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Abstract. We developed the first model simulator of leg movements activity during
sleep. We designed and calibrated a phenomenological model on control subjects not
showing significant periodic leg movements (PLM). To test a single generator hypoth-
esis behind PLM—a single pacemaker possibly resulting from two (or more) interact-
ing spinal/supraspinal generators—we added a periodic excitatory input to the control
model. We describe the onset of a movement in one leg as the firing of a neuron inte-
grating physiological excitatory and inhibitory inputs from the central nervous system,
while the duration of the movement was drawn in accordance with statistical evidence.
The period and the intensity of the periodic input were calibrated on a dataset of subjects
showing PLM (mainly restless legs syndrome patients). Despite its many simplifying
assumptions—the strongest being the stationarity of the neural processes during night
sleep—the model simulations are in remarkably agreement with the polysomnographi-
cally recorded data.

1 Scientific Background
Leg movement activity (LMA) during sleep refers to all tibialis anterior muscle activ-

ity events of one leg compliant with onset, offset, and amplitude criteria set by the World
Association of Sleep Medicine (WASM) [1]. LMA is detected by recording both tibialis
anterior muscles by means of surface electromyography in the context of polysomnog-
raphy. Periodic leg movements (PLM) are particular involuntary LMA, typically occur-
ring during sleep (PLMS). PLM are a frequent phenomenon present in the majority of
patients with restless legs syndrome (RLS), in a significant percentage of patients with
other sleep disorders, and even in healthy subjects especially elderly [2, 3].

Based on WASM criteria, PLM consist of series of at least four monolateral or bilat-
eral candidate leg movements (CLM), each of them longer than 0.5 and shorter than 10
s (or 15 s for bilateral movements) and separated by 10-90 s. When two left and right
movements overlap or are separated by less than 0.5 s they are considered as one bilat-
eral leg movement; otherwise as two distinct monolateral movements [1]. The severity
of PLM is quantified by the PLM index, indicating the PLM number per hour, and
considered abnormal, by consensus, when it exceeds the value of 15 during sleep [4].
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PLM might affect sleep quality for their association with cortical arousals and, in
the long term, cardiovascular system, because of the repetitive induced increase of heart
rate and blood pressure [5]. However, the mechanism and the neuroanatomic pathways
behind PLM are largely unknown, as well as the origin of their periodicity. PLMS also
occur in patients with complete transverse lesions indicating that the spinal cord con-
tains the fundamental network to generate them [6, 7]. In particular, since PLM might
occur in one or both legs, one unsolved question is whether the network is generating
one or two excitatory rythms (pacemakers).

The model is calibrated on data from both control and PLM subjects (subjects with
significant/abnormal PLM index, in particular RLS patients). It allows to generate pop-
ulations of virtual subjects, both control and PLM, and to simulate in-silico LMA. This
goes beyond a speculative exercise: besides understanding the PLM cause, it has poten-
tial implications for the clinical practice, in particular on the essential decision to treat
PLMs or not [8]. Indeed, this work is the first step in developing an in-silico laboratory
that can bring tremendous benefits to doctors and patients, e.g., including pharmacolog-
ical effects to investigate the fundamental decision to treat or not PLM, and, in case,
how to optimally treat PLM. Moreover, a mathematical in-silico LMA model has indis-
putable advantages with respect to animal models, from both the ethical and economic
viewpoints [9].

This work is a preliminary and modeling oriented version of the article recently ap-
peared in the Journal of Sleep Research [10].

2 Materials and Methods
2.1 The LMA model
We drastically simplify the underlying physiology (Fig. 1 shows a schematic repre-

sentation and an example of in-silico LMA) and assume that each leg is controlled by a
single motor neuron (circular nodes in the figure), representative of the central nervous
system complex pathways ultimately determining contractions of the leg muscles. The
two neurons are modeled with the well-known Stein integrate-and-fire (IF) model [11]
(see [12] for a review).

The IF mechanism is quite simple. The neuron state is characterized by its mem-
brane potential (middle in Fig. 1), which evolves according to the neuron synaptic in-
puts. Excitatory (E)/inhibitory (I) inputs (bottom panel in Fig. 1) increase/decrease the
membrane potential (middle panel in Fig. 1), while a time constant τ rules the potential
discharge toward a resting value V0. When the potential reaches a fire threshold Vth,
an output spike is generated, which causes the potential to reset at a basal value that
we take, for simplicity, to be the resting value V0. The output spike represents, in our
model, the leg movement onset, while the duration of the movement is drawn from a
distribution fitted on clinical data (see next section and the top panel in Fig. 1). We
neglect the neuron refractory period, i.e., after firing the neuron immediately restarts
integrating inputs (firing in the course of a LM is a rare event in our model, ≤ 3%, and
are disregarded with no significant effect on our results).

Each of the two neurons receive E/I inputs from the physiological activity of the
central nervous systems, a proportion p of which equally affect both legs, while the
remaining fraction (1− p) is leg-specific (see the rectangles and their firing rates in
Fig. 1). For subjects showing significant PLM (subject typically characterized by a
bimodal distribution of the intermovement interval (IMI) and by a large PLM index),
we add a periodic input common to both legs that implements our hypothesis of a single
phenomenological PLM pacemaker (brown PLM generator in Fig. 1). The period and
intensity of the periodic input are patient-specific.

We model the physiological inputs as series of synaptic current spikes, with Pois-
sonian arrival times, each causing the membrane potential to instantaneously step by a
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Figure 1: Schematic representation of the model together with an example of in-silico LMA generation.
The left and right motor neurons (red and blue circular nodes) implement the Stein integrate-and-fire
model, with membrane potentials vL(t) and vR(t) at time t and the same rest potential V0 and fire threshold
Vth (see eq. (1)). Leg specific and common physiological inputs from the central nervous systems (red,
blue, and magenta rectangular source nodes) are modeled by spikes of synaptic current with Poissonian
arrival times causing steps of equal amplitude a in the membrane potentials (positive/negative steps for
excitatory/inhibitory spikes; arrival rates are indicated next to the input arrow). The assumed single
PLM generator (brown) produces a periodic train of excitatory spikes with period T and potential step
amplitude A. Example of simulated LMA: given the input spikes (stochastically drawn in accordance
with their arrival rates), the left/right neuron membrane potential evolves according to eq. (1); when the
neuron fires, an LM starts on its controlled leg, with duration drawn from a data-fitted distribution (see
model calibration Sect. 2.2). Single-leg LMA are combined in monolateral and bilateral LM according
to the standard rule [1]: two monolateral and one bilateral LM are shown in the top panel.
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small fraction a of the rest-to-fire interval Vth − V0. We denote by λE and λI the ar-
rival rates of E and I inputs, divided into common (rate p λX) and leg-specific (same
rate (1−p)λX for both legs, X = E, I) (lower part of Fig. 1). The three Poisson arrival
processes (common and left-/right-specific) are independent. The PLM pacemaker is a
series of T -periodic synaptic spikes, each spike causing an upward potential step A.

Denoting by vl(t) and vr(t) the left and right neurons membrane potential at time t
(red and blue curve in Fig. 1 middle panel), their time evolution is ruled by the following
ordinary differential equation:

d

dt
vx(t) = −vx(t)− V0

τ
+ aSE(t) + aSE,x(t)− aSI(t)− aSI,x(t) + ASP(t), (1)

x = l, r, where SE(t), SE,x(t), SI(t), and SI,x(t) are the series of unitary spikes of the
physiological inputs (common to both legs and leg-specific), and SP(t) is the periodic
series of unitary spikes of the PLM pacemaker (a unitary spike causing a 1-Volt upward
step in the membrane potential). Between two consecutive inputs, the potential vx(t)
exponentially decays toward V0 (the evolution is only ruled by the discharge term in
eq. (1)). At the arrival of the new input spike, the potential is updated by adding the
spike contribution.

2.2 Model calibration
Data were obtained from subjects previously enrolled in different studies on PLM

published by some of the authors of this work (M.M. and R.F.) [6, 13, 14]. The LMA
duration is fitted on all control LMA recordings (32 subjects characterized by unimodal
IMI distribution; max PLM index = 5.9; mean age 48.03 years (SD 20.75) and 56.25%
women). Parameters λE, λI, p, τ characterize control subjects. Their calibration result
is a statistical fitting that can be used to generate virtual control subjects populations.
The distributions of the PLM generator parameters T and A are fitted using the PLM
dataset (65 subjects, mainly RLS affected, characterized by bimodal IMI distribution;
PLM index > 15 except for a few cases; mean age 58.52 years (SD 13.09) and 66.15%
women). All parameters are supposed constant during the night (8 hours). All cali-
bration procedures are implemented in Matlab. Fig. 2 shows the results for the control
model. The calibration result of the PLM generator parameters is shown in Fig. 3. More
details on the calibration follow.

2.2.1 Scaling parameters

From a phenomenological standpoint, the membrane potential rest and threshold val-
ues, V0 and Vth, are scaling parameters. We set V0 = 0 and Vth = 1 and express the
intensities a and A of the physiological and pathological synaptic inputs as fractions of
the rest-to-fire interval (V0, Vth, a, and A can therefore be considered adimensional). In
particular, the intensity a played a scaling role affecting the calibration of the arrival
rates λE and λI. With no loss of generality, we fixed a = 0.1 ((Vth − V0)/10), i.e.,
one-tenth of the rest-to-fire interval.

2.2.2 LMA duration

We collected the durations of all LMAs recorded on each single leg in the con-
trol dataset. We fitted the obtained LMA samples with all parametric distributions
provided in Matlab. None however showed statistical agreement with the LMA data
(Kolmogorov-Smirnov test (K-S) p-value < 0.01). We then used a non-parametric
technique [15] (kernel density estimation, mean 2.47, SD 2.43, Fig. 2A; K-S p-value
≈ 0.15) and used the obtained distribution to independently draw the durations of all
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Figure 2: Samples histograms (blue) and fitted distributions (red line) of LMA duration (A), E inputs
arrival rate λE (B), common/specific proportion parameter p (D). (λI, λE) correlation (C).
IMI distribution of the population of real (E) and virtual (F) control subjects.
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virtual LMA at the firing of the corresponding leg neuron. Because no significant cor-
relation is documented between LMA duration and subject’s PLM index, we use the
LMA duration distribution fitted on controls also to generate the LMA of virtual PLM
subjects.

2.2.3 Arrival rates of physiological input spikes

We jointly calibrated the arrival rates of the physiological input spikes on single leg
recordings of the control subjects. Not distinguishing common from leg-specific inputs,
E and I spikes arrive at rate λE and λI on each single leg, independently on the value
of the proportion parameter p. The membrane time constant τ , however, affects the
calibration of λE and λI. We now describe the calibration for an assigned value of τ .

For each single leg recording, we added to the sample joint distribution of (λE, λI) the
pair that matches the observed mean and variance of the IMI. Note that we considered
the intervals between all LMA (recall that a leg activity shorter than 0.5 s is not scored
as LM [1]), because our model aims at reproducing the full LMA. As the difference
λE − λI and the sum λE + λI respectively controlled the IMI mean and variance of a
virtual control subject [12], we adjusted them to match the observed values over a one-
night simulation (accuracy 5%). As we found a strong correlation between λE and λI,
we chose to fit the sample distribution of λE and a relation binding λI to λE.

For the selected value τ = 75 s (see section below 2.2.5), we found a nearly-linear
correlation between λE and λI that we fitted with the least-square-error quadratic poly-
nomial with the addition of a small Gaussian term to account for the data variability
(the variance of the Gaussian was set equal to the polynomial square error). We ob-
tained λI = 1.031λE + 0.1187 + 0.002136λ2E + 0.05N(0, 1) and we best fitted λE to
the generalized extreme value (GEV) (3.10, 1.22, 0.89) (Fig. 2B-C). To avoid unrealis-
tic values, we truncated the obtained GEV at λE = 20 (truncated GEV mean 4.73, SD
3.14; K-S p-value ≈ 0.3).

2.2.4 Proportion of common and leg-specific inputs

For assigned τ , λE, λI, we built the sample distribution of the proportion parameter
p between common and leg-specific physiological inputs as follows. For each control
subject, we obtained a sample of p by matching the proportion of bilateral LMs shown
by the subject with the one produced by the virtual subject characterized by rates λE and
λI equal to the corresponding averages of the values identified for the subject’s left and
right legs. At each value of p during the search (we used bisection from the two extremes
p = 0 and p = 1, with accuracy 3%), we simulated 10 nights of the virtual subject
and compared the obtained fraction of bilateral LMs with the value shown by the real
subject. The obtained samples of p are fitted with all common parametric distributions.
The best parametric distribution fit for τ = 75 s was the Beta (11.82, 0.82) (Fig. 2D;
K-S p-value ≈ 0.71).

2.2.5 The membrane time constant

We calibrated the membrane time constant τ to match the shape of the IMI distri-
bution of control subjects. Note that, thanks to the τ -dependent calibration of the input
arrival rates λE and λI and of the common/specific proportion parameter p, the mean and
variance of the IMI distribution of a virtual population well matched the experimental
values, independently of τ . However, if τ was too small, the neuron discharge was too
fast, so that firing required a burst of E inputs. This resulted in large input rates λE and
λI and in a quite erratic dynamics of the neuron potentials, thus yielding a rather flat
IMI distribution for the virtual population.



Proceedings of CIBB 2021 7

15 20 25 30 35 40 45 50 55 60 65
T

0

2

4

6

8

10

12

A

0

5

10

15

20

25

0 5 10 15

Figure 3: Samples histograms (blue) and fitted distributions (red line) of the PLM generator period T (on
the panel left) and of the PLM generator intensity A (on the right panel).

Since the characteristic IMI of control subjects is in the interval 0.5-10 s, we consid-
ered, as shape index, the ratio between the hourly number of IMI < 10 s, averaged over
the population, and the average LMA index (the hourly number of LMA). The reason
for considering the LMA index in the ratio, instead of the total hourly number of IMI,
was that the input arrival rates were calibrated to match the subject LMA.

Summarizing, to evaluate a specific value of τ , we proceeded as follows: calibrate the
distribution of λE and fit its correlation with λI; calibrate the distribution of p; generate a
population of 100 virtual controls; simulate one night for each control and compute the
IMI distribution shape index of the virtual population. As expected, the shape index in-
creased with τ and got close to the experimental value (20%) at about τ = 75. Fig. 2E, F
show the IMI distribution of real and simulated control populations, respectively.

2.2.6 The period of the PLM generator

We relied on the fact that patients with significant PLM are characterized by a bi-
modal IMI distribution, where the first peak is typical of healthy subjects, while the
second characterizes the PLM disorder [16]. We therefore built the sample distribution
of the period T by taking the IMI of the second peak of each PLM subject’s IMI distri-
bution. We found the best fitting with the GEV (21.87, 3.49, 0.17) (left panel of Fig. 3;
K-S p-value ≈ 0.55). Relaying on medical experience, we truncated the GEV below 17
and above 50 s (truncated GEV mean 24.42, SD 5.16; K-S p-value ≈ 0.59).

2.2.7 The intensity of the PLM generator

For each PLM subject, we drew 10 virtual control models, to each of which we
added the PLM input with the subject-specific period T and amplitude A to be selected
to match the subject’s LM index. PLM subjects show more LMs than control ones, so
that with A= 0 the LM index, averaged on the 10 virtual subjects (each simulated for
one night), falls below the value of the real subject. On the other extreme, if A is large,
each PLM input spike triggers the firing of the neuron and the LM index of the virtual
subjects exceeds the clinical value. We proceed via bisection to find the sample of A
matching the subject’s LM index (with accuracy of 3 movements/hr). We best fitted the
LogNormal (0.78, 0.8) (K-S p-value ≈ 0.31; right panel of Fig. 3). To avoid unrealistic
virtual PLM subjects, we truncated the distribution below 0.2 (truncated LogNormal
mean 0.72, SD 0.60; K-S p-value ≈ 0.3).
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Table 1: LM features in real (recording) and virtual (simulation) control subjects.
Statistical agreement: T, Student’s t-test; Tl, t-test on log-transformed data; U, Mann–Whitney U test.

control subjects (32)
recording simulation statistics

LM features mean (SD) mean (SD) p-value
LMA index 13.57 (±6.34) 13.74 (±6.45) 0.8804 (T)
LM index 13.44 (±6.29) 13.54 (±6.38) 0.9289 (T)

CLM index 12.88 (±5.58) 13.00 (±6.12) 0.9040 (T)
old PLM index 5.11 (±3.51) 4.34 (±1.48) 0.3611 (U)

PLM index 1.54 (±1.59) 0.65 (±0.73) 0.0193 (U)
short-IMI index 2.71 (±2.15) 2.84 (±1.66) 0.4684 (U)
mid-IMI index 4.89 (±2.71) 4.40 (±2.34) 0.6576 (U)
long-IMI index 4.56 (±1.75) 5.02 (±1.70) 0.4051 (U)

monolateral LMs median (IQR) median (IQR) p-value
dunuration (s), min 0.53 (0.51-0.57) 0.52 (0.51-0.55) 0.9998 (T)

max 8.50 (6.42-9.72) 8.69 (7.53-9.29) 0.6255 (T)
mean 2.01 (1.76-2.28) 2.08 (1.93-2.21) 0.3178 (T)

median 1.59 (1.29-1.70) 1.54 (1.46-1.69) 0.4118 (T)
bilateral LMs median (IQR) median (IQR) p-value

# single LM, min 2.0 (2.00-2.00) 2.0 (2.00-2.00) -
max 3.0 (2.00-3.00) 3.0 (2.00-3.00) 0.9158 (U)

mean 2.05 (2.00-2.11) 2.04 (2.00-2.10) 0.9561 (U)
median 2.0 (2.00-2.00) 2.0 (2.00-2.00) -

duration (s), min 1.01 (0.82-1.13) 0.96 (0.81-1.22) 0.4573 (T)
max 9.19 (8.26-9.69) 9.67 (8.37-11.82) 0.0531 (T)

mean 3.91 (3.52-4.35) 4.09 (3.57-4.59) 0.2346 (T)
median 3.34 (2.98-3.91) 3.28 (2.85-3.74) 0.4109 (T)

bilateral LMs (%) 31.45 (23.50-40.00) 30.94 (15.45) 0.8505 (T)

3 Results and Discussion
Our model can be used to generate in-silico populations of both control and PLM

subjects. We create populations of equal size to the datasets used for the model calibra-
tion (32 control and 65 PLM subjects) and compare the obtained sample distributions of
typical clinical indicators against polysomnographically-recorded data. A limitation of
this study is that we use for the comparison the same datasets used for calibration. On
one hand, the datasets are too small to be split into calibration and validation. Moreover,
the model parameters show a remarkable variability among the subjects, so that a cor-
rect validation would require more recordings of the same subjects. On the other hand,
our model does not simulate the specific parameter values identified for single real sub-
jects, but randomly draw virtual subjects from the statistics of the real control and PLM
populations. Finally, the model is not aimed at forecasting the LMA of new subjects.
Our primary aim in this work is to test the single-generator hypothesis behind PLM. For
these reasons, it is acceptable to use the same dataset for calibration and assessment.

In calibration, we have identified the distributions of the model parameters that best
fit the LMA of control and PLM subjects. In validation, we compare important features
of virtual populations drawn from the identified statistics against the real populations.
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Table 2: LM features in real (recording) and virtual (simulation) PLM subjects.
Statistical agreement: T, Student’s t-test; Tl, t-test on log-transformed data; U, Mann–Whitney U test.

PLM subjects (65)
recording simulation statistics

LM features mean (SD) mean (SD) p-value
LMA index 57.12 (±46.40) 61.36 (±45.48) 0.2436 (Tl)
LM index 56.90 (±46.22) 60.69 (±45.15) 0.2865 (Tl)

CLM index 55.31 (±42.67) 57.52 (±42.21) 0.5108 (Tl)
old PLM index 44.22 (±32.02) 39.48 (±41.04) 0.0749 (U)

PLM index 29.17 (±19.78) 14.21 (±22.81) ≤ 0.0001 (U)
short-IMI index 12.45 (±24.69) 17.15 (±11.67) 0.2573 (U)
mid-IMI index 37.12 (±22.10) 35.08 (±31.61) 0.3899 (U)
long-IMI index 4.05 (±1.76) 8.58 (±2.85) ≤ 0.0001 (U)

monolateral LMs median (IQR) median (IQR) p-value
dunuration (s), min 0.51 (0.51-0.53) 0.51 (0.51-0.52) 0.5943 (U)

max 9.30 (7.35-9.77) 9.42 (8.78-9.74) 0.5311 (U)
mean 2.15 ( 1.80-2.39) 2.06 (1.94-2.11) 0.3614 (U)

median 1.69 (1.40-2.14) 1.51 (1.42-1.57) 0.2269 (U)
bilateral LMs median (IQR) median (IQR) p-value

# single LM, min 2.0 (2.00-2.00) 2.0 (2.00-2.00) -
max 3.0 (3.00-4.00) 4.0 (3.00-4.00) 0.1312 (U)

mean 2.03 (2.01-2.06) 2.05 (2.03-2.07) 0.0973 (U)
median 2.0 (2.00-2.00) 2.0 (2.00-2.00) -

duration (s), min 0.92 (0.73-1.10) 0.83 (0.66-0.97) 0.1153 (U)
max 9.71 (9.47-9.91) 12.99 (11.56-13.87) ≤ 0.0001 (Tl)

mean 3.70 (3.34-4.31) 3.90 (3.67-4.09) 0.0502 (Tl)
median 3.32 (2.84-3.96) 3.18 (2.86-3.47) 0.1176 (Tl)

bilateral LMs (%) 39.65 (28.11-53.90) 37.63 (29.96-50.52) 0.6965 (Tl)
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Table 2 summarizes the comparison, reporting mean and standard deviation of the
principal LM features [13], durations, and composition of bilateral LM [14], together
with their statistical agreement with real data. We find a remarkably good agreement
for LMA, LM, CLM, and the old PLM indeces [1, 13] for both control and PLM popu-
lations. We also find accordance in the characteristics of monolateral and bilateral LM
[14]. Noting that a virtual PLM subject is nothing but a virtual control subject with
the only addition of the PLM periodic input, the latter being calibrated by fitting LMA
indexes, rather than PLM indicators, we conclude that the statistical agreement gives
support to the single-generator hypothesis behind the PLM phenomenon.

As expected, the agreement is strong in monolateral LM for control subjects, since
the LM duration is fitted on all single-leg recordings of control subjects. Remarkably,
the agreement remains very good also for the bilateral LM features validating the model
for healthy subjects. Regarding PLM subjects, the obtained results support our model
and thus the view of the single periodic generator. Indeed, not only the in-silico mono-
lateral LM features statistically agree with the in-vivo ones, but also the bilateral ones,
in particular the right increase of the proportion of bilateral LM in PLM subjects.

The statistical agreement fails for the indicators requiring some temporal structure
among LM. This is the case of the current PLM index [1] (Tab. 2). The PLM index con-
siders only sequences of at least four consecutive LM separated by IMI in the interval
10–90 s and interrupted by IMI shorter than 10 s or longer than 90 s. The disagreement
reason is rooted in the stationarity of the model parameters during the night, especially
between the various sleep phases. Indeed, without requiring sequencing, we find a good
agreement in the numbers of IMI in each of the three characteristic medical interval, i.e.,
0–10 s (short-IMI, characteristic of healthy individuals), 10–90 s (mid-IMI, characteris-
tic of PLM subjects), and 90 or more seconds (long-IMI). Only the number of long-IMI
is larger in our simulations, but this is again an artefact of the model stationarity. Indeed,
there is medical evidence that PLM decrease along the night, i.e., mid-IMI are concen-
trated at the beginning of the night, while few very long IMI characterizes phases with
no PLM. However, calibrating a stationary PLM generator that matches, on average, the
subject’s number of LM (see calibration in Sect. 2.2) gives several long-IMI in lieu of
less but longer ones.

4 Conclusion
We develop the first model to generate in-silico LMA, both for control and PLM sub-

jects, adding only a PLM generator for PLM subjects. We calibrate the model parame-
ters on recorded laboratory data and simulate control and PLM virtual populations. In
spite of its simplicity, our phenomenological model shows a good statistical agreement
between LMA features of in-silico and in-vivo populations. The agreement supports the
validity of our model and also endorses the single generator hypothesis behind the PLM
phenomenon. The main dissimilarities are caused by the model stationarity, opening up
for future developments aimed at turning the model into a quantitative predicting tool to
support medical intervention.

It is never easy to establish the merit of a first in-silico model of a physiopathological
phenomenon, such as LMA, and to foresee possible future useful employment. How-
ever, the interested reader can find some ideas in section 4.1 Future research in [10],
where we have tried to speculate on some possible future applications of our model,
such as modeling the effects of drugs.

Considering also the patients’ metadata, it will be possible to perform cluster analy-
ses for the model parameters, favoring the important and still missing mission of PLM
phenotyping.
Finally, the parameters A (PLM generator intensity) and T (PLM generator period) could
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be used as new indicators of the severity and temporality of PLM, respectively, to be
used in parallel with the recently introduced parameters, like the periodicity index.
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