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Summary In the surgical treatment of nasal breathing difficulties, the underlying huge anatomical variability poses a significant
challenge to ENT surgeons, who are often unable to take proper surgical decisions based on functional information. In this contri-
bution, we describe a procedure that uses machine learning to identify pathologies and related surgical corrections. An important
novelty is that here the (standard) neural network is driven by functional information related to the fluid mechanics of the nose,
derived from CT scan of the patients after large-scale CFD simulations.

BACKGROUND AND MOTIVATION

The motivation of this work is supporting the surgical decisions of the Ear, Nose and Throat (ENT) doctors re-
garding the frequently occurring corrections of the nasal breathing difficulties which affect so many of us, because of
pathologies or malformations of the upper respiratory airways. The many functions of the human nose are primarily
driven by fluid mechanics, but the convoluted shape of the nasal cavities, which determines such functions, is highly
variable among subjects. Hence, a clear link between shape and function is not assessed yet [2]. hence, ENT sur-
geons must take surgical decisions mostly relying on the visual analysis of the patient’s anatomy, acquired by a CT
scan. Since extreme anatomies sometimes happen to be asymptomatic, while other apparently ”normal” anatomies
lead to severe symptoms, the notion of a functionally average nose is not available [1]. The clinical path leading to
surgical decisions is thus often quite subjective, and many surgical maneuvers simply do not achieve the expected
goal: an impressive example is the surgical correction of septal deviations, where more than 50% of the patients report
dissatisfaction after surgery [3, 7].

In this work, we exploit the recent suggestion [5] that a machine-learning approach based on flow features, available
after a Computational Fluid Dynamics (CFD) analysis, might be more effective than purely geometric features at
determining the proper surgical treatment. Therefore, we describe the construction of a properly annotated dataset, to
be processed by CFD, designed to train a standard machine-learning model capable to identify the most appropriate
surgical action for a specific patient, starting from his/her Computed Tomography (CT) scan.

METHOD
The database needed for training must be reasonably sized, and equipped with robust and non-equivocal labels.

Further, it needs both healthy and pathological patients.
By perusing our own internal database of nasal CT scans, we select 7 patients that by consensus have a normal

sinonasal anatomy. In tight collaboration with ENT surgeons, we then develop a tree of elementary defects, to be
injected onto the healthy anatomies. These defects are defined as the typical deformations that would be corrected by
the smallest conceivable, atomic surgical action, and are created by a sort of virtual anti-surgery. A complete view
of all the considered geometrical defects is provided in the tree of pathologies schematically shown in figure 1: they
include the two large families of septal deviations and hypertrophies of the turbinates. These defects can be present
either one at a time or in combination, and are given a severity parameter.

Creating a properly defined, anatomically representative defect like one of those described in fig.1 is extremely
time-consuming. Therefore, an automated procedure to carry out such inverse surgeries automatically is devised.
Once deformations have been satisfactorily created manually for the first patient, they are replicated for the other
patients by taking advantage of functional mapping [4]. Functional mapping is a computational geometry technique
which allows the seamless transfer of the deformation function over the anatomy of one patient to that of any other
patients. An example of corresponding defects is shown in figure 2.

The 7 healthy patients and various combinations of defects applied to them leads to the creation of a dataset with
277 distinct anatomies. These are processed via CFD, and the computed flow solution is further processed to extract
a small set of significant features. The three-dimensional CFD simulations employ well-resolved Large Eddy Simu-
lation (LES) with approx. 15 millions cells, computed using the finite-volume library OpenFOAM. Each anatomy is
simulated for a steady inspiration at a rate of 280ml/s, corresponding to a restful breathing.

Since the size of the CFD output is much larger than the number of available observations, the direct use of the full
CFD-computed flow field is not conceivable, and one has to resort to compact features to shrink the number of inputs
to the classifier, while preserving as much as possible of the information content of the CFD solution. The extraction
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of meaningful features is a crucial step of the procedure, preliminarly discussed in [6] and not reported in this Abstract
owing to lack of space. Results discussed below are obtained by distilling the entire CFD output into 12 real numbers,
the average of the mean velocity is six cross-sections of the nasal cavities, separated in left and right.
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Figure 1. Tree of deformations/pathologies. Every pathology is
accompanied by a grade of severity. Red leaves at the rightmost
level indicates pathologies considered in the present work.

Figure 2. Healthy anatomy of patient P1 (top) versus two patho-
logical modifications: severe septal deviation located posteri-
orly (middle), and severe hypertrophy of the inferior turbinate
(bottom). Colours indicate the main anatomical areas: the air-
ways (black), the inferior turbinates (blue), the middle turbinates
(green), the septum (red). Red circles highlight regions altered by
the pathology.

RESULTS

Figure 3. The mean velocity and pressure field for the healthy
patient P1.

The CFD analysis (a sample result is shown in figure
3) and the ensuing small set of features are used to train
a neural network, made by four layers and with less than
100 neurons overall, whose goal is to classify the case.
The network is tested on never-seen-before patients, both
artificially derived as above from healthy cases, and real
CT scans. Results, to be shown in detail at the presenta-
tion, indicate that the current dataset, consisting of less
than 300 samples, already enables high classification ac-
curacies on never-seen-before patients when processed
via a standard, shallow neural network. We stress again
that solving a classification problem here is tantamount
to suggesting a surgical decision, thanks to the way de-
formations have been designed. Work is underway to
verify the level of accuracy required by the underlying
CFD engine; after that, the database will be redesigned
and expanded by a factor 3-5: once the cardinality of the
dataset will be large enough to allow for approximately
40 features, the deployment of the method in clinical
practice becomes realistically conceivable.
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