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We introduce a classification of the radial spin textures in momentum space that emerge at high-
symmetry points in crystals characterized by non-polar chiral point groups (D2, D3, D4, D6, T ,
O). Based on the symmetry constraints imposed by these point groups in a vector field, we study
the general expression for the radial spin textures up to third order in momentum. Furthermore,
we determine the high-symmetry points of the 45 non-polar chiral space groups supporting a radial
spin texture. These two principles are used to screen materials databases for archetypes that go
beyond the basic hedgehog radial spin texture. Among the selected materials we highlight the
axion insulator candidate Ta2Se8I, the material proposed for dark matter detection Ag3AuTe2 and
heazlewoodite Ni3S2, a conventional metal predicted to exhibit current-induced spin polarization.
We point out that the symmetry analysis proposed in this Letter is more general and extends to
studying other vector properties in momentum space.

Many spin-related phenomena in condensed matter
physics are understood in terms of the specific distri-
bution in momentum space of Sn(k) = 〈ψn(k)|Ŝ|ψn(k)〉,
the spin expectation value of the Bloch wave function
ψn(k) of band n with momentum k. This quantity pro-
vides a spin texture (ST) in momentum space which is
determined by the interplay between spin-orbit coupling
(SOC) and crystal symmetries [1, 2]. The archetypal ex-
amples of such relationship are the effective k·p models of
the Dresselhaus [3] and Rashba [4, 5] spin-orbit couplings
for non-centrosymmetric zinc blende and wurtzite crys-
tal structures, respectively. However, since a k · p model
depends on the crystal symmetries as well as the specific
manifold of the Bloch states that are considered, it is a
challenging task to obtain effective models to describe
STs in a generic crystal. Such complex dependence on
the details of the material is well illustrated by the ex-
istence of exotic Rashba-type spin textures with cubic
momentum-dependent terms in the Bi/Ag(111) surface
alloy [6] and rare-earth ternary materials [7]. Recently, a
new method based on topological quantum chemistry [8]
has been proposed to address this problem. This method
correlates the nature of the Bloch functions in a local ba-
sis around a multifold fermion to predict its ST [9].

An alternative approach for obtaining information on
the ST, or the momentum dependence of any vector field,
consists in examining its transformation under the crystal
symmetries. New STs have been identified on the basis of
such symmetry analysis. For instance, the persistent ST,
a uniform distribution of spins in momentum space, has
been shown to be enforced by symmetry [10, 11]. This
type of ST also presents an exotic version with cubic mo-
mentum dependence around high-symmetry points with
C3h and D3h point group (PG) symmetries [12]. As high-
lighted in Ref. 13, the relevant symmetry operations that

the vector field must satisfy change across the Brillouin
zone (BZ) and are dictated by the PG symmetries of the
wavevector around which the ST is evaluated.

Radial spin distributions also emerge as new types of
texture imposed by crystal symmetry [14]. Such STs ap-
pear around high-symmetry points in the BZ where spins
are forced to point parallel to the momentum along sev-
eral rotation symmetry axes. The lack of inversion and
mirror symmetries, and the presence of three or more ro-
tational axes are the necessary conditions for the radial
STs. The only PGs that respect these conditions are the
non-polar chiral D2, D3, D4, D6, T and O.

Radial STs are commonly pictured either as a hedge-
hog configuration with the spins pointing parallel to the
momentum along all the rotation symmetry axes or as a
vector field where the spins point parallel and antipar-
allel to the momentum at different rotation symmetry
axes [15–17]. The first reported examples of materials
hosting such STs are CoSi [18] and elemental Te [14],
two well-known chiral materials. Later, these STs were
associated with the special Kramers-Weyl (KW) points
located at time-reversal invariant momentum (TRIM)
points in chiral materials. Experimental confirmation of
radial STs via spin-resolved angle-resolved photoemission
spectroscopy (ARPES) has been provided in Te at both
TRIM [19] and non-TRIM high-symmetry points [20],
as well as in PtGa [21]. Theory predicted that materials
with such spin configurations present a new magnetoelec-
tric effect where a magnetization parallel to the current is
induced [22, 23]. This effect has been experimentally con-
firmed in Te [24–26], CrNb3S6 [27] and chiral disilicides
[28]. The advance opens a new route for the generation
of long-range spin accumulation that can be used for spin
manipulation by electrical means only [26, 29, 30].

In this Letter, we propose an alternative route for clas-
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sifying spin textures in momentum space. We system-
atically analyze the constraints imposed by the symme-
tries with chiral non-polar little groups on a general vec-
tor field at high-symmetry points in momentum space.
We provide a list of all the high-symmetry points (both
TRIM and non-TRIM) from the 45 non-polar chiral space
groups where it is possible to find a radial ST. Using ex-
amples of several known materials, we illustrate differ-
ent types of radial STs according to the PG symmetry,
the presence of time-reversal symmetry around the high-
symmetry point, and the need to include higher-order
momentum terms.

The ST S(k) = (Sx(k), Sy(k), Sz(k)) around k0 (we
omit the band index for simplicity), can be expressed as
the Taylor expansion of its components

Sα(q) =
∑
i,j,k

Sαijkq
i
xq
j
yq
k
z , α = x, y, z, (1)

where q = k−k0 is the momentum measured from the ex-
pansion point k0, typically a high-symmetry point. The
real coefficients Sαijk are not arbitrary and must satisfy
the symmetry requirements of the vector field around
k0, i.e., the symmetries of the group of Gk0

. Since trans-
lations do not affect momentum space properties, only
PG symmetries determine how a vector or pseudo-vector
transforms. Let g be the matrix representation of a sym-
metry of Gk0

. A pseudo vector must transform as

S(q) = det(g) gS(g−1q), g ∈ Gk0
. (2)

In the case of non-polar chiral PGs only proper rota-
tions with det(g) = 1 are present, then pseudo-vectors
transform as normal vectors. By imposing the symme-
try constraints of each non-polar chiral PG, we deter-
mine which Sαijk coefficients vanish up to the third or-
der. Table I summarizes the most general expressions
of the vector field compatible with each non-polar chiral
PG. These expressions describe the ST up to a global
function f(q) that depends on the modulus of q. Let
S(q) be a vector from Table I that satisfies Eq. (2), then
S’(q) = f(q)S(q) satisfies Eq. (2) as well. Real coeffi-
cients Ai, Bi and Ci correspond to non-zero parameters
of the linear, quadratic and cubic terms, respectively. .

In order to identify all possible points in momentum
space that can support radial STs in generic crystals, we
determine the high-symmetry points, for the 45 eligible
space groups, with non-polar chiral PGs. Following the
double-value representation tables in Ref. 31, we identify
149 high-symmetry points with a non-polar chiral PG.
These points are listed in Table I of the Supplemental
Material [32]. Only the points not intersected by high-
symmetry lines or planes with symmetry-enforced degen-
eracies are selected, otherwise the continuity criteria re-
quired for performing Taylor expansion is not satisfied.

For a given space group with PG G, the high-symmetry
points of the corresponding BZ have a point group Gk0

⊆

TABLE I. Expansion terms of the spin texture up to the
third order for the non-polar chiral point groups.

Point group α 1st 2nd 3rd

D2

x : A1qx B1qyqz C1q
3
x + C2qxq

2
y + C3qxq

2
z

y : A2qy B2qxqz C4q
3
y + C5qyq

2
z + C6qyq

2
z

z : A3qz B3qxqy C7q
3
z + C8qzq

2
x + C9qzq

2
y

D4

A1qx B1qyqz C1q
3
x + C2qxq

2
y + C3qxq

2
z

A1qy -B1qxqz C1q
3
y + C2qyq

2
x + C3qyq

2
z

A2qz C4q
3
z + C5qz(q2x + q2y)

D3

A1qx -2B1qxqy +B2qyqz C1(q3x + qxq
2
y) + C2qxq

2
z

A1qy B1(q2y − q2x) −B2qxqz C1(q3y + qyq
2
x) + C2qyq

2
z

A2qz C3(q3x − 3qxq
2
y) + C4qz(q2x + q2z) + C5q

3
z

D6

A1qx B1qyqz C1(q3x + qxq
2
y) + C2qxq

2
z

A1qy -B1qxqz C1(q3y + qyq
2
x) + C2qyq

2
z

A2qz C3qz(q2x + q2z) + C4q
3
z

T
A1qx B1qyqz C1q

3
x + C2qxq

2
y + C3qxq

2
z

A1qy B1qxqz C1q
3
y + C2qyq

2
z + C3qyq

2
x

A1qz B1qxqy C1q
3
z + C2qzq

2
x + C3qzq

2
y

O
A1qx C1q

3
x + C2qx(q2y + q2z)

A1qy C1q
3
y + C2qy(q2x + q2z)

A1qz C1q
3
z + C2qz(q2x + q2y)

G. When Gk0 is a subset of G, the star of the high-
symmetry point k0 contains more than one element. At
each of these non-equivalent points the spin vector field
bears a different Taylor expansion, but the coefficients
Sαijk of the vector field expansion at non-equivalent points
of the star are related by the complementary symmetry
operations that form subgroup Qk = G −Gk0 . These ad-
ditional relations among Sαijk at different high-symmetry
points of the star can introduce new constraints on the
vector field and even reduce the number of constants re-

(a) (b)

(c) (d)

(e) (f)

T
CoSi

n = 82

O
Ag3AuTe2

n = 153

D3
Ni3S2
n = 17

D4
Ta2Se8I
n = 97

D6
TaSi2
n = 66

D2
CoTeMoO6

n = 156

FIG. 1. Examples of radial spin textures with linear momen-
tum dependence. Respective materials and band indices are
labeled. In all the cases the sphere surrounds the Γ point.
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(a)

(b)

(c)

D2 (P)
Ta2Se8I
n = 65

D3 (H)
TaSi2
n = 56

T (P)
Ag3AuTe2

n = 222

FIG. 2. Examples of radial spin textures with quadratic
momentum dependence. The corresponding high-symmetry
points in the Brillouin zone are indicated in parentheses. Left
panels are the computed spin textures and right panels are
the normalized spin texture for the same band.

quired to describe such field. The details of constraints
imposed by the PG of the space group are given in the
Supplemental Material [32].

Next, we illustrate the diversity of spin textures around
high-symmetry points for each non-polar chiral PG [33]
using a selection of chiral materials listed in Table II.
These materials are chosen according to the following
criteria. Both CoSi and TaSi2 highlight the complex-
ity of the radial ST in well-known chiral crystals that
were assumed to host a simple hedgehog spin configu-
ration. We have also included the axion insulator can-
didate Ta2Se8I [34] and the material proposed for dark
matter detection Ag3AuTe2 [35] to emphasize the pos-
sibility of simultaneous manifestation of several exciting
electronic phenomena in these novel materials. Finally,
in order to complete the list of STs generated by the dif-
ferent non-polar chiral PGs, we screened the TopoMat
database [36] with the help of Table I in the Supple-
mental Material [32] to find new materials that can host
radial STs. We selected heazlewoodite Ni3S2 [37] and the
non-magnetic phase of CoTeMoO6 as examples of the D3

and D2 PG symmetries. Special interest must be paid to
heazlewoodite, a conventional metal that is susceptible
to exhibit the chirality-induced spin polarization. In all
cases, we choose STs produced by the bands that are
the most representatives of all scenarios, bearing in mind
that these are not isolated cases.

So far, the spin textures of non-polar chiral PGs have

been studied only up to linear order. This simplification
gave rise to the notion of a hedgehog vector field. How-
ever, hedgehog or purely radial or hedgehog STs are only
present around high-symmetry points with T and O PGs,
while for the rest of PGs the textures cannot be purely
radial. Focusing on the linear terms in Table I, purely
radial STs of the T and O PGs are described by a vector
field with all three components having the same coeffi-
cient A1. Examples of such purely radial STs are illus-
trated in Figs. 1(a) and 1(b) for CoSi (T ) and Ag3AuTe2
(O) at the Γ point.

As the number of rotation axes of the PGs is reduced,
the number of parameters describing the ST increases,
and non-radial components along the directions other
than the rotation axes emerge. For the D3, D4 and D6

PGs, two different parameters A1 6= A2 are required. For
the D2 PG each spin component has a different coefficient
A1, A2 and A3. Examples of possible STs that corre-
spond to specific bands at the Γ point in Ni3S2, Ta2Se8I,
TaSi2 and CoTeMoO6 are shown in Figs. 1(c)–1(f), re-
spectively. While Fig. 1(c) shows an almost purely radial
ST due to A2 being slightly larger than A1, the rest of
examples [Figs. 1(d)–1(f)] deviate strongly from the ideal
hedgehog configurations. This is due to |A1| ≈ |A2| but
sign(A1) 6= sign(A2), A2 � A1 and A1 6= A2 6= A3, re-
spectively. We would like to emphasize the case shown
in Fig. 1(e), in which A2 is significantly larger than A1

and a near-persistent ST is created between the north
and south hemisphere.

Although radial STs have been associated with KW
points [15] and multifold band degeneracies at TRIM
points, such configurations also appear at non-TRIM
points. The seminal work on elemental Te was devoted
to the study of the band structure and the ST around
the H point, a non-TRIM point at which the two high-
est valence bands are non-degenerate. There is, how-
ever, a fundamental difference since at TRIM points the
quadratic terms of Eq. (1) are forced to be zero due
to time-reversal symmetry, while this condition is not
present at non-TRIM points. Non-TRIM high-symmetry
points are less common, and we identified a total of 24
distributed in the D2, D3 and T point groups. In order

TABLE II. Selected materials and their space groups illus-
trating the spin texture imposed by each non-polar point
group.

Point group TRIM Non-TRIM

D2 CoTeMoO6 (SG 18) Ta2Se8I (SG 97)

D3 Ni3S2 (SG 155) TaSi2 (SG 180)

D4 Ta2Se8I (SG 97) -

D6 TaSi2 (SG 180) -

T CoSi (SG 198) Ag3AuTe2 (SG 214)

O Ag3AuTe2 (SG 214) -
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(a) D2
CoTeMo6
n = 146

(b) D3
Ni3S2
n = 27

(c) D4
Ta2Se8I
n = 72

(d) D6
TaSi2
n = 47

(e) T
CoSi

n = 56

(f) O
Ag3AuTe2

n = 203

FIG. 3. Examples of radial spin textures with cubic momentum dependence. In all the cases the sphere surrounds the Γ point.
Top panels are the computed spin texture and bottom panels the normalized spin texture for the same band.

to illustrate the appearance of radial STs due to lead-
ing quadratic momentum terms at non-TRIM points, we
selected three materials from the TRIM column in Ta-
ble II that also have non-TRIM points in their BZ. These
are Ta2Se8I, TaSi2 and Ag3AuTe2 for the D2, D3 and T
point groups, respectively, and the corresponding STs are
shown in Figs. 2(a)–2(c). In order to highlight the details
of the STs, we divided each panel into two parts: left
part shows the computed ST, while the right displays
the normalized ST (Sn(k)/|Sn(k)|) for the same band.
In the following, we describe the contribution of the dif-
ferent quadratic terms to the three cases. Figure 2(a)
shows the ST of Ta2Se8I for a band around the P point.
The quadratic behaviour of the spin is evident at the
equator qz = 0, where the B3qxqy term of the Sz com-
ponent is manifested. Similarly, the selected ST of TaSi2
in Fig. 2(b) is governed by the B1qxqy and B1(q2y − q2x)
terms of the Sx and Sy components, respectively. Finally,
the case of Ag3AuTe2 at the P point [Fig. 2(c)] shows a
competition between the linear and quadratic terms with
sign(A1) 6= sign(B1).

Furthermore, Fig. 2(a) illustrates an example of ST at
a high-symmetry point k0 with a PG Gk0

, a subgroup of
space group G, being conditioned by the subgroup Qk =
G−Gk. According to Table I, four parameters determine
the ST up to quadratic order at the equator encircling
a point with the D2 point group. As a consequence,
low-symmetry STs are possible, but in Ta2Se8I the C4

rotation symmetry of the crystal point group G relates
the vector field at non-equivalent points P . As a result,
at these points A1 = A2 and B1 = B2 resulting in a more
symmetric ST.

In general, the complexity of ST around high-
symmetry points with non-polar chiral PGs goes beyond
the linear and quadratic terms. For each material in Ta-

ble II it is possible to find several bands, for which STs
require cubic terms to describe momentum dependence.
Figure 3 shows some examples that we found around the
Γ point of each material. The top panels show the com-
puted ST, while the bottom panels illustrate its normal-
ized vectors. In the example of the D2 point group sym-
metry [Fig. 3(a)], the Sz component is dominated by the
qzq

2
x term since the spin only points almost parallel to

kz as we move along the kx-kz plane. Figure 3(b) illus-
trates an example for the D3 point group with Sz being
governed by the C3(q3x−3qxq

2
y) term close to the equator

of the sphere. The ST shown in Fig. 3(c) corresponds
to the D4 point group. In this case, the spin texture
near the equator is the result of a competition between
the cubic terms C1 and C2 with sign(C1) = sign(C2)
but C2 > C1. In Figs. 3(d) and 3(e), the nature of
the cubic spin texture is revealed by a fast change in
the orientation of ST on the sphere. In the case of the
D6 point group [Fig. 3(d)], the Sz component is gov-
erned by the q3z term because it rapidly decays to zero
with kz. For the T point group symmetry [Fig. 3(e)],
the qx = 0 and qy = 0 planes are asymmetric, therefore
sign(C2) 6= sign(C3). Finally, the selected example for
the O point group [Fig. 3(f)] presents a ST with a high
winding for each high-symmetry plane. Such ST is gen-
erated by the competition of the A1 and C1 term with
sign(A1) 6= sign(C1).

To summarize, we have studied the radial STs gener-
ated by the non-polar chiral PGs. Based on the symme-
try transformation of a pseudo-vector under the opera-
tions of these PGs, we provide the most general expres-
sion up to the third order in momentum expansion. We
show that beyond the simplicity that the name radial spin
texture alludes to, many exotic STs with a non-radial
behaviour appears. We also provide a comprehensive list
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of all the high-symmetry points where such STs can be
found among the 45 non-polar chiral space groups. These
results give a simple description of the radial STs based
on the PG symmetries of the high-symmetry points that
can be used for predict the radial ST and correlate it with
the current-induced spin polarization. Our results allow
for straightforward screening of materials databases in
order to find novel compounds with radial STs. Finally,
the symmetry analysis provided in this Letter is not only
valid for the spin texture, but for all the other vector
properties in momentum space.
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