources in Eqs. 2 – 4 [15,18,20]:

NDN =
√
σ2
ph shot,DN + σ2

dc shot,DN + σ2
readout,DN

[5]

=
1

GADC

√
µp QE2 + texpDR + σ2

read, e− [6]

The general equation provided above can be used to
apply a cumulative noise to the image by using an
additive white Gaussian noise with standard devia-
tion as in 6. Notice that this procedure does not
take into account fixed pattern noises, like Photo
Response Non-Uniformity (PRNU) and Dark Signal
Non-Uniformity (DSNU), that characterize each sen-
sor and that can be relevant in low light or high
gain conditions for CMOS sensors [19,20], generating
row and column noises that can affect the IP algo-
rithms. Their contributions shall be estimated within
the noise characterization phases [20] and included in
a noise model with higher fidelity due to their rele-
vance, especially for CMOS, as detailed in the next
sections. Further, the additive Gaussian white noise
does not retain the characteristics of each noise com-
ponent (e.g., the dependency of the photon shot noise
from the incoming light), resulting in a ”uniform”
noise map and losing all the modeling effort discussed
above. Moreover, the noise can not be related to the
parameters of the image acquisition system, e.g., the
gain setting, the bit depth, the exposure time, and
the operating temperature. Consequently, the work
presented here builds a pipeline from the single noise
contribution reported above and already available in
the literature to apply a high-fidelity noise that pre-
serves the characteristics of each contribution, also
including the fixed pattern noises contribution and,
differentiating from the model in [20], applicable even
in the absence of the physical sensor, relying only on
its datasheet.

It is acknowledged that images can also be affected
by optical artifacts that may depend on both the op-
tical characteristics of the imaging system and the

sensor type. The most common optical artifacts in-
clude lens flares [22], stray lights [23], and bloom-
ing [24]. These artifacts originate from complex phe-
nomena that can be evaluated only by sophisticated
image rendering tools that leverage physically-based
powerful and complex raytracers with the possibility
of simulating full lens set [22,25]. Consequently, they
are usually not modeled or included in VIS sensor
models. A simple yet effective approach to include
these artifacts is approximating and applying them
in postprocessing, disregarding the physical phenom-
ena that originate them and focusing on the effects
on images, as in [13,26].

3. VIS Sensor Model

The photon detector model has been developed
starting from models already available in the liter-
ature discussed in Sec. 2.1 and comprises the pri-
mary noise sources for CCD and CMOS sensors. The
model implemented leverages the linear photon detec-
tor model prescribed by the EMVA1288 standard [15]
and the models implemented in [19, 20], subdividing
the image generation process into sequential steps be-
longing to the photon space, the electron space, and
digital number space, as shown in Fig. 1.

3.1 Photon Space

The input for the pipeline in Fig. 1 is a matrix
Iph, init shaped as the detector array size considered.
Iph, init contains in each element the mean number
of photons collected by the corresponding (i, j)-th
element of the detector. This value can be retrieved
by knowing the radiation received by the sensor as in
[15,19] or, when dealing with noiseless images, it can
be approximated by knowing the ADC Gain GADC

and the total QE as:

Iph, init = Iclean
GADC

QE
[7]

where Iclean is the noiseless image. Notice that the
GADC given in datasheets compliant with EMVA1288
standards are in 16-bit quantization. Notice that
most cameras allow setting the gain level using val-
ues in decibels (dB) while providing the base 16-bit
gain in [e−/ADU ]. Hence, the correct gain value
in [e−/ADU ], corresponding to the selected level in
dB, shall be retrieved before applying Eq. 7 and the
pipeline in Fig. 1. Once that Iph, init is retrieved, the
Photon shot noise is defined from a Poisson distribu-
tion and summed to the mean photon values as:

Iph shot, ph = P(Iph, init)

Iph = Iph, init + Iph shot, ph

[8]
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Fig. 1: Photon Detector Model.

Notice that most of the random number generators
using the Poisson distribution directly output the Iph
matrix with the Poisson shot noise signal already
added (i.e., Iph = P(Iph, init). The matrix Iph is then
moved to the electron space by applying the QE:

Ie−, init = Iph QE [9]

3.2 Electron Space

In the electron space, the first noise source to be
applied is the PRNU, a fixed pattern noise that arises
from the non-uniform response of each pixel under
uniform lighting conditions due to variations in the
material composing the sensor [19]. The PRNU is
expressed as a percentage of the electrons detected
[15, 19]. In agreement with EMVA1288 standards,
the PRNU can be characterized by column-wise, row-
wise, and pixel-wise components. These components
are reported in the datasheets that respect the latest
EMVA1288 standards. In contrast, these components
shall be estimated during the calibration phase using
a uniform certified lighting source [15] for datasheets
referring to previous releases of the standard. In
case of unavailability of calibration parameters or
datasheet values, the PRNU is modeled by assuming
standard deviation values for each component in the
range from 0.1% to 1% of the incoming light [15,27].
The PRNU map can be defined for a general detector
by sampling from a Gaussian distribution with zero
mean and standard deviation σPRNU, col a single row
and repeating it for all the rows of the array size.
The same approach is repeated for the row compo-
nent by sampling a single column using σPRNU, row

and repeating for all the columns. Concerning the
pixel-wise contribution, a map of equal size to the
camera array is sampled from a Gaussian distribution

with standard deviation σPRNU, pix. The sum of these
three maps is the overall PRNU map KPRNU . The
PRNU map is generated only once for each sensor
model, in agreement with [19]. Notice that the map
shall be multiplied by the detected electrons since
it contains scaling values. Hence, the overall elec-
trons with applied the PRNU noise can be computed
as [19]:

IPRNU, e− = Ie−, init (1 +KPRNU ) [10]

The second noise applied in the electron space
is the DSNU. This noise is not light-dependent and
can also be detected in images acquired with capped
lens [15]. The DSNU resembles the same characteris-
tic of the PRNU from the modelization point of view.
Still, its components (column-, row-, and pixel-wise)
are usually defined in electrons in datasheets compli-
ant with the EMVA1288 standards. Also, the DSNU
can be estimated from bias frames (short exposure
time and capped lens) acquired with the actual sen-
sor during the noise characterization phase [15]. The
DSNU noise map in electrons IDSNU, e− can be re-
trieved from the values of σDSNU, col, σDSNU, row, and
σDSNU, pix available in datasheets by following the
same procedure already outlined for the PRNU. Even
in that case, the DSNUmap is generated only once for
each sensor model, being a fixed pattern noise. Please
notice that sampling the PRNU and DSNU noise
components from Gaussian distributions does not al-
low retrieving the actual spatial frequencies of these
noises that characterize each sensor. Hence, these
models shall be refined further to include the noise
components obtained from the real sensor through a
dedicated analysis.

The subsequent additive noise is the dark cur-
rent shot noise. The dark current shot noise and its
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model have already been detailed in Sec. 2.1. The
dark current shot noise map in electrons Idc shot, e−

is computed from a Poisson distribution by knowing
the exposure time texp and the dark current DR(T )
[19]. The value for DR at a reference temperature
can be retrieved from a datasheet compliant with
EMVA1288 standard in [e−/s]. Alternatively, if the
datasheet does not provide this value, it can be re-
trieved from dark images (variable exposure time at
fixed temperature and lens capped).

The last noise source in the electron space is the
readout noise. Also, the readout noise has already
been discussed in Sec. 2.1. The readout noise map in
electrons Iread, e− is retrieved from a Tuckey-Lambda
(TL) distribution where the shape parameter λ is as-
sumed as equal to 0.14 (i.e., approximately Gaussian
distribution) in a first approximation and the stan-
dard variation is retrieved from the sensor datasheet.
The parameter λ and the standard deviation can also
be retrieved from bias images captured with the ac-
tual sensor during its characterization [15, 20]. No-
tice that the readout noise will include all the noise
sources not directly modeled that still affect the sig-
nal in a real scenario (e.g., thermal noise and source
follower noise) [20].

The final electron matrix Ie− can be retrieved as in
Eq. 11 by adding the contribution of these last three
additive noise sources to the electron counts retrieved
after the introduction of the PRNU (see Eq. 10).

Ie− = IPRNU, e− + IDSNU, e− + Idc shot, e− + Iread, e−
[11]

The final electron matrix Ie− is rounded to integer
values and then shifted into the digital number space
by using the ADC Gain:

IDN, init =
round(Ie−)

GADC
[12]

3.3 Digital Number Space

The only noise source in the digital number space is
the quantization noise. The quantization noise arises
when an analog continuous signal is quantized into a
discrete digital signal. The quantization noise map
Iq,DN is sampled from a uniform distribution within
the range [−0.5, 0.5] and it is added to IDN, init from
Eq. 12 to retrieve the final image array in DN:

IDN = IDN, init + Iq,DN [13]

Notice that the output value from Eq. 13 is rounded
and clipped to the range [0, 216 − 1] in 16-bit to ac-
count for possible saturations before rescaling the im-
age to the original bit depth.

It is emphasized that the ADCGain will affect only
the noises if the model described above is applied as
VIS sensor noise generator since the gain is used in
Eq. 7 to retrieve the initial photon values from the
clean image and in Eq. 12 the same gain value is used
to retrieve the DN values for the noised image. Hence,
if the model schematized in Fig. 1 is adopted as a VIS
sensor noise generator, the noise level increases if the
ADC Gain in dB raises.

4. Comparison with an Actual Sensor

A VIS CMOS sensor has been characterized to ex-
tract the noise parameters needed as input to the
model discussed above to assess its validity. Namely,
the noisy images generated with the model are com-
pared with those captured with the real sensor.
Please notice that the light-dependent noise sources
are not included in the actual sensor characteriza-
tion phase due to limitations in the available facility.
Hence, only the DSNU, the dark current shot noise,
and the readout noise have been retrieved. Due to
that, a complete validation of the model, including
photon shot noise and PRNU, is still missing and is
forecasted for the next development. Despite that,
it is worth mentioning that the terms included in
the conducted comparison give the highest contribu-
tions to the overall final noise [15]. Further, it is
remarked that the characterization of the CMOS sen-
sor was required since its datasheet is compliant with
an old version of the EMVA1288. Despite that, it is
worth underlying that all the parameters extracted
from the noise characterization reported in Sec. 4.1
are available in the datasheet compliant with the lat-
est EMVA1288 v.4, please refer to [15] for a sample
datasheet.

4.1 Real Detector Noise Characterization

The camera adopted is the Teledyne FLIR CM3-
U3-13Y3C (ex Point Grey Chameleon 3), a CMOS
camera whose datasheet can be retrieved online from
the producer’s website. This camera has been se-
lected since it is the model employed in the PoliMi-
DAER facility dedicated to GNC algorithm tests [28].
The objectives are to estimate the shape parame-
ter and the standard deviation for the readout noise,
characterize the DSNU in terms of column-, row-,
and pixel-wise components, and evaluate the dark
current contribution. The bias and dark frames are
acquired to perform the characterization following
standard procedures adopted to evaluate these noise
sources for astronomic photography. Namely, 200
bias frames have been acquired with a capped lens
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(ensuring that light does not reach the sensor), ex-
posure time of 0.01 ms, and gain equal to 3 dB. The
dark frames have been acquired using a gain of 3 dB,
increasing values of exposure time (namely texp =
[1, 10, 20, 500, 999] ms), and increasing temperature
of the sensor (namely T = [15, 19, 23, 27, 30]°C). Ten
dark frames have been retained for each tempera-
ture and exposure time value, resulting in 250 im-
ages overall. All the images have been acquired us-
ing the Mono16 format (i.e., 16-bit grayscale format)
and saved as .raw files to avoid compression and pre-
serve the original image quality. Due to their nature,
bias frames allow retrieving both the readout noise
parameters and the DSNU (also named master bias
frame) that can be further analyzed. Setting the ex-
posure time to the minimum allowed by the camera
entails lowering the dark current shot noise effects
that can be assumed to be negligible. On the con-
trary, the dark frames are captured using long expo-
sure times, making it possible to include the contri-
bution of the dark current shot noise. Hence, once
the readout noise and the DSNU are estimated, it is
possible to remove their contribution from the dark
frames and retrieve insights on the temperature and
exposure-dependent noise.

4.1.1DSNU Characterization

The DSNU image (i.e., the master bias) is esti-
mated in DN from the pixel-wise average of all the
bias frames acquired. The averaging reduces the ran-
dom noises while preserving the fixed pattern noise
[15]. Due to a lack of DSNU information on the
camera datasheet, all the parameters to characterize
this fixed pattern noise are retrieved from the non-
synthetic DSNU. The column and row noise com-
ponents are recovered by computing the mean, per
column and per row, respectively, of the DSNU im-
age. The values retrieved in DN are converted into
electrons using the known ADC Gain to provide a
characterization independent from the gain adopted.
The DSNU image (scaled for visibility), with reported
row and column noise components, is shown in Fig. 2.
The columns component is the main contribution to
the DSNU for the CMOS sensor adopted simulated.
The column noise shows a discretization into three
bands at about 11, 6, and 1 electrons with a spa-
tial frequency that leads to higher noise values in
the column with an index between 0 and 250. The
row noise component is more well-shaped and lower
in electrons than the column noise, with an evident
spatial frequency highlighted from the plot in Fig. 2.
The pixel-wise component of the DSNU is character-
ized by retrieving its standard deviation in electrons

Fig. 2: DSNU image (magnified intensity) with col-
umn (top) and row (right) noise components in
e−.

as in Eq. 14 by assuming that all the noise compo-
nents are independent.

σDSNU, pix =
√

σ2
DSNU − σ2

DSNU, col − σ2
DSNU, row

[14]
Notice that σ2

DSNU is the variance in electron
squared of the acquired DSNU, while σ2

DSNU, col and

σ2
DSNU, row are the variances in electrons squared of

the column and row components of DSNU. The es-
timated standard deviations for each DSNU noise
component are σDSNU, col = 2.82 e−, σDSNU, row =
0.21 e−, σDSNU, pix = 1.1 e−.

A synthetic DSNU can be computed in first ap-
proximation as discussed in Sec. 2.1, i.e., without
considering the spatial frequencies highlighted in
Fig. 2 and relying only on the values for σDSNU, col,
σDSNU, row, and σDSNU, pix being the only DSNU-
related values reported on EMVA1288-compliant
datasheets. A visual and histogram comparison be-
tween the DSNU estimated from bias images and the
synthetic DSNU generated (named Synthetic Gaus-
sian) in DN is shown in Fig. 3, where both the DSNUs
are scaled equally for visibility. Fig. 3 demonstrates
that the synthetic Gaussian DSNU retains the main
noise features of the actual DSNU, being primarily
composed by the column-wise noise with slightly visi-
ble row-wise components. Despite that, the synthetic
Gaussian DSNU has a mildly lower intensity in DN
than the real one, also highlighted by the histogram
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Fig. 3: Comparison of Real and Synthetic Gaussian
DSNU.

comparison. Notice that the actual DSNU shows a
few defected pixels, with associated intensity levels
higher than 200 DN, not included in the model. As
expected, the synthetic Gaussian DSNU does not re-
semble any spatial frequency highlighted in the actual
DSNU due to the model adopted. Despite the limi-
tations pointed out, the simple approach to approxi-
mate the DSNU is still valuable since the column-wise
noise component of the actual CMOS is retrieved.
Hence, it could be adopted to test IP algorithms in a
scenario more representative of the actual camera be-
havior than those cases in which an additive Gaussian
noise is applied to the entire image.

It is acknowledged that a high-fidelity approxima-
tion of the actual DSNU that retrieves even the spa-
tial frequencies of the column- and row-wise compo-
nent can be achieved by using Gaussian Multivariate
Mixture (GMM) or polynomial fitting to the actual
values, as in [26]. An example of the synthetic DSNU
achieved by following the procedure detailed in [26] is
reported in Fig. 4 As it can be noticed from Fig. 4, the

Fig. 4: Comparison of Real and Synthetic DSNU.

synthetic DSNU better approximates the real DSNU
both in terms of noise intensity (as shown by the his-
togram comparison) but also in terms of spatial fre-
quency of the primary noise contributions.

It is acknowledged that, by having the actual sen-
sor available, it is possible to directly use the real
DSNU inside the model outlined in Sec. 3 to repli-
cate the camera behavior. In case the actual sensor
is not available, the Gaussian approximation (lever-
aging the standard deviations of DSNU noise compo-
nents from datasheets) allows retrieving a synthetic
DSNU that resembles the main features of the ac-
tual DSNU (e.g., the relative magnitude of each noise
component). The knowledge of the spatial frequen-
cies and mean values of each noise component of the
actual sensor is required to increase the representa-
tiveness of the synthetic DSNU without actually hav-
ing the sensor due to the effect on the accuracy of the
model, as pointed out from the results achieved with
the accurate synthetic DSNU.

4.1.2Readout Noise Characterization

The readout noise standard deviation is estimated
using the bias frames and the master bias (i.e., the
DSNU) computed by averaging all the bias frames.
To correctly retrieve the readout noise standard de-
viation in DN, the master bias is removed from all the
bias frames to remove the fixed pattern noise, making
the residual noise independent from the light and the
exposure time. Hence, all the noise sources contribut-
ing to the residual noise are collected in the read-
out noise. The standard deviation of all the residual
images is computed in DN. Then, the readout noise
standard deviation is estimated as the mean value of
the standard deviations of the residual images. The
readout noise standard deviation σread is converted
into electrons by applying the ADC gain. The stan-
dard deviation of the readout noise estimated from
the acquired bias frames and the extrapolated DSNU
is about σread = 2.37 electrons. The model adopted
for the readout noise samples the noise values from a
TL distribution hence, the shape parameter lambda
shall be estimated. The shape parameter has been
defined within this work by comparing the mean his-
togram of all the residual images converted to elec-
trons against the histogram derived from a readout
noise image defined using the TL distribution with
fixed mean and scale equal to σread. The estimated
shape parameters that best approximate the mean
histogram is lambda = −0.23 since its decay toward
zero is smoother (due to the higher weight given to
the tails) than a Gaussian-like distribution, leading
to a better approximation of the noise components
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with a higher content in electrons, as shown in Fig. 5.
This behavior is in agreement with the histograms re-
ported in [15]It is acknowledged that more accurate
methods to retrieve the shape parameters exist (e.g.,
leveraging more refined statistical approaches) and
can be exploited to fine-tune the TL distribution, as
pointed out in [20].

Fig. 5: Comparison of Gaussian-like and Heavy-Tail
Readout noise distributions.

4.1.3Dark current Characterization

The dark current DR can be estimated from the
dark images due to their long exposure time that
makes relevant the contribution of the dark signal
Sdark = texp DR [19]. Namely, the noise content in
dark images is given by the DSNU, the readout noise
and the dark current shot noise. It is possible to esti-
mate the dark signal from the dark frames, captured
with increasing exposure time and constant tempera-
ture, by measuring the linear increment of the mean
value in DN, or electrons, as a function of the incre-
ment of the exposure time [15]. The dark current
is then given by the slope of the linear increment
detected. This procedure assumes that the expo-
sure time does not affect the DSNU and the read-
out noises. A linear least square regression is per-
formed on the dark signal data as a function of the
exposure time to evaluate the slope accurately [15].
Namely, following the procedure outlined in [29], ten
dark frames are captured for each operating temper-
ature and exposure time. Then, the mean signal is
computed by averaging the mean values for each dark
frame at each operating condition (temperature and
exposure time couples) while discarding the minimum
and maximum mean values for each batch of 10 im-
ages [29]. The linear regression is then performed on
the mean data. By performing the procedure out-

lined above for more operating temperatures, it is
possible to retrieve a relation between the dark cur-
rent DR and the operating temperature. The relation
between DR and the temperature is fitted using an
exponential function, as shown in Fig. 6, leading to
the following relation:

DR(T ) = A · exp(B · T ) = 0.136 · exp(0.14 · T ) [15]

Where the temperature of the sensor T is adopted in
Celsius degrees and the coefficients A = 0.136 [e−/s]
and B = 0.14 [◦C−1] are retrieved from the exponen-
tial fitting shown in Fig. 6. Notably, the definition of

Fig. 6: Exponential fitting of dark current tempera-
ture dependency.

a dark current temperature dependency is relevant for
IP algorithms applied to long exposure images (i.e.,
when the dark current shot noise can give a high con-
tribution to the overall noise), making it possible to
simulate a VIS sensor noise coherent with the current
operating temperature of the sensor itself. Namely,
due to the exponential behavior of DR(T ) and the
long exposure time, the effect on the output noise
intensity can be non-negligible.

4.2 Model Representativeness Verification

The noise parameters estimated for the real sensor
as in Sec. 4.1 have been adopted within the VIS sensor
model outlined in Sec. 3 to generate a synthetic dark
frame to be compared with a batch of dark frames
acquired with the VIS camera adopting the same pa-
rameters. The dark frames are captured arbitrarily
using an ADC Gain of 3dB and an exposure time of
0.5 seconds with a measured sensor temperature of
30°C. The input for the noise model is an array of ze-
ros simulating that no photons within the VIS range
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hit the detector. As a consequence, both the photon
shot and the PRNU noises will give a null contribu-
tion. To properly assess the modeling choices, both
the accurate and the Gaussian synthetic DSNUs are
adopted. The outcomes are reported in Fig. 7 by
means of visual (Fig. 7a) and histogram compari-
son (Fig. 7b). Please notice that the dark frames
shown in Fig. 7a are scaled uniformly to allow vi-
sual comparisons. The visual comparison of the dark

(a) Visualisation of real and synthetic dark frames.

(b) Histogram comparison for real and synthetic dark
frames.

Fig. 7: Comparison between real and synthetic dark
frames.

frames in Fig. 7a reflects the outcomes of the analyses
performed during the characterization of the DSNU.
Namely, the synthetic Gaussian dark frame shows a
lower intensity of the noise features associated with
the DSNU contribution than both the real and the
accurate synthetic dark frames. Despite that, both
the models for the DSNU allow to generate synthetic
dark frames that show a distribution of the noise into
column-, row-, and pixel-wise components compara-
ble to the real dark frame distribution, with the dark
frames computed using the accurate synthetic DSNU
capable of approximating also the spatial distribution
of the fixed pattern noise. Despite that, the synthetic
images show a lower intensity of the row-wise com-
ponent given by the DSNU with respect to the real
dark frame. This disparity can be attributed to an
underestimation of the row-noise component at a high

spatial frequency on the central portion of the frame
not correctly retrieved by the GMM and polynomial
models adopted. Despite that, both the synthetic im-
ages approximate the actual dark frame in terms of
histograms (i.e., in terms of pixel-intensity count) as
shown by Fig. 7b. The histograms computed for the
two synthetic images almost overlap and follow the
histogram computed for the dark frame after the ini-
tial peak at low pixel intensity. The disparity in the
pixel count for intensity values higher than 1000 DN
is due to outliers given by defected pixels [15] and the
aforementioned row-noise component retrieved with
lower intensity in the synthetic images. The mean
and variance of the images involved in the compar-
ison are reported in Tab. 1, further quantifying the
accuracy of the model. Notice that the values for the
non-synthetic images are averaged from the scores of
10 random dark frames. The values reported in the
table confirm the analyses performed on the plots in
Fig. 7, with a mean value of the Gaussian synthetic
frame that is 16.6% lower than the reference mean
value of actual images. The differences in the vari-
ance values are related to the unmodeled hot/cold
pixels (i.e., the outliers), as already noticed in the
discussion of the histogram comparison.

To further prove the validity of the Tuckey-
Lambda distribution adopted for the readout noise,
a histogram comparison between the real dark frame
and two synthetic images generated by using both the
reference (λ = −0.23) and a Gaussian-like (λ = 0.14)
distribution to model the readout noise is shown in
Fig. 8. As already noticed from Fig. 5, the Gaussian-

Fig. 8: Effect of shape parameter λ in readout noise
model.

like distribution is not well suited to model the read-
out noise since it does not approximate the noise
component at high intensity but lower occurrences,
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Table 1: Pixel intensity mean and variance for real and synthetic dark frames

Source
Intensity

Mean [DN]
Intensity

Variance [DN2]
Real Dark Frames 78.4 5586.2
Synthetic Dark Frame 81.5 4531.5
Synthetic Dark Frame (Gaussian DSNU) 65.4 3736.9

i.e., the tails of the distribution, leading to the selec-
tion of a shape parameter for the Tuckey-Lambda
distribution that best fit the higher weight of the
tails. Please notice that, in agreement with Fig. 5 and
Fig. 8, the deviation from the Gaussian behavior is
substantial for the camera characterized. Hence, the
widely adopted approach of applying only a Gaussian
noise to synthetic images is a strong approximation
of the actual behavior of a VIS sensor that well ap-
proximates only the initial noise peak, i.e., the low-
intensity noise with the highest occurrences. It is
remarked that even the shape parameter is a char-
acteristic of each sensor, as proven in [20]. Hence,
it shall be carefully evaluated for each camera, also
because the readout noise is the main contribution to
the overall noise, as highlighted by Fig. 8.

The outcomes of the comparison between the non-
synthetic dark images acquired with a standard VIS
camera and the model defined within this work point
out that the model offers a better approximation of
the actual VIS sensor noise than the simpler additive
white Gaussian noise. Even if the spatial frequen-
cies of the fixed pattern noise are not retrieved (i.e.,
using the Gaussian approximation of the DSNU),
the model recovers the main noise features of the
actual sensor, even if the overall mean intensity is
slightly lower than non-synthetic images. Detailed
knowledge of the DSNU with known spatial frequen-
cies for both the column- and row-wise noise compo-
nents is mandatory to further improve the model’s
representativeness. It is acknowledged that a proper
validation of the model shall also include the light-
dependent noise sources and a more detailed evalua-
tion of all the parameters, including the actual ADC
Gain. Despite that, evaluating these parameters re-
quires a facility with dedicated instruments (e.g., a
calibrated noise source [15]).

5. Application as Image Augmentation

The VIS sensor model pipeline detailed in Sec. 3
has been applied as image augmentation techniques
during the training of a CNN to assess the improve-
ments of the trained model in bridging the domain

gap between synthetic and mock-up images by lever-
aging the more realistic noise applied to the synthetic
training images. The scenario selected is the relative
pose estimation from monocular images and the se-
lected CNN is the YOLOv8s-pose, being a lightweight
model capable of performing target detection and
keypoints regression through a single inference. The
model has been trained on synthetic SPEED im-
ages [9], being widely adopted as the benchmark
dataset for monocular relative pose estimation task
[30–32]. Namely, the training, validation, and test
splits have been extracted from the original training
set of SPEED in lack of available annotations for the
actual SPEED synthetic test set, similarly to [32].
The mock-up frames from the lightbox and sunlamp
subset from SPEED+ [12] have been adopted as addi-
tional test sets. Notably, the keypoint and Region of
Interest (ROI) annotations not available for SPEED
and SPEED+ images have been extracted by apply-
ing the procedure in [26, 32]. Overall, the dataset
comprises 7680 synthetic SPEED training images,
1920 synthetic SPEED validation images, 2400 syn-
thetic SPEED testing frames, 2791 mock-up testing
images from SPEED+ sunlamp, and 6740 mock-up
testing frames from SPEED+ lightbox. Please notice
that the frames in the test sets for both SPEED and
SPEED+ datasets are never used during the training
phase of the YOLOv8-pose model.

The performance in target detection of the selected
YOLO model on the test set is evaluated using the
intersection-over-union (IoU) index and Average Pre-
cision (AP). IoU measures the overlap percentage
between the predicted and ground truth bounding
boxes, with a higher IoU indicating greater accuracy.
AP represents the area under the precision-recall
curve, where precision is the ratio of correct pre-
dictions (true positives) to all predicted boxes (true
positives + false positives), and recall is the ratio of
true positives to the total ground truth boxes (true
positives + false negatives). Precision-recall curves
are generated by varying the IoU threshold, and the
mean AP (mAP) is computed by averaging AP val-
ues across different IoU thresholds, from 50% to 95%,
in 5% increments. A higher AP95

50 value indicates
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more accurate ROI detection. The keypoint regres-
sion performances of the YOLOv8s-pose model have
been evaluated using the Object Keypoint Similar-
ity (OKS) and the keypoint Average Precision (AP).
The OKS is a standard metric for keypoint regression
that measures the proximity of predicted to ground
truth keypoints, calculated using the equation:

OKSi = exp

(
− d2i
2σ2

i k
2
i

)
[16]

Here, di is the Euclidean distance between the esti-
mated and ground truth i-th keypoint, σi is the fall-
off factor (assumed constant at 1/nkp, where nkp is
the total number of keypoints), and k2i scales OKS
based on the ROI area. OKS for keypoints is analo-
gous to IoU for bounding boxes, and Average Preci-
sion (AP) for keypoints is calculated as the area under
the precision-recall curve for different OKS thresh-
olds. The AP95

50 is the mean AP for OKS thresholds
from 50% to 95%, with a higher AP95

50 indicating more
accurate keypoint detection.

The YOLOv8s-pose model has been trained on
synthetic SPEED images, adopting different augmen-
tation strategies added to the baseline model to assess
the capabilities of bridging the domain gap between
synthetic and mock-up images. By analyzing the
mock-up images in the SPEED+ lightbox and sun-
lamp datasets and leveraging the VIS camera sensor
model and its noise sources, a dedicated augmenta-
tion named VIS sensor augmentation has been de-
veloped. Namely, this augmentation is adopted to
improve the model performances on mock-up images,
leveraging a more representative noise. In doing so,
all the hyperparameters of the model described in
Sec. 4 have been randomized for each processed image
to avoid overfitting the CNN on a single noise level.
Namely, the values obtained from the characteriza-
tion of the actual CMOS sensors have been taken as
mean values for Gaussian distributions from which
the actual values used for each frame of the training
set have been sampled. An example of a SPEED syn-
thetic frame and its augmented version using the VIS
sensor augmentation is shown in Fig. 9.

The baseline model has been trained firstly by us-
ing the default augmentations of YOLOv8 (i.e., ad-
ditive Gaussian noise, random rotations, blurring,
etc.) and, in a second run, by adding the VIS sensor
augmentation introduced in this work to all the im-
ages. The training hyperparameters have been main-
tained equal among the two runs to ensure consis-
tency. These parameters are not reported here for
brevity but they can be retrieved from [26]. The

Fig. 9: Effect of VIS sensor augmentation on syn-
thetic SPEED images.

trained models have been evaluated in terms of mean
IoU, mean OKS, and their respective AP 95

50 on the
test images from SPEED, SPEED+ lightbox, and
SPEED+ sunlamp. The outcomes of this ablation
study are reported in Tab. 2 and Tab. 3. The out-
comes point out that the VIS sensor noise augmen-
tation effectively increases all the evaluated metrics
in synthetic and mock-up images, for both ROI and
keypoint detection. It is worth pointing out a huge
improvement in ROI detection for SPEED+ mock-up
images, more intense in lightbox images than in sun-
lamp ones. Also, the keypoint regression metrics for
muck-up images are strongly improved by the intro-
duction of the VIS sensor noise augmentation, even if
the relative increment is slightly lower than the met-
rics associated with the ROI detection. It is worth
pointing out that the improvements of the metrics
for both ROI and keypoint detection are higher for
SPEED+ lightbox images than for those belonging to
the SPEED+ sunlamp set due to the features of the
images themselves. Namely, the images in the sun-
lamp set also contain optical artifacts such as flares,
blooming, and saturations that make the dataset ex-
tremely complex, also because these artifacts are not
present in the training images nor the augmentations
considered in this work. Despite that and even if
the achievement of a top-performing model is beyond
the scope of this work, it is acknowledged that the
artifacts can still be included via dedicated augmen-
tations, as in [13, 26], leading to high-level perfor-
mances also in sunlamp images. The outcomes for the
synthetic test set from SPEED registered using the
VIS sensor noise augmentation point out that train-
ing with a randomized noise higher and more complex
than the actual noise already included in the images
is beneficial in increasing the overall accuracy.

Tab. 4 offers a comparison of the metrics for
the SPEED images achieved by the YOLOv8s-pose
model trained in this work (already provided in
Tab. 2) with those scored by top-performing archi-
tectures available in the literature. It is worth point-
ing out that, as a side result, The YOLOv8s-pose
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Table 2: Ablation study for YOLOv8s-pose augmentations, object detection results.

Model Augmentation
SPEED SPEED+ Lightbox SPEED+ Sunlamp

ROI IoU ROI IoU ROI IoU
mAP 95

50 mean mAP 95
50 mean mAP 95

50 mean
M1 Baseline 0.981 0.9653 0.687 0.8280 0.627 0.8349
M2 + VIS Sensor Noise 0.990 0.9758 0.843 0.8939 0.723 0.8682

Table 3: Ablation study for YOLOv8s-pose augmentations, keypoint regression results.

Model Augmentation
SPEED SPEED+ Lightbox SPEED+ Sunlamp

Keypoints OKS Keypoints OKS Keypoints OKS
mAP 95

50 mean mAP 95
50 mean mAP 95

50 mean
M1 Baseline 0.987 0.9747 0.472 0.6267 0.185 0.3928
M2 + VIS Sensor Noise 0.994 0.9895 0.634 0.7226 0.262 0.4587

model M2 (i.e., the one trained with the VIS sensor
noise augmentation) is the best performing in tar-
get detection tasks, with the highest IoU score on
SPEED images (+1.1% than the YOLOv5s adopted
in [32], +2.2% than the YOLOv5s adopted in the
SLN [31]) and mean AP 95

50 (+3.3% with respect to the
YOLOv5s adopted in [32], +0.5% than the YOLOv5s
adopted in the SLN [31]). Moreover, by comparing
the keypoint regression mean AP 95

50 scored by the HR-
Net32 adopted in [31] (AP 95

50 = 98.97%) with the ones
achieved by model M2 (AP 95

50 = 99.40%), it arises
that the YOLOv8s-pose is also the best-performing
model on keypoint regression task for SPEED im-
ages, up to the author’s knowledge. These side re-
sults highlight that coupling multi-task learning and
the introduced VIS sensor noise augmentation effec-
tively enhances the performances of the CNN, out-
performing previous architectures.

Table 4: Performance comparison of target detection
CNNs on SPEED images.

Method Mean IoU Mean AP95
50

SLAB Baseline [33] 91.9% N.A.
UniAdelaide [30] 95.34% N.A.
SLN (YOLOv5s) [31] 95.38% 98.51%
YOLOv5n [32] 95.42% 95.7%
YOLOv5s [32] 96.46% 97.6%
YOLOv8s-pose M1 (our) 96.53% 98.1%
YOLOv8s-pose M2 (our) 97.58% 99.0%

6. Conclusions and Future Works

Autonomous spacecraft relative navigation via
monocular images has been a highly active field of
research in recent years. One of the most studied and

effective solutions is to leverage CNNs to process the
incoming images and then rely on classic PnP solvers
to retrieve the relative pose with respect to a non-
cooperative known target. The main drawback of this
approach is that CNNs need to be trained on image
datasets representative of the actual operative envi-
ronment. Due to the lack of actual spaceborne im-
ages, this need is addressed by using synthetic images.
Despite that, recent studies revealed that most archi-
tectures feature a strong drop in performance when
trained on synthetic images and tested on mock-up
frames, due to the huge domain gap between the sets.
By noticing that one of the main differences between
synthetic and mock-up frames is the presence of a de-
tector and a sensor in the latter ones that are usually
not accounted for in the image synthetic generation
phase, the work in this paper aims at the development
of a sensor model that can be applied to synthetic im-
ages to generate high-fidelity sensor noise, enhancing
the representativeness of noise synthetic images and
possibly improving the domain bridging capabilities
of CNN trained with those images.

Comparing the actual images acquired from a
CMOS sensor against the synthetic images noised us-
ing the widely adopted techniques of adding a white
Gaussian noise with a standard deviation that in-
cludes the contribution of photon shot noise, dark
current noise, and readout noise, it arose that the
simple Gaussian model is ineffective in capturing
both the actual noise characteristics and, most im-
portantly, the fixed pattern noises that may be not
negligible for CMOS sensors in low light and high
gain conditions or for long exposure images. Notably,
the fixed pattern noises can strongly affect the image
processing algorithms leveraging edge detection due
to their row-wise and column-wise patterns. Conse-
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quently, a VIS sensor model that describes the im-
age formation steps from the reception of the pho-
tons on the detector to the final pixel intensity in DN
has been developed by relying on detailed models for
the principal noise sources (including fixed pattern
noises) through all the image formation steps. This
work provides an extensive analysis of all the noise
sources and the models adopted, highlighting that the
readout noise contribution to the overall noise is the
highest in short exposure and that a Tuckey-Lambda
distribution allows increasing the accuracy of this
noise component. Remarkably, the developed model
can be applied by using camera noise parameters from
calibration and, remarkably, from datasheets, with a
slight degradation of the fidelity mostly due to the
strongest approximations in the fixed pattern noises,
making it possible to approximate the camera with-
out actually having the camera physically available
and a dedicated facility.

To assess the representativeness of the model in-
troduced within this work, its dark frames, i.e., im-
ages generated without incoming light, making light-
dependent noise sources such as photon shot noise
and PRNU negligible, have been compared against
those acquired using an actual CMOS sensor. De-
spite the possibility of leveraging camera parameters
from datasheets, a noise characterization of the actual
CMOS adopted in this work has been performed due
to the available datasheet non-compliance with the
latest EMVA1288 prescriptions. It is worth point-
ing out that the procedure adopted in this work is
general and can be applied to all camera models, re-
sulting in a detailed guideline. The comparison be-
tween the introduced model and the actual CMOS
confirms the high fidelity of the VIS sensor model
developed. Namely, the VIS sensor model, either ap-
proximating the DSNU with Gaussian distribution or
leveraging the more accurate GMMs and polynomial
fittings, offers a better approximation of the actual
CMOS dark frames than the widely adopted addi-
tive white Gaussian noise, with only small deviations
from the intensity of the actual frames, more notice-
able for the case of Gaussian approximation of the
DSNU. Further, it has been proven that a Gaussian
distribution for the readout noise leads to a good ap-
proximation of the first peak of the histogram, while
the adopted Tuckey-Lambda distribution offers a bet-
ter approximation due to the heavier weight applied
to the tails of the distribution itself. It is acknowl-
edged that the comparison between the introduced
model and the actual frames lacks the evaluation of
the light-dependent noise sources to be properly val-

idated. This limitation arose from the unavailabil-
ity of a calibrated light source in the facility. Con-
sequently, the further development of the work pre-
sented here shall comprise a detailed validation of the
developed model against actual frames acquired in a
facility with a calibrated light source, in compliance
with the EMVA1288.

Lastly, the application of the developed VIS sensor
model during the training of a CNN suitable for pose
estimation is discussed. Namely, the developed model
has been introduced during the training phase as a
custom augmentation applied to all the synthetic im-
ages in the training set. To avoid overfitting to a sin-
gle camera noise model, the camera parameters used
as input for the VIS sensor model have been random-
ized. The comparison with the outcomes achieved
with and without the VIS sensor noise augmentation
proved the enhancement of the performances on both
synthetic and mock-up images in both ROI and key-
point regression offered by using a more realistic noise
due to the introduced VIS sensor model. Namely,
the performance increment in the synthetic images
is such that the model trained with the VIS sen-
sor noise augmentation is the best-performing model
available in the literature in ROI and keypoint de-
tection on SPEED synthetic frames, up to the au-
thor’s knowledge. Concerning the mock-up images
from SPEED+, the scores reveal increments of about
15% in ROI and keypoints AP 95

50 , about 7% in ROI
IoU, and about 10% in keypoint OKS for SPEED+
lightbox images. It is acknowledged that the en-
hancement of the performances in percentage for the
SPEED+ sunlamp set is lower than the lightbox set
due to the presence of optical artifacts (e.g., flares) in
the former dataset that are not included in the train-
ing images and that strongly affect the performances
of the adopted CNN. Despite that, all the outcomes
achieved constitute a major outcome and confirm the
effectiveness of the proposed VIS sensor model in en-
hancing the fidelity of the noise applied to synthetic
images, strongly contributing to bridging the domain
gap between synthetic and actual images and, con-
sequently, allowing the training of CNN model more
robust and better suited for real-case scenarios.
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D’Amico. Spacecraft pose estimation dataset
(SPEED). Zenodo, February 2019.

[10] Mate Kisantal, Sumant Sharma, Tae Ha Park,
Dario Izzo, Marcus Märtens, and Simone
D’Amico. Satellite pose estimation challenge:
Dataset, competition design, and results. IEEE

Transactions on Aerospace and Electronic Sys-
tems, 56(5):4083–4098, 2020.

[11] Tae Ha Park, Marcus Märtens, Mohsi Jawaid,
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