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A Framework for eBPF-based Network Functions in
an Era of Microservices

Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone and Yunsong Lu

Abstract—By moving network functionality from dedicated
hardware to software running on end-hosts, Network Functions
Virtualization (NFV) pledges the benefits of cloud computing to
packet processing. While most of the NFV frameworks today
rely on kernel-bypass approaches, no attention has been given
to kernel packet processing, which has always proved hard to
evolve and to program. In this paper, we present Polycube, a
software framework whose main goal is to bring the power
of NFV to in-kernel packet processing applications, enabling
a level of flexibility and customization that was unthinkable
before. Polycube enables the creation of arbitrary and complex
network function chains, where each function can include an
efficient in-kernel data plane and a flexible user-space control
plane with strong characteristics of isolation, persistence, and
composability. Polycube network functions, called Cubes, can
be dynamically generated and injected into the kernel network-
ing stack, without requiring custom kernels or specific kernel
modules, simplifying the debugging and introspection, which are
two fundamental properties in recent cloud environments. We
validate the framework by showing significant improvements over
existing applications, and we prove the generality of the Polycube
programming model through the implementation of complex use
cases such as a network provider for Kubernetes.

Index Terms—NFV, eBPF, XDP, Linux

I. INTRODUCTION

With the advent of Software Defined Networks (SDN)
and Network Functions Virtualization (NFV), a large number
of Network Functions (NFs)1 are becoming pure software
images executed on general-purpose servers, running either as
virtual machines (VMs) or as cloud native software. Possible
examples include load balancing [1], [2], [3], [4], congestion
control [5], [6], [7], and application-specific network work-
loads such as DDoS Mitigation [8] or key-value stores [9],
[10]; thanks also to the development and availability of
programmable network devices (e.g., SmartNICs) [11]. The
increased flexibility (software is intrinsically easier to program
compared to the hardware), and the recent advances in terms of
speed for the software packet processing have then contributed
to the proliferation of a myriad of VNFs frameworks that
provide implementations of efficient and easily programmable
software middleboxes [12], [13], [14], [15], [16], [17], [18].
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1This paper uses the term Network Function (NF) to specify components
such as traditional individual appliances (e.g., bridge, router, NAT, etc.), while
a service defines a more complex scenario in which multiple NFs must
cooperate e.g., through a chain of NFs.

Current solutions to implement the dataplane of those
software packet processing applications rely mostly on kernel
bypass approaches, by giving to the user-space direct access
to the underlying hardware (e.g., DPDK [19], netmap [20],
FD.io [21]) or by following a unikernel approach, where
only the minimal set of OS functionalities, required for the
application to run, are built with the application itself (e.g.,
ClickOS [22], [23], [24]). These approaches have perfectly
served their purposes, with efficient implementations of soft-
ware network functions that have shown potential for process-
ing 10-100Gbps on a single server [25], [26], [27].

Recently, new technologies such as 5G, edge computing
and IoT among the others, led to a significant increase in
the total number of connected devices and consequent net-
work load, hence originating two new trends. From one side,
traditional “centralized” appliances (e.g., global datacenter
firewalls) are hard to scale, leading to a more distributed
approach in which network functions are implemented directly
on end hosts (e.g., datacenter servers). From the other side,
cloud-native technologies are used to built NFs packaged
in containers, deployed as microservices, and managed on
elastic infrastructure through agile DevOps processes and
continuous delivery workflows [28]. These new requirements
have also caused a visible change in the type and requirements
of network functionalities deployed across the data center.
Network applications should be able to continuously adapt
to the runtime behavior of cloud-native applications, which
might regularly change or be scheduled by an orchestrator, or
easily interact with existing “native” applications by leveraging
kernel functionalities - all of this without sacrificing per-
formance or flexibility. For instance, cloud-native platforms,
like Kubernetes [29], can exploit different network plug-ins2

to implement the underlying data plane functionalities and
transparently steer packets between micro-services.

Unfortunately, the previously mentioned kernel-bypass ap-
proaches suffer within this new scenario [30]. First, they
require the exclusive allocation of resources (i.e., CPU cores)
to achieve good performance; this is perfectly fine when
we have machines dedicated to networking purposes but it
becomes overwhelming when this cost has to be paid for every
server in the cluster since they permanently steal precious
CPU cycles to other application tasks. Second, they require
to re-implement the entire network stack in userspace, losing
all the well-tested configuration, deployment and management
tools developed over the years within the operating system.

2A list of network plugins (also known as Container Network Interface
(CNI) plug-ins) is available in the Kubernetes Cluster Networking page, https:
//kubernetes.io/docs/concepts/cluster-administration/networking/
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Third, they rely on custom or modified versions of NIC
(network interface card) drivers, which may not be available
on public cloud platforms, also requiring a non-negligible
maintenance cost. Last but not least, they have difficulties
(and poor performance) when dealing with existing kernel
implementations or communicating with applications that are
not implemented using the same approach, requiring them
to adhere to custom-defined APIs (e.g., mTCP [31]) or to
change the original application logic (e.g., StackMap [32]).
As a consequence, most of the existing cloud-native network
plug-ins for Kubernetes still rely on functionalities and tools
embedded into the operating system network stack (e.g., ipta-
bles, ipvs, linuxbridge), while Polycube (and recently, Cilium)
being notable exceptions. Unfortunately, the drawbacks of this
approach are also evident. First of all, fixed kernel network
applications are notoriously slow and inefficient given their
generality, which impairs the possibility to specialize them
depending on workloads or the type of application that is
running on top. Secondly, software network functions (or the
associated kernel modules [33]) that live in the kernel have
also proven hard to evolve due the complexity of the code and
the difficulties in maintaining, up-streaming or modifying it.

This paper proposes Polycube, a novel software framework
that addresses these deficiencies by adopting a different ap-
proach for building and running NFs. Polycube exploits the
extended Berkeley Packet Filter (eBPF), whose characteristics
are presented in §II, to build the data plane of the NFs and
to provide the flexibility and easy development process that
were almost impossible to achieve in “legacy” kernel imple-
mentations. Polycube enables the creation of efficient, modular
and dynamically re-configurable network functions that are
executed within the Linux kernel; the above components can
be easily chained to create more complex services.

Overall, this paper makes the following contributions:

• We show the design and architecture of Polycube (§IV),
which moves to the kernel space some ideas and concepts
already established in other NFV frameworks, hence with
different challenges and solutions.

• We present the mechanism employed by Polycube to en-
able the creation of arbitrary chains of in-kernel network
functions (§V), which mimics the well-known model in
use in the physical world that deploys functions (e.g.,
bridges, routers) connected by wires.

• We provide a description of the Polycube programming
model, including the APIs and abstractions used to sim-
plify the development of new NFs (§VI).

• We introduce a generic model for the control and man-
agement plane of each NF that is used to simplify the
manageability and accelerate the development of new net-
work services (§VII), which complement the dataplane-
only approach proposed by eBPF.

• Finally, we identify and quantify both the overhead
introduced by the Polycube programming model and its
the data plane abstractions and the performance improve-
ments brought to existing kernel implementations (§IX).

Polycube is open-source and available at [34].

II. BACKGROUND

This Section lists the main properties that we believe are
fundamental in today’s environments (§II-A), it provides a
brief overview of the extended Berkeley Packet Filter sub-
system (§II-B) and why we believe this may represent a good
choice for networking applications (§II-C).

A. Desired Properties for Cloud-native NFs

Low overhead: Although efficiency is always a desirable
property, this assumes even more significance in the cloud-
native context where servers are mostly used to deliver high-
level services (e.g., web portals, databases, etc.) and net-
working components are often perceived as an unavoidable
overhead, particularly within edge clouds, where the number
of available resources is limited.
Agile development: Newer software data planes should follow
the same continuous delivery (CD) software development
typical of microservices, making it possible to easily update
the existing application by providing a replacement that does
not disrupt the typical service workflow [35].
Runtime flexibility and optimizations: From a developer’s
point of view, writing an efficient and, at the same time,
easy to maintain software data plane is a daunting task. Most
of the time is just a matter of finding the right trade-off
between simplicity (e.g., modularity, easy-to-read code) and
performance. We often see application-specific, and ad-hoc
techniques applied only to particular use-cases [27], [26],
which do not perform well on other scenarios or for a broader
spectrum of applications. To better adapt to this new extremely
dynamic environment, network components should be able to
automatically adapt themself to the runtime condition with the
minimum amount of programming effort.
Co-existence with “traditional” ecosystem: Applications are
now running on the host operating system that is shared
between the different components (e.g., containers), which in
turn rely on existing kernel functionality to accomplish their
tasks [36]. It is then crucial that network functions can easily
interact with existing “native” applications and also leverage
kernel functionalities (e.g., TSO, skb metadata, etc.), without
sacrificing performance and flexibility [37].

B. Extended Berkeley Packet Filter (eBPF)

The Berkeley Packet Filter (BPF) is an in-kernel virtual
machine for packet filtering that has been deeply revisited
starting from 2013 and is now known as extended BPF (eBPF).
In addition to several architectural improvements, eBPF intro-
duces the capability of handling generic event processing in
the kernel, JIT compiling for increased performance, stateful
processing using maps, and libraries (helpers) to handle more
complex tasks, available within the kernel.

eBPF programs can be either written using eBPF assembly
instructions and converted to bytecode using bpf_asm utility
or in restricted C and compiled using the LLVM Clang
compiler. The bytecode can then be loaded using the bpf()
system call. A loaded eBPF program follows an event-driven
architecture and it is therefore hooked to a particular type of
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event. Each occurrence of the event will trigger its execution,
and, based on the type of event, the program might be able
to alter the event context. For networking purposes, program
execution is triggered by the arrival of a packet. Two hooks
are available to intercept packets and possibly mangle, forward
or drop them: eXpress Data Path (XDP) [38] and Traffic
Control (TC). XDP programs intercept RX packets right out
of the NIC driver, possibly before the allocation of the Linux
socket buffer (sk_buff), allowing, e.g., early packet drop.
TC programs intercept data when it reaches the kernel traffic
control function, either in RX or TX direction. We refer the
reader to [39], [40] for a more in-depth understanding of the
eBPF subsystem.

C. Choosing eBPF for Network Functions

While eBPF is not the only technology proposed for high-
speed and flexible packet processing (e.g., to limit our view to
the most alternatives with strong industry support, DPDK [19]
and FD.io [21]), the authors believe this technology is a valid
alternative for the following main reasons.
Easy development process. eBPF (data plane) programs
follow the same development process of userspace applications
and can be created independently from the kernel development
process, without explicit use of kernel-level primitives.
Dynamic update. eBPF programs are dynamically injected
into the kernel using the bpf() system call, without having to
install custom kernel modules or relying on modified kernels.
Dynamic (hence, at run-time) updates enable the creation of
data plane software that is tailored to the actual requirements
in terms of applications and workloads [41], as opposed to
static kernel implementations.
High throughput. Although being dynamically injected in the
kernel, eBPF programs are executed natively on the target
platform3, which provides a notable speed-up compared to
an interpreted execution. Moreover, the execution of these
programs at the XDP level enables a high-speed packet pro-
cessing and forwarding, with performance also close to user-
level approaches [38].
Excellent performance/efficiency trade-off. eBPF programs
are triggered only when a packet is received, hence do not
consume CPU cycles when there is not traffic waiting to
be processed, as opposed to polling-based approaches (e.g.,
DPDK), where the CPU usage is always 100% even in absence
of traffic.
Integration with the Linux subsystems. eBPF programs
cooperate with the kernel TCP/IP stack, interact with other
kernel-level data structures (e.g., FIB or neighbor table), and
leverage kernel functionalities (e.g., TSO, skb metadata, etc.),
possibly complementing existing networking features. Legacy
applications or debugging tools can continue to be used
without any change to the existing applications.
Security. As opposed to custom kernel modules, eBPF pro-
grams cannot harm the system. The in-kernel verifier ensures

3By default, eBPF programs are JIT-compiled into native machine code
before being executed, as the eBPF JIT flag is active by default in latest kernel
releases.

that all the operations performed inside the eBPF programs are
correct and safe, discarding the injection of faulty programs.
Explicit separation between stateless and stateful primi-
tives. eBPF programs have a clear distinction between stateless
and stateful portions of the code. Operations outside the eBPF
environment are carried out only through specific “helper”
functions that have a well-defined syntax and behavior. Sev-
eral recent analysis frameworks [42], [43], [44] require this
separation to simplify the analysis of NF operations to find
buggy development semantic behavior (verifier safety does not
imply “semantic safety”) or to analyze the performance of a
NF [45], [46]. eBPF programs have this separation as part of
the original design, facilitating the adoption of the above type
of analysis and concepts.

III. DESIGN GOALS AND CHALLENGES

The main objective of Polycube is to provide a common
framework to network function developers to bring the power
and innovation promised by NFV to the world of in-kernel
packet processing, which is possibile thanks to the introduction
of eBPF. However, eBPF was not created with this goal
in mind; it serves only as a generic virtual machine that
enables the execution of user-defined program into the kernel,
attaching them to specific points into the Linux TCP/IP stack
or to generic kernel functions (e.g., kprobes). Then, Polycube
aims to chase the following objectives, which are not covered
by the eBPF subsystem.

G1: Common structure and abstractions of in-kernel NFs.
The realization of complex network functionalities are not
always possible in eBPF, given its security model that is forced
by the in-kernel verifier to ensure that the execution of the
program does not harm the system [47]. For instance, no ab-
stractions currently exist to enable the concept of virtual ports
from which the traffic is received or sent out, or to implement
the (complex) control plane of a NF, forcing developers to
dedicate a considerable amount of time to handle common
control plane operations (e.g., user-kernel interaction). Poly-
cube must provide a common programming framework and
models to allow developers to use high-level abstractions to
solve common problems or known limitations of eBPF in a
efficient and transparent way, while the framework optimizes
the implementations of those abstractions.

G2: Programmable and extensible NF chaining. In a NFV
environment, a packet is typically processed by a sequence
of NFs, giving the possibility to run different NFs at the
same time, which are also manufactured by multiple vendors.
Polycube must enable the possibility to create chain of NFs in
the kernel, guaranteeing the correct forwarding sequence and
same degree of isolation between them.

G3: Simple management and execution of the NFs. Poly-
cube must allow external operators (e.g., SDN controllers,
orchestrators, network administrators) to configure in-kernel
functionalities to support a diverse set of use cases. This
implies the possibility to compose and configure the datapath
functionalities or to dynamically upgrade or substitute a given
NF at runtime. A clear separation between the in-kernel data
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plane and the control plane would be desired, so that is
becomes easier to dynamically regenerate and reconfigure the
data path to implement the user policies.

G4: Simple development of control and management plane.
The existence of an API that allows to control the VNF be-
havior and its networking intent is fundamental and requires a
non-negligible development effort. This task is often underes-
timated by most of the NFV frameworks, which mainly focus
on the data plane design and performance, leaving to custom
and often non interoperable control plane implementations of
the NF APIs. Polycube should provide a common structure
of the control plane with a program-dependent API that is
automatically generated for each NF, freeing the developer of
this additional implementation burden.

IV. ARCHITECTURE OVERVIEW

This Section introduces the main ideas that inspired the
design of Polycube, its overall software architecture, and
the most significant implementation details. An high-level
description of the Polycube architecture is shown in Figure 1.

A. Unified point of control

All network functions within Polycube feature a unified
point of control, which enables the configuration of high-level
directives such as the desired service topology. In addition,
it facilitates the provisioning of cross-network function opti-
mizations that could not be applied with separately managed
NFs. Polycube supports this model through a single, service-
agnostic, userspace daemon, called polycubed, which is
in charge of interacting with the different network function
instances. Each different type of virtual network function in
Polycube is called Cube4. A Cube can be plugged into the
framework at run-time, upon a registration phase in which the
new cube shares with polycubed the information required
for its identification, such as its name, description or the
minimum kernel version required to run the NF. When the
NF is registered, different instances of it can be created by
contacting polycubed, which acts mainly as a proxy; it
receives a request from a northbound REST interface and
forwards it to the proper NF instance, returning back the
answer to the user.

B. Overall structure of Polycube NFs

Each Cube is made up of a control plane and a data plane.
The data plane is responsible for per-packet processing and
forwarding, while the control and management plane is in
charge of NF configuration and non-dataplane tasks (e.g.,
routing protocols).

1) Data plane: The data plane portion of a NF is executed
per packet, with the consequent necessity to keep its cost
as small as possible. The data plane of a Polycube NF is
composed by a fast path, namely the eBPF code that is injected
into the kernel, and a slow path, which handles packets that

4In the rest of the paper, we will use the term NF and Cube interchange-
ably. In Polycube a NF is indeed represented as a single Cube.

eBPF VM

Encapsulator/
Decapsulator

polycubed

Kernel space

User space

Kernel abstraction layer

Service 
Proxy

REST API

Service module

Management Interface

Service 
Instance #1

Mgmt/Ctrl

Slowpath

Cube (eBPF)

Cube Cube …

Service 
Controller

Fig. 1: The Polycube architecture.

cannot be fully processed in the kernel or that would require
additional operations, slowing down the processing of the
other packets.
Fast path. When triggered, the fast path retrieves the packet
and its associated meta-data from the receive queues, then
it executes the injected eBPF instructions. Typical operations
are usually very fast, such as packet parsing, lookups in
memory (e.g., to classify the packet), and map updates, such as
storing data in memory (e.g., statistics), for further processing.
When those operations are carried out, the fast path returns a
forwarding decision for that particular packet or send it to the
slow path for further processing.

A Cube’s fast path is composed of a single or a set of
micro-blocks, called micro-cubes (µCubes), which represent
the smallest programming unit of the Cube’s data plane. A
µCube is a single eBPF program that lies under the umbrella
of single Cube, which provides a unique control plane and
slow path module that is shared among all its µCubes. To
form the Cube’s fast path, several µCubes can be stitched
together and injected separately from the Cube’s control plane
using the Polycube service-independent APIs. This modular
design is particularly useful because it allows developers to
handle each feature separately, enabling the creation of loosely
coupled NFs with different functionalities (e.g., packet parsing,
classification, field modification) to be dynamically composed
and replaced; each single µCube can be substituted at runtime
with a different version or can be directly removed from the
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chain if its features are not needed anymore. Second, it can
be useful to overcome some well-know eBPF limitations such
as the maximum size of an eBPF program or the inability
to create unbounded loops in the code. Furthermore, chains of
µCubes do not introduce any noticeable overhead, as presented
in §IX-C2.

This design choice introduces the necessity to specify an
order of execution of the µCubes inside the NF; when a
packet reaches a Cube composed of different micro-blocks,
Polycube has to know the first module to execute, which in
turn will trigger the execution of the others µCubes within an
arbitrary order based on its internal logic. To do this, Polycube
introduces the concept of HEAD µCube, which is unique within
the Cube itself and represents the entry point of the entire NF,
whose execution is triggered upon the reception of a packet
in a port. Then, it can “jump” to the others µCubes.
Slow path. Although eBPF offers the possibility to perform
some complex and arbitrary actions on packets, it suffers from
some well-known limitations due to its restricted environment,
which however are necessary to guarantee the integrity of the
system. Those limitations may impair the flexibility of the
network function, which (i) may not be able to perform com-
plex actions directly in the eBPF fast path or (ii) could slow
down its execution, adding more instructions in the fast path
to handle exceptional cases. To overcome those limitations,
Polycube introduces an additional data plane component that is
no longer limited by the eBPF virtual machine and it can hence
execute arbitrary code. The slow path module is executed in
userspace and interacts with the eBPF fast path using a set
of components provided by the framework. The eBPF fast
path program can redirect packets (with custom meta-data) to
the slow path, similar to Packet-In messages in OpenFlow.
Similarly, the slow path can send packets back to the fast
path; in this case, Polycube provides the possibility to inject
the packet into the ingress queue of the network function port,
simulating the reception of a new packet from the network, or
into the egress queue, hence pushing the packet out of the
network function.

2) Control and management plane: The control plane of
a virtual network function is the place where out-of-band
tasks, needed to control the data plane and to react to possible
complex events (e.g., Routing Protocols, Spanning Tree), are
implemented. It is the point of entry for external players (e.g.
service orchestrator, user CLI) that need to access NF’s re-
sources, modify (e.g., for configuration) or read NF parameters
(e.g., reading statistics) and receive notifications from the NF
fast path or slow path. Polycube defines a specific control and
management module that performs the previously described
functions. It exposes a set of REST APIs used to perform
the typical CRUD (create-read-update-delete) operations on
the NF itself; these APIs are automatically generated by the
framework starting from the NF description (i.e., a YANG
model of the NF), removing this additional implementation
overhead to the programmer. To interact with the NF, an
external player has to contact polycubed, which uses the
service instance, contained in the URL, to identify which NF
the request is directed and dispatches it to the corresponding
NF control path, which in turn serves the request modifying

its internal state or reflecting the changes to the NF data path
instance. More details on how the control plane and the REST
APIs of each NF are automatically generated is presented in
Section VII.

3) Implementation: While the fast path is implemented
by injecting the data plane programs in the eBPF kernel
sandbox, both the slow path and the control/mgmt plane are
implemented in user space, although in a different portion of
the source code. In fact, the slow path is implemented by
a callback named packet_in, which is fired only when
the fast path detects an exception. Vice versa, functions in
the control/mgmt plane are triggered by a different set of
events, such as a request to the REST API of the NF (e.g.,
to read/write data in maps), expiring timers (e.g., for periodic
cleanup tasks), and more.

From the performance point of view, the far majority of
packets (actually, all packets in some NFs) are handled by the
fast path, hence the userspace code does not introduce any
performance penalty, nor it represents a performance-critical
component for the run-time behavior or the NF.

V. SERVICE CHAINING DESIGN

A Polycube service chain involves of a set of network
function instances (i.e., Cubes) that are connected to each other
by means of virtual ports, which are in turn peered with a
Linux networking device or another in-kernel NF instance. In
the standard model, eBPF programs do not have the concept of
port from which traffic is received or sent out; it only provides
a tail call mechanism to “jump” from one program to another.
To provide this abstraction, Polycube uses a set of additional
eBPF components and wrappers around the user-defined code;
Figure 2 shows the resulting design.

When a packet traverses a chain in Polycube, it carries
some metadata (e.g., ingress virtual port, module index),
which are internally used by Polycube to correctly isolate the
various NFs and implement the desired chain. In particular,
the cube index is used to uniquely identify the Cube fast
path inside the framework and it is uniquely generated when
the Cube instance is created. Before injecting the Cube’s fast
path, Polycube augments the user-defined code with a set of
wrappers that are executed before and after the NF itself.
In particular, the pre-processor contains the set of functions
necessary to process the incoming traffic, while the post-
processor contains the helpers used by the fast path to send
the traffic outside of the Cube.
Pipeline Example. We will now walk through a simple
example to illustrate how packets are passed through the
Polycube service chain. In Figure 2 we have an instance of
a Polycube Bridge NF, called br1 with two virtual ports
connected respectively to a Linux networking device (i.e.,
netdev1) and to the first port of an instance of Router
Cube, called r1. First, when a new port is created in the br1
instance, Polycube assigns a unique virtual port identifier (i.e.,
vport) to each port; in our case, the port attached to the router
has id #0, while the other has id #1. At the same way, the
router’s port attached to the bridge has id #0.

When a new packet is received to the physical interface
netdev1, it has to execute the br1 fast path and be presented
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Fig. 2: Example of a service chain (bridge + router) in
Polycube: internal details.

as coming from the virtual port #1. To support this abstraction,
every time a Cube port is peered with a Linux networking
device, Polycube loads two additional eBPF programs. The
Input eBPF program, which is attached to the ingress hook
of the interface, is loaded and compiled at runtime with some
pre-defined information such as the virtual port id (i.e., #1 in
the example in the figure) associated by Polycube to that Cube
port and the index of the module to which the port is attached
(i.e., #11). Upon the reception of a new packet from the phys-
ical interface attached to the bridge, the input program is
triggered; it copies the vport value into an eBPF per-cpu array
map shared with the bridge instance and performs a tail call to
the br1 pre-processor, using the hard-coded module index5.

At this point, the control passes to the pre-processor module
of br1, which extracts the vport from the shared map
(and possible additional metadata such as the packet length,
headers) and invokes the br1 code. The Cube fast path
can then use the vport to send traffic outside as result
of a forwarding decision; this is possible through a specific
helper function contained in the post-processor, which will
redirect the packet to the next module of the chain. The
post-processor uses an additional auxiliary data structure, the
ForwardChain, to obtain the index of the next module of
the chain corresponding to the given vport. This map has a
local scope and represents the actual connection matrix of the
NF instance with the rest of the world. In our example, the
lookup into the ForwardChain map with vport #0 returns
the next virtual port id of r1 (i.e., 0) and the index of the eBPF
program corresponding to that Cube (i.e., 10). As before,
the post-processor copies the vport into the shared map and
“jumps” to the r1 pre-processor. Once obtained the index of
the next module, the post-processor performs a tail call using
the PatchPanel to get the real address of the next eBPF
program. On the other hand, if br1 decides to redirect the
packet to the port #0, the post-processor retrieves the next
module index (i.e., 1) from the ForwardChain and jumps

5The only way to share information from one eBPF program to another
is to copy the data into shared eBPF maps. For the internal communications,
Polycube uses per-cpu maps, which provide better performance thanks to their
lockless access. Since a packet is processed only within a single core (eBPF
does not allow preemption), this mechanism is safe.
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Fig. 3: Message flow for Encapsulator and Decapsulator

to this module, which corresponds to the Output program
associated with the physical interface. As for the input pro-
gram, this module is injected with a pre-defined if_index
of the netdevice, which uses in the bpf_redirect() helper
function to send the packet out on netdev1.

To simplify the pipeline example, we have omitted the
case in which the Cube is composed of several µCubes
(section IV-B1). Conceptually, the operations remain the same;
the only difference is that, after the pre-processor, the code of
the MASTER µCube is called, which in turn uses an internal
ForwardChain to jump from one µCube to another.

VI. APIS AND ABSTRACTIONS

Polycube provides a set of high-level APIs and abstractions
to simplify the development of a new NF, from both the control
and data planes. For example, it adds useful abstractions to
manage special packets, to cope with special processing that
may complicate (and slow down) the fast path, or to react
to special events such as timeouts. Table I shows some of
the main helper functions introduced by Polycube at different
levels of the NF code, i.e., the eBPF fast-path, the slow path
and the control and management plane.

A. Transparent port handling

A Polycube NF instance is composed by a set of virtual
ports that are uniquely identified through a name and an index
inside the NF itself. Each port of the NF can be attached to
a Linux network device or to another NF port by means of
the peer parameter. When the fast path of the NF decides
to redirect the packet to a specific output port it can use
the pcn_pkt_send() function to send the packet to the
next hop whether it is a net-device or another Polycube NF.
Although the implementations for the above two types of next
hops are quite different, Polycube hides this difference by
providing a generic helper that receives the virtual index of
the output port and, if the port is connected to a netdevice,
redirects the packet to the attached netdevice, otherwise jumps
directly to the next Polycube network function in the chain.

B. Fast-slow path interaction

In Polycube, each instance of a NF has its own private
copies of fast and slow paths; Polycube takes care of NF
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Level Helper Function Arguments Description

Fast path (eBPF) pcn_pkt_send md, out port Redirect a pkt to a Cube interface (physical or virtual)

Fast path (eBPF) pcn_pkt_controller reason Send a pkt to the slow path with a given reason

Fast path (eBPF) pcn_pkt_controller_md md, reason Send a pkt to the slow path with a given reason and metadata

Fast path (eBPF) pcn_notify md, reason Send a notification to the slow path with a reason and metadata

Fast path (eBPF) pcn_call_ingress_program index Call the µCube at a given index attached to the ingress pipeline

Fast path (eBPF) pcn_call_egress_program index Call the µCube at a given index attached to the egress pipeline

Slow path (user) pcn_pkt_in pkt, md, reason Callback executed when a notification is sent to userspace

Slow path (user) pcn_send_packet_out pkt, dir Send a packet out to the ingress or egress pipeline

Fast/slow path pcn_log level, txt Print debug messages with a given verbosity level

Control plane pcn_reload code, idx Reload the µCube at a given index with the new code

Control plane pcn_reload_all code[] Reload all the µCubes of a given Cube with the new code

TABLE I: Helper functions provided by Polycube at different level of the NF.

isolation by delivering packets generated by the fast path to
the corresponding slow path instance and vice versa. It uses
two separate (hidden to the developers) eBPF programs, the
Encapsulator and Decapsulator, which are instantiated and
injected into the kernel when polycubed is started.

a) Encapsulator: Figure 3a shows the flow of operations
performed when sending a packet from the eBPF fast path to
the slow path running in userspace. If the packet currently
processed in the NF fast path requires additional inspections
or further processing, it can be sent to the slow path module of
the NF by means of the pcn_pkt_controller() helper.
This function receives as parameters the reason why the packet
has to be sent to the slow path and, optionally, additional
meta-data fields. Polycube hides the implementation details
of the communication between the eBPF fast path program
and the NF slow path; it sends the packet to an eBPF control
module (the Encapsulator shown in Figure 3a), that will copy
the packet and its meta-data into a perf ring buffer, which
is used by polycubed to read the corresponding data from
userspace6,7. When a copy if the packet is sent to the slow
path, the original one is retained in the fast path where it
can continue the processing, or be dropped. Together with
the custom metadata, the Encapsulator adds some internal
information, such as the index of the Cube instance that
has generated the message, which are used by the Polycube
daemon to call the pcn_pkt_in() function of the associated
NF’s slow path.

b) Decapsulator: This component handles the reverse
communication, which happens when the slow path (or the
control plane) of the NF wants to inject a packet back in
the fast path or send it out on a specific Cube port. In the
first case, Polycube simulates the reception of the packet
from a specific Cube port, which is specified by the control
or slow path module through an apposite Polycube helper
function, while in the latter case the output port of the Cube
is provided. When called, this function triggers the execution

6eBPF provides specific helpers that allow to store custom data into a
perf event ring buffer. Userspace programs can then use this buffer as a data
channel for receiving events from the kernel.

7eBPF maps would be inefficient for this case because they should be
sized with the largest packet length, even if in some cases we want to send a
truncated packet to the slow-path.

of the Demultiplexer, which copies the index of the Cube
originating the message into a specific eBPF map shared with
the Decapsulator; then, it sends the packet on a TAP interface
specifically created by polycubed. Differently from the
Encapsulator, it does not use the perf ring buffer to
communicate with the Demultiplexer, which is only available
for the kernel-userspace communication and not for the oppo-
site. The reception of a packet on the TAP interface triggers
the execution of the Decapsulator eBPF program, which is
attached to the eBPF hook point of the TAP interface. When
executed, the Decapsulator extracts the index of the eBPF
program to call from the map and jumps to the next program,
following the same operations described in Section V.

C. Service debugging

Debugging a NF that includes both data and control/man-
agement planes can be difficult because of the different context
(kernel/userspace) the code is executed on. For instance,
eBPF programs use the bpf_trace_printk() function
to print debug messages; once the program is loaded, the
verifier checks whether the program is calling this function
and allocates additional buffers, which may slow down the
processing of the function. Furthermore, message ordering can
be reversed depending upon the context (user or kernel) the
generating code was running on.

To solve the above problems, Polycube provides a debug
helper that can be used to print debug messages in both data
and slow/control planes. Polycube defines a new (and more
efficient) pcn_log() helper that uses a perf ring buffer to
send debug messages to polycubed, which redirects them
to the current log file, as for the slow and control path. Finally,
using different log levels, polycubed is able to dynamically
remove all the references to the debug messages under the
specified log level, reloading the NF fast path to reflect the
changes.

D. Table abstractions

To store the network function state across different runs
of the same program or to pass configuration data from the
control path to the fast path, a Polycube NF uses eBPF tables,
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which are defined into the NF fast path and are created when
the program is loaded. Each eBPF table is associated to a scope
that determines the possibility to read and/or modify the table
content from another eBPF program. Polycube introduces the
possibility to define PRIVATE tables, which are only acces-
sible from the same µCube where they have been declared
and PUBLIC tables, which are instead accessible from every
µCube running in the machine. In addition, since Polycube
supports the possibility to compose the network function data
path as a collection of µCubes (i.e., simple eBPF programs),
we added the concept of SHARED tables, where a table can
in fact be shared between a given set of µCubes. In this case,
when the table is instantiated, it is possible to specify the
namespace within which this table will be shared.

E. Dynamic Fast Path Reloading

In addition to the capability of dynamically attach different
Cubes to form a complex service chain, Polycube enables a
single Cube to regenerate entirely its fast path (or part of it) by
dynamically reloading the code of a µCube and inject it back
into the kernel. This is particularly useful when the control
plane of a Cube recognizes that a set of conditions cannot be
met given the runtime configuration or traffic characteristics,
or simply because it wants to update the code without causing
any traffic disruption.

Once a Cube’s control plane calls the pcn_reload()
function (Table I), it provides the new source code and the
index of the µCube that should be replaced. At this point,
Polycube compiles and injects the new µCube, without attach-
ing it to the Cube’s fast path. When the new program is ready,
first we attach the maps of the old instance to the new ones,
then we atomically swap the code by replacing the pointer
to the old program with the new one in the PatchPanel
(Figure 2). This update is guaranteed to be not only atomic by
the eBPF subsystem8, but also very fast, as it actually consists
in updating a memory location. At this point, the new µCube
will start processing the traffic and the old one is unloaded. The
pcn_reload_all() performs the reloading on the whole
set of µCubes composing the Cube’s fast path; the reloading
process is the same with the difference that, once the chain
is ready the MASTER µCube is activated and attached to the
Cube’s pre-processor, as mentioned before.

F. Support for Multiple Hook Points

Polycube supports two different type of NFs that correspond
to the existing “attachments” points (a.k.a., eBPF hooks)
available in the eBPF subsystem, namely Traffic Control (TC)
and eXpress Data Path (XDP). The main difference between
XDP and TC NFs are: (i) the initial context received as input
by the triggered eBPF program, (ii) the type of standard eBPF
helpers that the program is allowed to call and (iii) the return
type of the program, which communicates the forwarding
decision for that specific packet.

With respect to the initial context (which represents by
far the most critical issue), TC cubes have access to the

8The PatchPanel map is PROG ARRAY map, whose update is pro-
tected by the kernel RCU mechanism.

sk_buff, the standard Linux data structure for network pack-
ets, which is dynamically allocated upon packet arrival and it
includes a set of metadata that result from the packet’s parsing.
Instead, XDP provides the xdp_buff, a raw buffer that
contains only the received packet because it is allocated by the
NIC driver before any TCP/IP stack processing. Although this
contributes to a significant performance difference between
the two hooks, on the other hand it provides to TC Cubes
an additional level of information and stack’s customization
that cannot be done in XDP. For instance, TC programs can
read or write the sk_buff’s internal values such as the mark
value, used by a firewall to mark packets, the packet’s priority,
used to implement QoS, or to set the queue mapping for
the packet’s transmission on a specific queue. However, this
additional information and metadata available in the sk_buff
complicates the re-writing of some packet values, which
cannot be carried out by just modifying the packet data. In
fact, the programmer has to take care of updating also the
values in the sk_buff metadata, which is not required in
case of XDP.

To simplify the development of data plane code, Poly-
cube provides a set of hook-independent helpers that
facilitate the update of many packet information (e.g.,
pcn_vlan_push_tag()). This is particularly useful to NF
developers to provide the same version of a cube that works
seamlessly, independently from the hook point at which it
is attached to. In particular, Polycube “wraps” the execution
of the program around two additional components that are
executed before and after a packet enters and/or leaves the
cube. Those wrappers take care of converting the original
context into a standard Polycube format and perform the
reverse translation on the opposite direction (Section V).

Of course, it is still possible to retrieve the original context
(e.g., the sk_buff or xdp_buff) to apply hook-specific
operations (e.g., set custom XDP metadata, update specific
skb values). In this case, Polycube will allow the developers
to separate the two versions of the code and compile the right
one depending on the hook point selected when the cube is
instantiated.

With respect to the remaining issues, Polycube cannot
overcome the limitations of eBPF helpers that are not available
in all hook points (e.g., bpf_skb_get_xfrm_state()
available only in TC, or bpf_redirect_map(), available
only in XDP); instead, it hides the different return values
by defining new constants that are automatically mapped to
correct ones when the program is instantiated (e.g., RX_OK
maps onto XDP_PASS).

Also the interaction between the fast and slow path is
different depending on the type of hook point in which the
function is executed. As for the previous case, Polycube
provides a transparent API for this interaction. An example
is the encapsulator and decapsulator (Section VI-B), whose
implementation depends on the hook point at which the service
is attached to; when a packet from the control/slow path of
a service is injected into the fast path, polycubed selects
the appropriate control program depending on the type of the
service instance.

As a concluding remark, XDP Cubes are particularly useful
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Fig. 4: (a) Transparent cubes attached to a port of the service.
(b) Transparent cube attached to network device.

to implement NFs whose final action would result in packets
redirected or dropped at this early stage (e.g., DDoS mitiga-
tion, load balancing) given the early stage in which packets are
processed (north-south traffic). A TC Cube results more suit-
able to use in situation where we cannot avoid the sk_buff
allocation. For instance, containers operate on virtual devices
such as veth to send packets to their destination (likely,
another container; east/west traffic). In this scenario in which
the kernel operates only with the sk_buff, an XDP Cube will
not bring any additional benefits. In addition, TC Cubes can
leverage the TC ingress and egress eBPF hook, enabling the
execution of two different piece of code for packets entering or
exiting from a given interface. Vice versa, XDP supports only
the ingress direction. Despite the above-mentioned differences,
XDP and TC Cubes are mostly complementary to each other
and can be sometimes used interchangeably or at the same
time depending on the use case.

Finally, although eBPF supports application-level data pro-
cessing (e.g., to operate on the traffic generated by a local
database) with the SOCKET attaching point, Polycube sup-
ports only hooks that operate on packets, namely TC and XDP.

G. Support for large Cube’s chains

While loops cannot be created within the eBPF code, they
are still possible by performing the proper tail calls from one
program to another. Hence, the eBPF subsystem enforces a
hard limit of maximum 32 chained programs for a single
packet, which translates into a limit of maximum 32 µCubes
that can be called one after the other for a single packet. To
support longer chains, Polycube keeps track of the number
of hops (i.e., µCubes) traversed by the packet (using a similar
mechanism as the one shown in Section V); once the 32 limit is
hit, the packet is sent to a dedicated slow path in polycubed
and then injected back into the kernel in the same point of the
chain. In this way, the 32 limit will be reset and the packet can
continue the normal processing. However, to avoid a possible
performance degradation, this behavior is disabled by default.

H. Transparent Services

When a packet is received on a specific port, a Polycube
standard Cube can either (i) forward it to one of its output
interfaces, (ii) redirect it to the slow path / control plane, (iii)
return it to the Linux stack to continue its journey (the RX_OK
action in Polycube), or (iv) drop it (RX_DROP). This process

may depend on the specific port configuration and the behavior
configured for each service. For example, a router Cube checks
the routing table for each incoming packet, it determines the
next-hop address and forwards the packet accordingly, using
the port that connects to the next hop router. On the other hand,
there are services whose duty consists simply in determining
whether the packet has to continue its journey or not (i.e.,
either RX_OK or RX_DROP), possibly with updated protocol
headers. Possible examples are firewalls (packets can either
be forwarded or dropped), NATs, load balancers (packets have
to be transformed according to specific rules), or even traffic
monitors (no actions at all, just update counters).

While it seems that the above functions would also need
to forward a packet on a specific port, we can note that the
forwarding decision is always done through a logic that is
orthogonal to the function itself; in fact, the forwarding can
happen at L2 (e.g., using bridging rules), at network layer
(e.g., using the IP routing mechanism), and more. Hence,
having a fully functional firewall (or NAT, or load balancer)
would imply integrating the forwarding logic into it, with
all the associated variants (e.g., L2 or L3?), with a clear
duplication of functions and additional complexity in terms
of code maintenance.

To accommodate the above functions and to maintain an
high degree of of modularity, Polycube introduces the concept
of transparent cube, i.e., a cube that cannot take any forward-
ing decision, hence cannot live alone and must be attached
to either a port of a standard cube or to a Linux netdevice.
Possible examples are depicted in Figure 4. The data plane
of a transparent cube has only three allowed return values: (i)
redirect the packet to the slow path / control plane, (ii) return
it to the calling entity (e.g., a Linux netdevice, or a Polycube
standard cube) (i.e., RX_OK), or (iii) drop it (i.e., RX_DROP).

By design (and for the sake of simplicity), a transparent
cube can be attached to a single port (of a Cube / netdev);
the case depicted in Figure 4a requires two NAT instances,
each one operating on a single port of the router. Optionally,
services can share some data e.g., to coordinate the behaviour
of different instances (e.g., stateful filtering in firewalls).

A transparent cube is composed of an ingress pipeline that
is called when a packet enters the service, and an egress
pipeline that is called when the packet leaves the cube. In
case the transparent service is attached to a netdev, the ingress
pipeline is applied to incoming traffic, either in XDP or
TC INGRESS, while the egress pipeline is always executed
in the TC EGRESS hooks, given the unavailability of the
egress hook in XDP. Transparent cubes can be stacked; in
this case, they need to specify their position with respect
to the others, hence defining the order of execution of the
services. When attached, they have the possibility to inherit
some specific parent’s port configurations that can be used
to automatically configure the service itself. For example, the
NAT service attached to a router’s port in Figure 4 can read the
corresponding IP address and use it for the address translation;
the same happens if the NAT is attached to a netdev, being
the IP address associated to the above network port.
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VII. MANAGEMENT AND CONTROL PLANE

The capability to add (or remove) a network function
dynamically (even from a remote server) into polycubed
provides several advantages such as the possibility to update
an existing NF, adding functionality without modifying the
network functions currently deployed and running. To support
this model, the Polycube core (i.e., polycubed) has been
designed to be completely independent from the type of
network function that is installed. Polycubed has no idea
of how the network function is composed internally or what
are its functionalities, and it takes only care of forwarding
the request to the proper NF instance. This approach does
not require changes to polycubed whenever changes to the
individual NF are needed; when the NF is being updated, it
is unplugged from the framework, updated and plugged-in
again without affecting existing NFs. On the other hand, it
complicates the NF design, which has to define the interface
to the outside (i.e., the REST APIs). To simplify this process,
Polycube uses YANG [48] models, each one describing a
specific NF, to automatically synthesize the REST interface
of the NF.

A. Model-driven service abstraction

The YANG data modeling language allows to (i) model the
structure of the data and the functionalities provided by the
Polycube NF, (ii) define the semantic of the NF data and their
relationship and (iii) express their syntax, which will be used
to interact with the NF itself. When a new NF is registered,
polycubed reads the provided YANG model and generates an
internal representation of the NF data together with a specific
path mapping table used to access those data from outside.
Whenever a new request for that NF arrives, polycubed per-
forms a validation of the input data (e.g., checking the correct
format of an IP address, ports in a given range) according to
the information specified in the YANG model, without having
to rely on the NF itself for those “ancillary” tasks.

1) Service base data model: Polycube provides to the
developers a basic NF structure that can be extended to
compose the desired network function, offering fundamental
abstractions (e.g., VNF ports, port peers, hook type) that are
used to simplify the interaction between the different NFs and
system components. The basic structure, shown in the YANG
Listing 1, reflects the internal representation of a Polycube
NF, with its primary parameters and components. Each NF
within the framework is uniquely identified through a name,
which is specified using the service-name extension;
Polycube does not allow multiple NFs with the same name.
The service-min-kernel-version is used to indicate
the minimum kernel version required to execute the NF, since
there are some eBPF functionalities that are available only
on newer kernel versions; when the NF is loaded, Polycube
checks if the host is running a kernel version greater than or
equal to this value. Finally, the service-description
and service-version are used to describe the current NF.
While the previously mentioned information describe the NF
itself (e.g., a firewall Polycube NF), the variables under the
grouping statement are specific for each NF instance (e.g., a

module pcn−base−s e r v i c e−model {
e x t e n s i o n s e r v i c e−d e s c r i p t i o n { . . . }
e x t e n s i o n s e r v i c e−v e r s i o n { . . . }
e x t e n s i o n s e r v i c e−name { . . . }
e x t e n s i o n s e r v i c e−min−k e r n e l−v e r s i o n {}

grouping base−s e r v i c e−i n s t a n c e {
l e a f name { . . . }
l e a f uu id { . . . }
l e a f l o g l e v e l { . . . }
l e a f hook {

type e n u m e r a t i o n {
enum TYPE TC ;
enum TYPE XDP SKB ;
enum TYPE XDP DRV ;

}
}
l i s t p o r t s {

key ”name ” ;
unique ” uu id ” ;

l e a f name { . . . }
l e a f uu id { . . . }
l e a f p e e r { . . . }

}
}

}

Listing 1: The base YANG model of a Cube

firewall fw1). Each instance is identified with a name, which
is unique inside the NF scope, the hook point at which the
instance is attached to, and a list of ports, identified with a
unique name inside the NF instance and a peer.

2) Automatic REST API generation: Polycube uses the
information in the YANG model to automatically derive the
set of REST APIs that are used to interact with the NF.
Each YANG resource is automatically mapped to a specific
URL, while the different HTTP methods are used to identify
the operations required for a particular resource. The GET
operation allows to obtain the current value of a given resource
on the Polycube NF, the POST operation is used to create
an instance of the resource, the PATCH operation is used
to modify the current value of the resource and finally, the
DELETE operation is used to delete the specified resource.
This approach is similar to the one adopted by the RESTCONF
specification [49], which aims at providing a programmatic
interface for accessing data defined in YANG, allowing any
client to communicate with the Polycube NF by just knowing
its YANG module.

VIII. IMPLEMENTATION

A. Polycube core

As of today, the code of Polycube, i.e., polycubed is
implemented in 28k lines of C++ code, running within an
unmodified Linux without having to install custom drivers or
specific kernel modules. It only requires a v4.15 as minimum
kernel version to run the daemon; then, each NF may have
its own requirements depending on the functionalities that are
used (e.g., eBPF helpers). The Polycube daemon contains both
the code required to handle the different Polycube NFs but also
the service-agnostic server proxies, which parses at runtime the
YANG model of every loaded NF to generate the appropriate
REST API and to perform the validation of the NF parameters
within the server itself.
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Network
Function

Minim.
kernel

LoC FP LoC SP LoC CP
(AU/MAN)

Description

Bridge 4.15 239 40 5798 / 1105 A L2 switch NF with support for VLAN and STP.

DDoS
Mitigator

4.15 140 / 1850 / 20 A NF that drops (malicious) packets based on a blacklist applied on either
IP src and dst addresses.

Firewall 4.19 1654 / 5951 / 2945 A firewall NF that drops or allows packets based on the configured rules.

Dynamic
Monitor

4.15 / / 2330 / 673 Generic NF used to inject eBPF code that monitors network traffic,
collecting and exporting custom metrics. The data plane size depends on
the injected code.

Load Balancer
(DSR)

4.15 362 / 3476 / 566 A version of the Maglev scalable load-balancer [50].

Packet
Capture

4.15 / / 2511 / 822 A NF use to capture packets flowing through a Linux netdevice or between
other cubes.

Policy-Based
Forwarder

4.15 243 / 2605 / 240 A simple ACL-based forwarder.

Router 4.15 276 120 3168 / 1030 A router NF.

NAT 4.15 380 / 6302 / 208 A NF that supports Source, Masquerade, Destination NAT and Port For-
warding.

Iptables 5.3 2254 / 6409 / 1787 Special NF that emulates the behavior of iptables [51].

K8s Network
Plugin

4.19 520 60 5010 / 156 Special NF that provides network connectivity within a k8s cluster (sec-
tion IX-B4). The LoC CP indicate only the code needed to handle the NF,
the interaction with the K8s components is not considered.

TABLE II: A list of NF implemented with Polycube.

Polycube is built around the BPF Compiler Collection
(BCC) [52], which provides a set of abstractions to interact
with eBPF data structure or to load/unload eBPF programs,
together with a compilation toolchain that include Clang/L-
LVM to allow a dynamic generation of the eBPF code that is
injected in the kernel. Polycube extends those abstractions with
additional helper functions targeted to networking services and
to the Polycube NF structure. In particular, the availability of
the compilation toolchain allows to re-compile the code at
runtime, enabling more aggressive optimizations that can be
dynamically applied within the NF. Although this approach,
based on BCC, looks more limiting than other recent proposals
such as BPF CO-RE (Compile Once – Run Everywhere), we
can note that (i) the data structures available for TC and XDP
programs are rather stable, different from the case of generic
eBPF tracing programs that can attach to any point in the
kernel, and (ii) such approaches can be supported in a future
version of Polycube in which the compilation of the data plane
program can be performed on a remote server.

B. Polycube network functions

To stress test the generality of the Polycube programming
model and abstractions, we have implemented a large range
of network functions. Table II briefly describes the type, role
of each of them and the lines of code (LoC) required to
implement the fast path (FP), the slow path (SP) and the
control path (CP). In the former parameter we distinguish
the LoC automatically generated from the YANG model (i.e.,
CP/AU) and the one manually written (i.e., CP/MAN).

At the time writing, there are 18 different NF implemented
in Polycube, with an overall number of about 54k lines of
code, which include both the C++/C code of the control
and slow path and the eBPF code of the fast path. These

implementations suggest that Polycube succeed in the role of
providing a generic and highly customizable framework that
can be used to implement a wide variety of NFs.

IX. EVALUATION

In this section we evaluate the performance of a set of
Polycube NFs and we compare the results with existing in-
kernel implementations. Fist, we measure the performance of
standalone Polycube NFs and then we move to more complex
scenarios where chains of NFs are involved (section IX-B).
Finally, we evaluate the overhead imposed by Polycube pro-
gramming model when compared to baseline programs written
using the vanilla eBPF (section IX-C).

A. Setup

We run our experiments into a server equipped with an
Intel Xeon Gold 5120 14-cores CPU @2.20GHz (hyper-
threading disabled) 19.25 MB of L3 cache and two 32GB
RAM modules. The packet generator is equipped with an
Intel Xeon CPU E3-1245 v5 4-cores CPU @3.50GHz (8
cores with hyper-threading), 8MB of L3 cache and two 16GB
RAM modules. We used Pktgen-DPDK [53] to generate 64-
bytes UDP packets and to count the received packets. In fact,
each server has a dual-port Intel XL710 40Gbps NIC, directly
connected to the corresponding one of the other server. Both
servers run Ubuntu 18.04.1 LTS, with the DUT running kernel
v5.6 and the eBPF JIT flag enabled (the default behavior
for newer kernels). For latency tests, we used Moongen [54],
which generates the same traffic pattern as before but exploits
the hardware timestamp of the NIC to determine the time a
frame spends to return back to the sender; by default, one
frame every millisecond is sampled. All tests were repeated
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ten times and the figures contain error bars representing the
standard error calculated from the different runs.

B. Test applications

1) Case Study 1: L2 Switch: In this test scenario, we
evaluate the performance of a Polycube NF that emulates
the behavior of a fully functional L2 switch with support for
VLAN and Spanning Tree Protocol (STP). The pcn-bridge
data plane is implemented entirely in eBPF, including the
MAC Learning phase. More complex functionalities such as
the handling of STP protocol BPDUs or flooding, as results of
a miss in the filtering database, are relegated to the slow-path,
given the impossibility of performing such actions entirely in
eBPF. We measure the UDP forwarding performance between
pcn-bridge and commonly used L2 switch Linux tools such as
Linux bridge (v1.5) and OpenvSwitch (v2.13) 9. In our test,
pcn-brigde supports a maximum of 4K MAC entries, and we
generate the traffic from 1K different source MAC towards
100 destination MAC. We start the test by sending traffic in
both directions, in order to “warm-up” the MAC table, and
then we measure the throughput on one direction. In this test,
the slow path of pcn-bridge is involved when the packet has
to be flooded, given the impossibility to clone and redirect a
packet directly in the fast path towards multiple destination
ports10. We can clearly notice, from Figure 5, that pcn-bridge
outperforms the other tools in both TC and XDP mode, with a
performance gain of about 3.6x for the latter. The advantages
of XDP are more evident since packets are processed directly
at driver level, avoiding the overhead given by the allocation
of kernel data structures, which may be unnecessary for the
simple forwarding use case. Moreover, we can notice how
the performance of our pcn-bridge NF scale linearly with the
number of cores used, reaching 10Gbps throughput with 64B
packets with six cores involved11.

2) Case Study 2: Load Balancer: In this test, we measure
the performance of a Polycube load balancer NF (i.e., pcn-
lbdsr). As for the previous scenario, this NF is implemented
as a single µCube, with the data plane entirely handled in
eBPF (no slow-path is involved). Polycube pcn-lbdsr can be
configured with a list of virtual IPs (VIP), each one with an
associated list of back-ends; we use the Maglev [50] hash to
select the back-end server, which provides a better resilience
to back-end server failures, a better distribution of the traffic
load among the back-ends and the possibility to set different
weights for each back-end server. To test this scenario, we
used a fixed number of hosts12, as we compared the throughput
results with IPVS v1.28 and Katran [1], an eBPF/XDP-based
load-balancer developed and released as open-source by Face-
book. Figure 6 shows the results of this test, with both pcn-

9All the tests with OpenvSwitch have been carried out on kernel v5.0
since it does not support earlier versions.

10This limitation holds only for the XDP version of pcn-bridge, while the
TC version can exploit the bpf_clone_redirect helper to send a packets
towards all the bridge’s ports.

11To gradually use all cores, we have configured the hardware filtering on
the NIC (i.e., Flow Director [55] rules) to redirect different flows to distinct
NIC’s RX queues.

12We used the same configuration of [38] for the load balancer use case,
setting one virtual IP per CPU core and 100 back-end servers for each VIP.

lbdsr in TC and XDP mode that outperform ipvs by a factor
of 2.2x and 6.5x respectively. Moreover, we want to notice
that pcn-lbdsr in XDP mode offers performance comparable
(or even higher) with Katran. This results is mainly given
by the heavy use the Polycube NFs make of the dynamic
reloading feature, which allows the NF to better adapt to the
runtime configuration by compiling out features that are not
required at runtime, hence, improving the overall data plane
performance. The other big difference is that Katran is a
standalone application built only for the load-balancing use
case; on the other hand, Polycube offers a general framework
to build and create complex NF chains, allowing to create more
complex network typologies, while still providing performance
comparable with “native” eBPF implementations.

3) Case Study 3: Firewall: The Polycube pcn-firewall NF is
implemented as a series a µCubes that compose the entire fire-
wall pipeline (even in this case, the slow path is not involved).
It implements the Linear Bit Vector Search (LBVS) [56]
classification algorithm to filter packets, with a sequence of
µCubes each one in charge of handling specific fields of the
packet (e.g., IP source, destination, protocol, etc.)13. Moreover,
it is also able to “communicate” with the Linux routing table
to check the next hop address before forwarding a packet to
the egress interface14. For this test we used a synthetic ruleset
generated by classbench [57], with all the rules matching the
TCP/IP 5-tuple. The default rule of the firewall is to drop all
the traffic, while only the matching flows are “allowed” and
redirected to the second interface of the DUT. The generated
traffic is uniformly distributed among all the rules so that all
generated packets should be forwarded.

We compare the performance of pcn-firewall with both
iptables and nftables, the most used packet filtering software
used in the Linux subsystem today. Then, we also load
the same ruleset as a set of OpenFlow rules in the Open-
vSwitch pipeline15 and we measure the performance under
the same conditions mentioned before. The results are shown
in Figure 7. Even in this case, we can clearly see how pcn-
firewall outperforms the existing solutions by a 31.8x, 7.5x
and 1.4x factor respectively for nftables, iptables and ovs.
The reason of this is twofold. First, pcn-firewall implements a
faster classification algorithm compare to the linear scanning
implemented by Linux-native firewalls and second, it can
adopt more aggressive optimizations thanks to the dynamic
reloading feature of Polycube, allowing the control plane to
specialize the packet processing behavior depending on the
actual firewall configuration (e.g., the deployed ruleset).

4) Case Study 4: K8s Network Provider: To demonstrate
the capability of Polycube to enable the creation of complex
applications created by chaining different network functions
together, we present a real world use case that can be
implemented within Polycube and the type of performance
improvements that we can expect. In particular, we imple-

13A more detailed explanation of the Polycube firewall architecture is
provided in [51], whose data and control plane has been implemented as a
standalone Polycube NF.

14eBPF provides a specific helper that can be used to lookup the FIB
Linux table directly from the XDP code.

15To generate the OpenFlow rules we used Classbench-ng [58].
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Fig. 5: Packet forwarding through-
put comparison between Polycube pcn-
bridge NF (in both XDP and TC mode)
and “standard” Linux implementation
such as Linux bridge (btctl) and Open-
vSwitch (ovs).
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Fig. 6: Throughput performance between
a Polycube load balancer NF (i.e., pcn-
lbdsr), ipvs, the standard L4 load bal-
ancing software inside the Linux kernel
and Katran, an XDP-based load balancer
developed by Facebook.
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mented a CNI plugin for Kubernetes [29], one of the most
important open source orchestration system for containerized
applications. A K8s network provider must implement Pod-to-
Pod communication16, provide support for ClusterIP services17

and security policies; our prototype supports all of them.
Our overall design includes the five different components: a
NAT NF (pcn-nat), a L3 routing module (pcn-router), a L2
switch application (pcn-bridge), a load balancer (pcn-lb) and
a firewall component (pcn-firewall). These NFs are chained
together by means of Polycube APIs, as shown in Figure 11,
and are configured to support the main operations required by
the k8s network plugin interface. Tests were carried out on a
3-node cluster, a master and two workers with Linux kernel
v4.15, Intel Xeon CPU E3-1245v5 @3.50GHz with dual-port
Intel XL710 40Gbps NIC cards connected point-to-point. We
report the TCP throughput measured with iperf3 using the
default parameters; the server was always running in a Pod,
while the client was either in a physical machine or in another

16A Pod is the smallest manageable unit in a k8s cluster and is composed
of a group of one or more containers sharing the same network.

17A ClusterIP is a type of service that is only accessible within a
Kubernetes cluster through a virtual IP. When a Pod communicates with this
virtual IP, the request can be mapped to an arbitrary Pod running within the
same physical host or into another one.
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Fig. 11: Architecture of the Polycube K8s plugin.

Pod depending on the test.
In Figure 8 and 9 we asses the performance of our Polycube

network provider compared to other existing solutions. In
particular, we consider the Pod-to-Pod connectivity and the
Pod-to-ClusterIP connectivity. Results show that the Polycube
k8s plugin reaches 15-20% higher throughput than other
solutions in the case server and client are on the same node.
When pods are on different nodes, the advantage of the plugin
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TABLE III: Comparison between vanilla-eBPF applications
and a Polycube network function. All throughput results are
single-core.

Application Throughput
(Mpps)

Latency/
Jitter (µs)

LoC
(FP)

LoC
(S/CP)

xdp redirect 6.97 5.93 / 0.38 64 176
tc redirect 1.60 6.16 / 0.25 53 56
pcn-simplefw (XDP) 6.86 6,00 / 0.39 17 0
pcn-simplefw (TC) 1.55 6.22 / 0.26 17 0

becomes less evident because of the influence of the physical
network, but still better than other solutions. Indeed, those
providers often relies on existing kernel components, such as
iptables and Linux bridge, that we proved in the previous case
to be less efficient than the Polycube counterparts.

Although our k8s plugin achieves better performance than
the others in the two cases under consideration, it is always
comparable in terms of functionality with the existing solu-
tions, which are both more stable and complete. The main
purpose here is to demonstrate the generality of the Polycube
programming model and the performance benefits that can be
obtained from eBPF-based NFs.

C. Framework overheads

In this section we evaluate the overheads imposed by
Polycube programming model when compared to baseline
eBPF programs written outside the Polycube environment.

1) Overhead for simple NFs: To measure the baseline
performance and the overhead introduced by the Polycube ab-
straction model to a single NF, we implemented the same op-
erations performed by the xdp_redirect application [59],
available under the Linux samples, as a standalone NF in-
side the Polycube framework (i.e., pcn-simplefwd). The
application receives traffic from a given interface and, after
swapping the source and destination L2 addresses of the
packet, redirects it to a second interface.

Table III shows a comparison between two very simple
vanilla eBPF applications and a Polycube NF that performs
the same operations, attached to either XDP or Traffic Control
(TC) hooks. As we can notice, Polycube introduces a very
small overhead compared to vanilla eBPF applications, both in
terms of throughput (6.86Mpps vs 6.97Mpps) and latency/jitter
(6µs vs 5.93µs), which is required to provide the abstractions
mentioned before (e.g., virtual ports). This is mainly given
by the additional processing that happens before and after
calling the fast path of the NF, which is totally hidden to
the NF developer. As result, the number of LoC for both
the fast-path (FP) and the slow and control path (S/CP) is
considerably reduced, allowing the developer to focus on the
core logic of the program and leaving the common tasks and
the possible optimizations to the Polycube daemon. Note also
that the sample vanilla applications that we are taking into
account are extremely simple; for more complex applications,
a developer using vanilla-eBPF has to implement, for example,
the entire fast-slow path interaction, which requires a non-
negligible amount of effort.
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Fig. 12: Single core throughput of the pcn-bridge Cube with
a different percentage of packets (64B) sent to the slow path.

2) Overhead for chained NFs: Figure 10(a) and (b) shows
the overhead introduced by the Polycube service chain in
both throughput and latency, compared to the standard eBPF
tail call mechanism. Of course, eBPF does not support any
type of abstraction required by a NF framework; a tail call
performs only an indirect jump from one eBPF program to
another. On the other hand, Polycube uses a set of additional
components and abstractions that are executed before a packet
enters and leaves a NF, e.g., to ensure isolation or virtual port
abstraction. This additional overhead is more evident when a
packet runs through an increasing number of virtual Cubes
but it is necessary to ensure the correct execution of the NF
chain. On the other hand, if the same Cube is composed by
a set of µCubes the overhead of crossing different µCubes is
almost negligible, reflecting the same behavior of the tail call
mechanism in the “standard” eBPF approach.

3) Slow Path performance: To overcome the limitations of
the eBPF sandbox, Polycube extends the in-kernel fast path
with a slow path that can be used to perform operations on
packets that cannot be done in the kernel (Section IV). In this
subsection, we evaluate the performance of such component.
In particular, we evaluated the pcn-bridge function showed
before and we sent an increasing percentage of 64B packets
to trigger the slow path processing (i.e., to perform flooding).
The results showed in Figure 12 demonstrates that for higher
rates the slow-path becomes a bottleneck. This overhead is
mainly given by the double packet copy (and context switch)
required to deliver the packet to the userspace application and
send it back to the kernel, where it is injected into the Polycube
service chain or to the output interface.

We note however that most of the applications implemented
in Polycube do not require an high usage of the slow path,
as shown in Table II, and for those where it is required,
the percentage of slow path packets fall beyond the 5%,
which is still acceptable. If a developer requires a higher slow
path usage, other mechanisms should be considered such as
AF_XDP [60], which however we do not cover in this paper
but it is part of our future work.

X. ADDITIONAL DISCUSSION

This Section summarizes the most frequent discussions
about Polycube, which are often due to the complexity of
eBPF, a recent technology that is not yet fully known by the
scientific community.
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A. Polycube vs other Userspace NFV Frameworks

The difference between kernel and user-space networking is
well-known in the literature, with pro and cons on both sides
that we partially explored in Section II. Høiland-Jørgensen et
al. [38] have analyzed the performance differences between
XDP and DPDK, showing a gap between the two approaches
in favor of the latter; our tests simply confirm previous results.
This overhead is almost inevitable, and is mainly given by the
generality of the Linux operating system, which is structured
in a way that make it easier to support different use cases and
not only I/O intensive applications. However, it is important to
note that for lower rates, Polycube provides better advantages
in terms of CPU consumption compared to kernel bypass
approaches. As example, Figure 13 compares the pcn-simplefw
Cube against OvS-DPDK and NFVNice [61], a DPDK based
solution that provides fair scheduling of NFs without a contin-
uous poll on the NIC. For NFVnice, we tested the bridge NF
available in their repository [62], which actually looks a simple
forwarding module. To run this application, NFVnice requires
a total of 4 cores; three are used for master and TX/RX, plus
another core to the actual NF, whose consumption increases
with the traffic sent. Results confirm our initial statement
that Polycube provides an excellent performance/efficiency
trade-off compared to the existing solutions, particularly when
assuming that the server workload does not include only NFV
applications.

B. Reloading µCubes in Polycube

Polycube allows developers to reload the code of every
single µCube inside the NF by using the pcn_reload()
function (Section VI-E). This requires Polycube to re-compile
the µCube’s code by using the embedded Clang+LLVM
toolchain, and inject the code in the kernel. The compilation
time depends on the complexity of the code and the number
of µCubes that have to be replaced. For the majority of NFs
shown in Table II this time varies between 250 and 900ms.
This value has to be added to the time required to inject the
µCube in the kernel, which is about 1ms for a single µCube
or 50ms for more complex Cubes such as pcn-firewall.

While the above control plane operations are in progress,
the existing data plane pipeline continues to process packets,
with an atomic swap of a function pointer performed only
when the new pipeline is ready. To verify the impact of this
operation, we measured the throughput that provides less than
1% of packet loss for the pcn-simplefw with different reload
rates (i.e., starting from every 10ms), without noticing any
change in the obtained numbers.

C. Scalability in Polycube

eBPF programs (and then µCubes) are executed on the same
CPU core where the interrupt is dispatched, which means that
the same Cube can be executed in parallel on different CPU
cores, based on the outcome of the Linux load balancing
interrupt algorithm. This behaviour can be customized by
either configuring the hardware RSS of the NIC or by using the
bpf_redirect_cpu() helper to “redirect” a specific set of
flows to a different CPU core, where the same chain of Cubes
will be executed in parallel. Consequently, the scalability of
Polycube functions is almost automatic, with no tasks left
to the programmer (except using per-CPU data structures
whenever possible, which avoid cache realignments between
CPU cores).

D. Interactions between Cubes and external services

The interaction between Cubes and external services (e.g.,
to read the content of a database, or receive notifications from
other application-level utilities) is devolved to the Cube’s con-
trol plane, which can then “convert” the received information
in data that can be pushed in the eBPF data plane (e.g., through
maps). This limitation originates from the sandboxed nature of
eBPF, which provides a very safe (but, in some cases, limiting)
environment.

E. Isolation between Cube’s chains

When instantiated, each Cube is associated with a different
namespace that guarantees the proper resource isolation (e.g.,
eBPF maps in different cubes are not visible by default). This
behavior can be modified when needed, allowing Cubes to
share resources, such as a connection tracking table reused
across different Cubes.

On the other hand, Polycube does not support the concept
of having multiple tenants that are in charge of different
NF chains. Although this behavior can be emulated with the
namespaces mentioned before, multi-tenancy would require
additional support inside Polycube to split traffic among the
chains associated to different users. In this case, Polycube
should instantiate an additional hidden program in front of the
pipeline (following the same approach explained in Section V)
that parses the packets and redirect them to the right tenant
chains, as defined by high-level rules.

F. Polycube vs. hardware approaches (e.g., P4)

Polycube might benefit from the P4 language as an addi-
tional way to express the data plane semantic and operations
performed when a packet is received. We explored this by
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extending the p4c compiler [63] to convert the P4 code into
a Polycube-compatible format (using a polycube.p4 model),
with the code available at [64]. This would first provide a
“standard” way and semantic to express typical operations on a
packet (e.g., parsing of headers, extraction of fields). The P4c-
Polycube compiler can then implement common operations
(e.g., packet parsing, header’s extraction) in standard and more
efficient way, avoiding potential performance differences that
could come up with NFs written and deployed by different
vendors.

XI. LIMITATIONS AND FUTURE WORK

We now briefly discuss Polycube’s main limitations and
possible opportunities for future work.
Sharing µCubes across different NFs. Currently, Polycube
does not allow to share a µCube among different NFs. A
partial solution consists in duplicating the eBPF source code
in both NFs, which results in the creation of two sepa-
rated µCubes. However, this prevents a µCube with common
operations (e.g., protocol headers parsing) to be shared at
run-time among different NFs, hence potentially improving
the efficiency of the entire eBPF service chain. A possible
future work may consist in analyzing the chain of instantiated
Polycube NFs and remove the redundant features at run-time,
by re-injecting a customized and optimized version of the
original Polycube service chain.
Scalability of Polycube’s slow-path. Figure 3 showed the
mechanism used to send packets from the (kernel) fast path
to the (user-space) slow path for each running Cube. Since
in the current prototype the polycubed’s Demultiplexer is
a unique component shared among all the Cubes, it could
become a potential bottleneck in case of slowpath-intensive
services. This could be improved by instantiating a separate
perf ring buffer for each Cube instance and use a separate
thread to pull packets from it. However, the current solution
is simpler and is appropriate in case services make infrequent
use of slow path, as stated in §IX-C3.

XII. RELATED WORK

We elaborate in this section the related efforts beyond the
work mentioned throughout this paper.
Network Functions with eBPF. The first work that proposed
the use of eBPF as subsystem to implement NF was presented
in 2015, almost one year after the patch that added support
for eBPF in the Linux kernel [65]. In their work, Sánchez et
al. [66] proposed an architecture for a “tethered” CPE with
an implementation of the data plane entirely based on eBPF
to obtain unprecedented efficiency, flexibility and portability
across a wide range of hardware platforms. Following this
approach, Ahmed et al. [67] proposed a network virtualization
platform, called InKev, that uses eBPF as the base execution
engine for building in-kernel virtualized network functions.
InKev is probably the closest work to Polycube. Both works
share the idea of using eBPF to build more complex data
plane applications inside the Linux kernel but they different
significantly in the design goals and details. Polycube aims at
building a NF framework that fits better in the modern cloud

era where loosely coupled, dynamically re-configurable and
more specialized services are a must. Moreover, it focuses
on building a well-defined communication interface for each
services that is exposed externally, providing an automatic
mechanism to generate such RESTful API that an orchestrator
and other services can use for communication. Last but not
least, Polycube provides the implementation of more than
eleven different network functions that are ready to use and
can be chained and configured properly to create custom and
user-defined virtual network topologies. On the other hand,
InKev does not provide such framework but only an draft
implementation of the functionalities presented in the paper.
Industry efforts. Within industry, many companies started
providing networking solutions based on eBPF. Facebook
presented Katran [1] an XDP-based load-balancer deployed
on Facebook’s points of presence. Cloudfare also introduced
L4Drop [68], an XDP DDoS Mitigation solution used in
their system. Cilium [69] brings network security filtering
mechanism to Linux container frameworks like Docker and
Kubernetes; they use eBPF to enforce both network and
application-layer security policies on the containers and pods.
All of these solutions can be considered as separate imple-
mentations that serve for a specific purpose. On the other
hand, Polycube offers an common software framework that
addresses all the possible issues, limitations and optimizations
that can be encountered within the eBPF subsystem. Moreover,
it enable the interconnection of different services to create
more complex applications and topologies, bringing the ad-
vantage of NFV to the world of in-kernel packet processing
applications, something that, to the best of our knowledge, is
not currently with any other open-source framework.

XIII. CONCLUSIONS

This paper presents Polycube, a framework for developing,
deploying and managing in-kernel virtual network functions.
While most of the NFV framework today rely on kernel-
bypass approaches, allowing userspace applications to directly
access the underlying hardware resources, Polycube brings all
the advantages and power of NFV to the work of in-kernel
packet processing. It exploits the eBPF subsystem available in
the Linux kernel to dynamically inject custom user-defined
applications into specific points of the Linux networking
stack, providing an unprecedented level of flexibility and
customization that would have been unthinkable before. In
addition, Polycube has been created with in mind the new
requirements brought by the microservice evolution in cloud
computing. Polycube NFs follow the same continuous delivery
development of server applications and being able to adapt
to continuous configuration and topology changes at runtime,
thanks to the possibility to dynamically inject and update
existing NFs without any traffic disruption. At the same
time, they offer a level of integration and co-existence with
the “traditional” ecosystem that is difficult and inefficient to
achieve with kernel-bypass solutions, enabling a high level
of introspection and debugging that are fundamental in this
environment.

We have implemented a vast range of applications with
Polycube and shown that it is not only easy to deploy and to



17

program but also improves network performance of existing
in-kernel solutions. Polycube adds a very small overhead
compare to vanilla eBPF applications but provides several
abstractions that simplify the programming and deployment
of new NFs and enables the creation of complex typologies
by concatenating different NFs together, while maintaining
and improving performance. We are continuing to explore the
possible improvements and automatic optimizations that are
possible within Polycube, some of which are currently rather
primitive or specific for each application. Finally, we have also
made Polycube available to the community at [34].

ACKNOWLEDGMENT

We would like to thank the many students and colleagues
who collaborated to this project and contributed with ideas,
code, comments, and in particular A. Palesandro, F. Parola, J.
Pi and A. Shaikh with their help to move the project forward.
We also thank VMware and FutureWei for their generous
support.

REFERENCES

[1] C. Hopps, “Katran: A high performance layer 4 load balancer,” Septem-
ber 2019, https://github.com/facebookincubator/katran.

[2] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-Aware Load Balancing at the Virtual
Edge,” in Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
323–335. [Online]. Available: https://doi.org/10.1145/3143361.3143401

[3] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-Based Load Balancing for Fast Datacenter Networks,” in
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 465–478. [Online].
Available: https://doi.org/10.1145/2785956.2787507

[4] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. M. Jr., P. Papadimitratos,
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